Download PDF
ads:
UNIVERSIDADE FEDERAL DE UBERLÂNDIA – UFU
INSTITUTO DE BIOLOGIA
PROGRAMA DE PÓS GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO
DE RECURSOS NATURAIS
A IMPORTÂNCIA DA FLORAÇÃO SEQÜENCIAL DE
MALPIGHIACEAE PARA A MANUTENÇÃO DA DIVERSIDADE
DE TRIPES (THYSANOPTERA) NO CERRADO
ESTEVÃO ALVES DA SILVA
UBERLÂNDIA – MG
FEVEREIRO, 2010
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ESTEVÃO ALVES DA SILVA
A IMPORTÂNCIA DA FLORAÇÃO SEQÜENCIAL DE
MALPIGHIACEAE PARA A MANUTENÇÃO DA DIVERSIDADE
DE TRIPES (THYSANOPTERA) NO CERRADO
ORIENTADOR
DR. KLEBER DEL-CLARO
CO-ORIENTADORA
DRA. HELENA MAURA TOREZAN SILINGARDI
UBERLÂNDIA
FEVEREIRO - 2010
“Dissertação apresentada à Universidade Federal de
Uberlândia, como parte das exigências para obtenção
do título de Mestre em Ecologia e Conservação de
Recursos Naturais”.
ads:
ESTEVÃO ALVES DA SILVA
A IMPORTÂNCIA DA FLORAÇÃO SEQÜENCIAL DE
MALPIGHIACEAE PARA A MANUTENÇÃO DA DIVERSIDADE
DE TRIPES (THYSANOPTERA) NO CERRADO
APROVADA em 22 de fevereiro de 2010
Prof. Dr. Giuliano Buzá Jacobucci, UFU
Prof. Dra. Marina Farcic Mineo, IFTM
Prof. Dr. Glein Monteiro de Araújo (Suplente), UFU
PROF. DR. KLEBER DEL-CLARO
ORIENTADOR
UFU
CO-ORIENTADORA
PROFª. DRA. HELENA MAURA TOREZAN SILINGARDI
UFU
UBERLÂNDIA
FEVEREIRO - 2010
“Dissertação apresentada à Universidade Federal de
Uberlândia, como parte das exigências para obtenção
do título de Mestre em Ecologia e Conservação de
Recursos Naturais”.
AGRADECIMENTOS
Aos meus pais e familiares e a Deus
Aos meus orientadores Dr. Kleber Del Claro e Drª. Helena Maura Torezan Silingardi pelo
apoio e confiança nestes dois últimos anos
Agradeço também:
· Universidade Federal de Uberlândia e Programa de Pós Graduação em Ecologia e
Conservação de Recursos Naturas, UFU
· À secretária do PPGECRN Maria Angélica pela sua solicitude e amabilidade
· Instituto de Biologia, UFU
· Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
· Aos Profs. Giuliano Buzá Jacobucci, Marina Farcic Mineo e Glein Monteiro de
Araújo por participarem da banca
· Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
· Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
· Dr. Laurence Mound, Australia's Commonwealth Scientific and Industrial Research
Organisation (CSIRO)
· Prof. Rafael Ariza, Faculdade de Engenharia Mecânica, UFU
· Doutorando Adriano Cavalleri, Universidade Federal do Rio Grande do Sul
· Corpo Docente do Programa de Pós Graduação em Ecologia e Conservação de
Recursos Naturas, UFU, em especial aos professores Drª. Cecília Lomônaco, Drª.
Tatiana Cornelissen e Dr. Heraldo Vasconcelos pelas aulas de estatística.
· A todo o Laboratório de Ecologia Comportamental e Interações, UFU (LECI) em
especial aos doutorandos Everton Tizo Pedroso, Jonas Byk e Denise Lange; e às
mestrandas Alexandra Bachtold, Ceres Belchior, Andréa Andrade Vilela e Fernanda
Alves Martins.
· Corpo de funcionários do Instituto de Biologia, UFU, bem como diretórios da
universidade como a garagem e a gráfica
· Ao Sr. Nilson Dias de Oliveira, presidente do Clube de Caça e Pesca Itororó de
Uberlândia, por ceder gentilmente a área de reserva natural em que este estudo foi
conduzido
· À minha turma de mestrado
Agradeço aos meus amigos, conhecidos e também àqueles que seguem o lema de “se não
ajudar, atrapalhe, afinal o importante é participar”. Provavelmente devo ter esquecido de
alguém.
Aelton Giroldo
Amanda Ferreira e Cunha
Camila Bonizário
Danielle Justino
Diego Oliveira
Eurípedes Luciano Silva Júnior
Felipe Wanderley
Franco Costa Gondim
Guilherme Mitsuo Yugue
Lorrayna Guedes
Luciana Nascimento Custódio
Marcela Yamamoto
Patricia Tieme Fujimura
Pietro Kiyoshi Maruyama Mendonça
Rafaella Librelon
Tayná Lopes Pires
Tiago Luiz Massochini Frizzo
ÍNDICE
CAPITULOS DE REVISÃO.............................................................................................
1
1. TRIPES (THYSANOPTERA: INSECTA).................................................................. 1
1.1 Características gerais................................................................................................... 1
1.2 Morfologia de Tripes................................................................................................... 3
1.2.1 Morfologia externa.................................................................................................... 3
1.2.2 Anatomia interna...................................................................................................... 4
1.3 Interações ecológicas.................................................................................................... 5
1.3 Referências Bibliográficas........................................................................................... 9
2. MALPIGHIACEAE (MALPIGHIALES)................................................................... 13
2.1 Características gerais.................................................................................................. 13
2.2 Espécies abordadas no estudo.................................................................................... 14
2.3 Estudos em ecologia com Malpighiaceae................................................................... 16
2.4. Referências Bibliográficas.......................................................................................... 19
CAPÍTULO ÚNICO: The importance of Malpighiaceae sequential flowering to the
maintenance of thrips diversity in Brazilian Savanna
1 INTRODUÇÃO...............................................................................................................
21
2 CONCLUSÃO................................................................................................................. 23
3 INTRODUCTION……………………………………………………………………... 24
4 MATERIAL AND METHODS………………………………………………………..
26
4.1 Study area………………………………………………………………………... 26
4.2 Preliminary observations……………………………………………………….. 27
4.3 Data collecting…………………………………………………………………… 27
4.4 Thysanopterofauna descriptions……………………………………………….. 28
4.5 Flower size and the abundance of thrips………………………………………
30
4.6 Environmental data……………………………………………………………... 30
4.7 Plant phenology………………………………………………………………….. 30
4.8 Testing the occurrence of seasonality………………………………………….. 31
5 RESULTS........................................................................................................................ 31
6 DISCUSSION.................................................................................................................. 41
6.1 Thrips occurrence and its importance: a brief review………………………... 41
6.1.1 Suborder Terebrantia…………………………………………………………. 41
6.1.2 Sub Order Tubulifera, family Phlaeothripidae……………………………… 46
6.2 Thrips community and host plant preferences…………………………………
48
6.3 Resource and predators…………………………………………………………. 50
6.4 Polyphagy………………………………………………………………………… 52
6.5 Seasonality and phenology……………………………………………………… 53
6.6 The importance of sequential flowering and major hosts…………………….. 54
7 CONCLUSION................................................................................................................
56
8 REFERENCES................................................................................................................ 57
Dados Internacionais de Catalogação na Publicação (CIP)
S586i
Silva, Estevão Alves da, 1982-
A importância da floração seqüencial de Malpighiaceae para a ma-
nutenção da diversidade de tripes (Thysasanoptera) no cerrado [manus-
crito] Estevão Alves da Silva. - 2010.
70 f. : il.
Orientador: Kleber Del-Claro.
Co-orientadora: Helena Maura Torezan Silingard.
Dissertação (mestrado) - Universidade Federal de
Uberlândia, Progra-
ma de Pós-Graduação em Ecologia e Conservação de Recursos
Naturais.
Inclui bibliografia.
1.
Relação inseto-planta. 2. Ecologia do cerrado - Teses. I. Del-Claro,
Kleber. II. Silingard, Helena Maura Torezan. III. Universidade Federal de
Uberlândia. Programa de Pós-Graduação em Ecologia e Conservação de
Recursos Naturais.
CDU:
595.7-155.7
Elaborado pelo Sistema de Bibliotecas da UFU / Setor de Catalogação e Classificação
RESUMO
Alves-Silva, E. A importância da floração seqüencial de Malpighiaceae para a
manutenção da diversidade de tripes (Thysasanoptera) no cerrado. 2010. 70f.
Dissertação (Mestrado em Ecologia e Conservação de Recursos Naturais) Universidade
Federal de Uberlândia, Uberlândia, 2010.
Para se entender o papel de cada planta na ecologia de tripes, dois principais critérios
precisam ser quantificados: a regularidade temporal em que os indivíduos são encontrados em
uma planta e sua abundância em uma determinada planta relativamente a outras. A escolha de
plantas representativas pode fornecer informações que permitam definir padrões temporais de
ocorrência e avaliar a importância de fatores ambientais na comunidade destes insetos. Neste
contexto, plantas que apresentem floração seqüencial podem prover elementos a respeito da
importância de cada hospedeiro em abrigar populações de tripes ao longo do ano. Este estudo
teve o objetivo de testar a hipótese de que malpighiáceas com floração seqüencial são
responsáveis pela manutenção de tripes no decorrer do ano, assumindo a premissa que tripes
migram de planta em planta de acordo com a fenologia de floração. O estudo foi realizado em
uma área de Cerrado sentido restrito em Uberlândia, Minas Gerais, Brasil. As plantas
estudadas foram Banisteriopsis malifolia, B. campestris, B. laevifolia, Byrsonima intermedia
e Peixotoa tomentosa. As coletas foram realizadas de março de 2008 a fevereiro de 2009.
Foram encontradas 19 espécies de tripes distribuídas em oito gêneros e três famílias
Phlaeothripidae, Thripidae e Heterothripidae, perfazendo 3788 (5.61±6.49,
X
±1SD)
indivíduos nas 675 flores analisadas. Testes de fenologia mostraram que todas as cinco
malpighiáceas apresentaram floração seqüencial, o que permitiu aos tripes migrarem entre as
plantas e encontrarem alimento e abrigo o ano todo. A planta com maior abundância de tripes
foi P. tomentosa, seguida por B. laevifolia, no entanto, a diversidade foi maior em B. malifolia.
As únicas espécies de tripes presentes em todas as plantas e passíveis de migrar dependendo
da fenologia de floração foram Frankliniella condei, Scutothrips nudus, Frankliniella sp. 1. e
Heterothrips peixotoa. A riqueza e diversidade encontradas nas malpighiáceas são umas das
maiores registradas para a ocorrência de tripes em plantas relacionadas taxonomicamente e
isso se deve ao aspecto conservativo das flores que fornecem tanto alimento quanto proteção
contra predadores. Este estudo mostra que malpighiáceas com floração seqüencial têm um
importante papel na manutenção da diversidade de tripes, atuando como um recurso natural
que auxilia na sobrevivência e diversificação destes insetos no cerrado brasileiro.
Palavras-chave: Heterothrips peixotoa, Frankliniella, plantas hospedeiras, fenologia
ABSTRACT
Alves-Silva, E. The importance of sequential flowering Malpighiaceae to the
maintenance of thrips (Thysanoptera) in Brazilian Savanna. 2010. 70f. Dissertação
(Mestrado em Ecologia e Conservação de Recursos Naturais) Universidade Federal de
Uberlândia, Uberlândia, 2010.
To understand the role of each plant species in the ecology of thrips, two principal criteria
need to be quantified: the regularity with which individuals are found on a plant species over
time, and their abundance on that particular plant species relative to other ones. The choice of
representative plants may supply subsidies to define temporary patterns and to evaluate the
importance of environmental factors on the community of these insects. In this context
sequential flowering plants can provide insightful information about the importance of each
host in supporting thrips populations along the year. This study aimed to test the hypothesis
that Malpighiaceae sequential flowering is responsible for the maintenance of thrips
throughout the year, assuming the premise that thrips migrate from different plants according
to the flowering phenology. Fieldwork was carried out from March 2007 to February 2009 at
a strictu sensu Cerrado area in Uberlândia, Minas Gerais State, Brazil. The plants studied
comprised Banisteriopsis malifolia, B. campestris, B. laevifolia, Byrsonima intermedia, and
Peixotoa tomentosa. We found a total of 19 species of thrips in eight genera distributed in the
three families Phlaeothripidae, Thripidae and Heterothripidae. Phenological analysis showed
that the five Malpighiaceae species studied presented sequential flowering, enabling thrips to
migrate from plants and to find food and shelter along the year. The plant which presented
more thrips was P. tomentosa, followed by B. laevifolia whereas the diversity was higher in B.
malifolia. The only thrips species present in all plants and likely to migrate from hosts
according flowering phenology were Frankliniella condei, Scutothrips nudus, Frankliniella
sp. 1 and Heterothrips peixotoa. The richness and diversity recorded are the highest ever
sampled for thrips occurrence in a group of related taxonomic plants, because the
conservative aspect of Malpighiaceae flowers provide food resources and protection against
predators. This study showed that sequential flowering Malpighiaceae plays an important role
in the maintenance of thrips diversity, being an important natural resource to help in the
survivorship and diversification of these insects in Brazilian Savanna.
Key words: Heterothrips peixotoa, Frankliniella, host plants, phenology
1
CAPÍTULOS DE REVISÃO
1. TRIPES (THYSANOPTERA: INSECTA)
1.1 CARACTERÍSTICAS GERAIS
Tripes são insetos fitófagos, micófagos ou predadores que ocupam uma vasta gama de
habitats, ocorrendo nas regiões tropicais, subtropicais e temperadas (Ananthakrishnan 1993).
Sua diversidade adaptativa lhes permitiu a exploração de diversos nichos como flores,
serapilheira e cascas de árvores (Richards & Davies 1988).
A ordem Thysanoptera evoluiu presumivelmente de ancestrais que se alimentavam de
fungos e detritos, um hábito que foi retido nos membros da família Merothripidae e também
pela ordem Psocoptera, que provavelmente dividiu um ancestral comum com tripes (Mound
& Marullo 1996). Tripes podem ter agido como polinizadores durante a radiação das
fanerógamas e este comportamento foi mantido para algumas espécies (Momose et al. 1998,
Sakai 2001). Subseqüentemente, três formas majoritárias de alimentação foram adotadas
hifas e esporos de fungos, folhas e flores, além de néctar, tecidos florais, o conteúdo das
células de folhas jovens; e o fluido corporal de pequenos artrópodes (Mound 2002a, Morse &
Hoddle 2006).
Atualmente são reconhecidas duas subordens de tripes, Tubulifera e Terebrantia (Grimaldi
& Engel 2005). As diferenças mais conspícuas destas duas subordens estão no ovipositor e no
formato das asas. As fêmeas dos Terebrantia têm um ovipositor em forma de serra, visível
ventralmente nos últimos segmentos abdominais, enquanto que nos Tubulifera, o abdome de
ambos os sexos é tubular no ápice, não havendo ovipositor visível (Mound & Marullo 1996)
(FIGURA 1). Quanto às asas, nos Terebrantia, o primeiro par possui venações que podem ser
acompanhadas de cerdas. Já nos Tubulifera, as asas não dispõem de venações. Mais de 95%
das espécies de Terebrantia estão associadas a plantas enquanto que 60% dos Tubulifera são
fungívoros (Mound 2005). O sistema de acasalamento em Thysanoptera é complexo e pode
envolver ferormônios, atrativos visuais, sons ou uma combinação destes. A corte é feita pelo
macho que usa suas antenas para fazer contato com a mea e deixá-la imóvel para que a
cópula ocorra (Milne et al. 2007).
O ciclo de vida dos tripes é intermediário entre holometábolo e hemimetábolo. Os estágios
imaturos são chamados de larvas e todas as espécies de tripes possuem mais de um estágio de
pupa (Mound & Marullo 1996). (FIGURA 2). A maioria das espécies completa seu ciclo de
ovo a adulto em duas ou três semanas. A duração varia de acordo com o hospedeiro e com
fatores abióticos como temperatura, umidade e fotoperíodo (Ananthakrishnan 1993,
Whittaker & Kirk 2004).
2
A B
FIGURA 1. Diferenças morfológicas das duas subordens de tripes, evidenciadas pelo ovipositor que na (A)
subordem Tubulifera o ovipositor tem a foram cônica e está presente nos últimos segmentos abdominais e na (B)
subordem Terebrantia é serreado e localizado ventralmente (FIGURA: Frantz et al. (2010)).
As larvas das espécies que habitam flores empupam no solo enquanto que nas espécies
que se alimentam de fungos, as pupas são encontradas em associação com adultos e larvas, o
que pode ter sido importante para o desenvolvimento da socialidade em algumas espécies
(Crespi et al. 1997). Crespi (1988) descreve o comportamento de Hoplothrips karnyi (Hood),
uma espécie que se alimenta de fungos, onde o macho defende um território com massa de
ovos e acasala com fêmeas que eventualmente aparecem para ovipor. As lutas com outros
machos por território levam freqüentemente a morte de um deles, sendo que os indivíduos
menores são os mais injuriados após as lutas. Este comportamento de guarda envolve danos
físicos devido às lutas e um custo energético substancial, que deve ser compensado por um
aumento no valor adaptativo do indivíduo ao acasalar com mais fêmeas.
Adultos e larvas de ambas as subordens compartilham um único atributo estrutural:
somente a mandíbula esquerda é desenvolvida, a direita é reabsorvida no estágio embrionário
(Mound 2005). Apesar dos diversos hábitos alimentares, os estiletes dos tripes são
marcadamente uniformes em estrutura. A mandíbula única é usada para criar um buraco no
alimento, como em grãos de pólen ou células de folhas e flores. Os estiletes maxilares são
pares e estão ligados para formar um canal alimentar único, que se insere na fonte alimentar.
Assim, os conteúdos de cada célula da folha, flor ou grão de pólen são sugados (Mound &
Marullo 1996) (FIGURA 3). Cerca de 700 espécies de tripes são conhecidas no Brasil,
compreendendo 10% da fauna mundial (Monteiro 2002, Mound 2002b). Um terço destas
espécies são agrupadas na subordem Terebrantia e dois terços na Tubulifera (Monteiro 2002).
No país, Thripidae (Terebrantia) e Phlaeothripidae (Tubulifera) são as famílias mais
representativas, com 27% e 66,5%, respectivamente. As outras quatro famílias,
Uzelothripidae (0,2%), Merothripidae (1,8%), Aelothripidae (1,5%) e Heterothripidae (3%)
3
são pouco conhecidas. Devido à ênfase que é dada à agricultura, os registros de tripes são
mais extensos para espécies que são pragas associadas à plantações, como Frankliniella e
Thrips (Nagata et al. 1999, Monteiro et al. 2001).
Adulto
Ovo
Larva de
1º ínstar
Larva de
2º ínstar
Prepupa
Pupa
Solo
FIGURA 2. Esquema do ciclo de vida de tripes. As fases larvais são acompanhadas das fases de pupa que se
enterram no solo para completar seu desenvolvimento ao estágio adulto. (FIGURA: Hoodle (2010)).
Folha
Cabeça de um tripes
FIGURA 3. Diagrama da alimentação de tripes, onde a mandíbula perfura o tecido foliar para sugar seu conteúdo.
(Figura: Costa Lima 1936).
1.2 MORFOLOGIA DE TRIPES
1.2.1 Morfologia externa a cabeça é levemente quadrangular, de forma que um par de
pequenos, porém proeminentes olhos compostos com largas facetas são vistos superiormente.
Três ocelos estão presentes nas formas aladas e ausentes nas formas ápteras. As antenas
possuem de seis a 10 segmentos e sua inserção ocupa uma posição frontal na cabeça. O corpo
4
possui cerdas que são taxonomicamente importantes. As partes bucais são adaptadas para
perfurar e sugar o alimento. As asas são membranosas, estreitas, possuem franjas nas bordas e
podem ou não ter venações. O abdômen é longo e composto por 11 segmentos (FIGURA 4).
Os machos possuem um edeago eversível (Ross 1965, Richards & Davies 1988, Mound &
Marullo 1996, Grimaldi & Engel 2005).
1.2.2 Anatomia interna o sistema digestório é caracterizado por um mecanismo de bomba
de sucção provida de músculos radiais, um longo esôfago, um extenso intestino e quatro
túbulos de Malpighi. Dois ou três pares de glândulas salivares estão localizadas no tórax e
abdome e seus ductos se unem para formar um canal comum que se abre em frente ao esôfago.
O intestino médio forma a maior porção do tubo alimentar e é dividido em uma câmara
anterior seguida de uma região posterior circular. O final do intestino forma uma passagem
direta para o ânus e possui quatro papilas retais.
A
B
FIGURA 6. (A) Tripes adulto, as asas franjadas e a disposição das cerdas ao longo do corpo e das (B) antenas
são usadas para a identificação das espécies. (Figura: Costa Lima 1936).
Quanto ao sistema nervoso, o cérebro é bem desenvolvido, o gânglio subesofageano e o
protorácico são fundidos enquanto que os nglios meso e metatorácicos são separados. O
sistema circulatório consiste de uma pequena bomba contrátil no oitavo segmento abdominal.
Nas fêmeas, os ovários contêm quatro pequenos ovaríolos panoísticos, uma pequena
espermateca pigmentada e uma glândula em forma de saco. Nos machos, um par de testículos
fusiformes se comunicam ao vaso deferente e ao ducto ejaculatório. O sistema traqueal é bem
desenvolvido e se abre ao exterior por meio de quatro pares de espiráculos, localizados no
meso e metatórax e no primeiro e oitavo segmentos abdominais (Richards & Davies 1988).
5
1.3 INTERAÇÕES ECOLÓGICAS
A gama de plantas em que tripes podem ser encontrados é considerável. Inclui algumas
briófitas, pteridófitas e gimnospermas, bem como as folhas e flores de muitas angiospermas,
particularmente aquelas que ofereçam locais para abrigo, reprodução e permitam a
manutenção do inseto (Mound & Terry 2001). Muitas espécies de tripes que vivem em flores
se alimentam de pólen. Seria fácil pensar em tal associação como mera predação de tripes nas
plantas, porém adultos podem ser observados freqüentemente carregando pólen em seus
corpos e voando ativamente entre flores (Terry 2002). Não dúvida de que tripes conduzem
pólen entre plantas, mas a demonstração da significância destes pequenos insetos na
polinização raramente tem sido estudada.
Apesar das queixas de Charles Darwin de que tripes interferiam em seus experimentos de
polinização, sabe-se hoje que estes insetos podem atuar como polinizadores principais ou
secundários de várias espécies de plantas (Mound 2005). Sakai (2001) estudando a evolução
de sistemas de polinização demonstrou que tripes têm relações mutualísticas com Castilla
elastica Sessé ex. Cerv., na qual a planta provê alimentação para o inseto e este promove
polinização cruzada. Momose et al. (1998) também observaram que em, Popowia pisocarpa
(Blume) somente pequenos insetos como tripes conseguiam entrar na câmara floral reduzida e
promover polinização, assim como Mound & Terry (2001) demonstraram para Macrozamia
macdonnellii (F. Muell. ex Miq.) F. Muell. ex A. DC. Similarmente, Hagerup & Hagerup
(1953), Eisikowitch & Woodell (1975), Thien (1980), Bawa et al. (1985), Moog et al. (2002)
entre outros, descrevem sistemas em que tripes são polinizadores. As adaptações de tripes
como polinizadores envolvem aspectos tais como a disponibilidade de pólen ou néctar como
fonte alimentar e um microclima dentro do tubo da corola no qual tripes podem se reproduzir
(Ananthakrishnan 1993). Estas interações envolvem múltiplas recompensas: alimento, local
protegido para atividades reprodutivas, substrato para oviposição; todos fornecidos por
estruturas florais (Pellmyr & Thien 1986, Armstrong & Marsh 1997, Momose et al. 1998,
Sakai 2001).
Esta característica mais nobre de tripes, entretanto, não os demove de seu status mais
conhecido. Algumas espécies são reconhecidamente pragas em vários agroecossistemas
economicamente importantes (Morse & Hoddle 2006, Dreistadt et al. 2007). No Brasil,
Frankliniella juntamente com Thrips, são os gêneros de Thysanoptera que reúnem o maior
número de espécies-praga, seja pelos danos diretos causados aos tecidos vegetais durante a
alimentação e/ou pela transmissão de agentes fitopatogênicos, especialmente Tospovirus, que
acarretam grandes perdas econômicas na agricultura (Nagata & Avila 1999). Os hábitos
6
alimentares das larvas são similares aos dos adultos, porém, somente as larvas adquirem o
vírus se alimentando de plantas previamente infectadas (Mound & Marullo 1996). O vírus se
desenvolve no inseto e este quando adulto, inocula o vírus nas plantas em que se alimenta, via
saliva. A infecção de vírus nas plantas é ruim para os tripes, pois isso diminui a sobrevivência
das larvas das gerações subsequentes e consequentemente afeta o fitness da população
(Belliure et al. 2005).
Além de polinização e herbivoria, tripes exibem outras interações ecológicas como
predação (Agrawal et al. 1999), características como mimetismo (Mound & Reynaud 2005) e
formação de galhas (McLeish et al. 2007) (FIGURA 5). Os tripes que formam galhas são
espécie-específicos (Mound & Marullo 1996) e preferem plantas com tecidos jovens, os quais
são alterados celular e metabolicamente após a colonização, em tecidos com elementos
nutritivos que servem de base alimentar, permitindo a uma população de tripes alcançar até 12
gerações por ano (Ananthakrishnan 1993).
Não um consenso a respeito de quais mecanismos ou elementos são responsáveis pela
atração de tripes para um hospedeiro específico. Mound (2005) afirma que tripes não são
encontrados associados a flores de morfologia aberta que atraem abelhas e moscas, nem com
aquelas com grandes quantidades de néctar, no entanto, Kirk (1997) relata que algumas
espécies de tripes são encontradas somente em flores pequenas, brancas e com um forte odor,
mesmo quando estão abertas. No Cerrado, tripes podem ser encontrados sob tipos variados de
flores (dados não publicados.) que se encaixariam perfeitamente em ambas as proposições
defendidas pelos autores acima. Considerando-se a literatura presente sobre tripes, convém
considerar que estes insetos são atraídos pelo odor liberado de flores (Momose et al. 1998),
mas também podem ocorrer fatores conjuntos de atração (Milne & Walter 2000, Sakai 2001),
como acontece com alguns besouros (Gottsberger & Silberbauergottsberger 1991). Poucos
autores fornecem listas com informações de tripes e suas plantas hospedeiras e possíveis
interações com outros insetos que também possam utilizar a mesma planta. Del-Claro et al.
(1997), estudando Peixotoa tomentosa A. Juss verificaram que a espécie de tripes presente,
Heterothrips peixotoa Del-Claro, Marullo & Mound, 1997, provocava danos nas flores pela
herbivoria. Porém estes tripes conseguiam escapar de predadores se escondendo nas câmaras
formadas entre a pétala e a sépala destas flores. Apesar desta interação não ser benéfica para a
planta, os tripes obtém alimento, local protegido para atividades reprodutivas e substrato para
oviposição, todos fornecidos pelas estruturas florais (Pellmyr & Thien 1986, Armstrong &
Marsh 1997).
7
FIGURA 5. Diversidade de interações e comportamento de tripes. (A) Indivíduo de Franklinothrips
vespiformis (DL Crawford, 1909) adulto que mimetiza formigas; (B) larva de F. vespiformis se
alimentando de outro tripes; (C) Cicadófita polinizada por tripes na Austrália; (D) larva de
Aulacothrips dictyotus Hood fixada na porção ventral do membracídeo Enchenopa
brasiliensis Strümpel, realizando ectoparastismo; (E) Dano foliar provocado em Morinda citrifolia L.
(Rubiaceae) pela espécie de tripes Heliothrips haemorrhoidalis (Bouché, 1833); (F) Folha de amendoim
(Arachis hypogaea L. (Fabaceae)) apresentando anéis concêntricos causados por vírus (Tomato spotted wilt virus
(TSWV)) transmitidos por tripes. (FIGURAS A e B: www.entocare.nl/nl/eigen%20producten/predatrip.htm; C:
www. bugwise.net.au/invertebrates/pollination; D: Estevão Alves da Silva; E: www.ctahr.
hawaii.edu/noni/thrips.asp. F: www.lookfordiagnosis.com/mesh_info. php?term= Tospovirus&lang=3).
Além de ser o primeiro estudo que abordava ecologia de interações de tripes no Cerrado,
este estudo também teve o mérito de descrever uma nova espécie de tripes. Pouco tempo
depois, um novo gênero de tripes, Nexothrips, espécie N. delclaroi, foi encontrado em flores
de Hortia sp., também no Cerrado (Marullo & Mound 2000). Mais recentemente, uma
interessante e notável interação ecológica foi registrada no cerrado. Indivíduos imaturos da
espécie de tripes Aulacothrips dictyotus Hood foram registrados como sendo ectoparasitas de
Enchenopa brasiliensis Strümpel (Membracidae) enquanto que os tripes adultos utilizavam os
membracídeos para forese (Alves-Silva & Del-Claro dados não publicados). Das mais de
6000 espécies de tripes conhecidas, somente A. dictyotus apresenta hábito ectoparasítico
enquanto que as outras espécies são em sua maioria fitófagas ou fungívoras (Mound & Morris
A
B
C
C
D
E
F
8
2007). Exceto por estes trabalhos, para o Cerrado existem poucas informações sobre tripes,
suas plantas hospedeiras, interações ecológicas com outros insetos e caracterização das
populações destes insetos ao longo do ano.
Talvez o estudo mais extenso e conclusivo já realizado com populações de tripes seja o de
Davidson & Andrewartha (1948). Estes autores analisaram a variação na população de Thrips
imaginis Bagnall durante seis anos em rosas na Austrália e concluíram que apesar de a
espécie de tripes ser ativa durante todo o ano, as maiores densidades ocorrem durante a
primavera e o verão, no período de floração das rosas, suas plantas hospedeiras. Entretanto,
atualmente também são considerados que fatores dependentes da densidade influenciam as
populações de tripes (Mound 2005). Os estudos atuais, longe de abrangerem um período tão
extenso, buscam principalmente descrever espécies associadas à agricultura ou ligadas ao
controle biológico (Deligeorgidis et al. 2005).
No Brasil, o estudo mais amplo abordando tripes, suas plantas hospedeiras e a ocupação
de diferentes microhábitats foi realizado por Pinent et al. (2006). Em um inventário
conduzido no sul do Brasil, estes pesquisadores amostraram 73 espécies de tripes,
pertencentes a quatro famílias (Merothripidae, Heterothripidae, Thripidae e Phlaeothripidae),
na qual Frankliniella foi o gênero mais representativo. Este trabalho abrangeu não somente as
flores, mas também ramos e serapilheira, denotando uma grande ocupação de tripes nestes
locais. A diversidade encontrada, no entanto, é pouco representativa para a thysanopterofauna
do Brasil como um todo, devido a falta de amostragens em áreas extensas do país, dada a
diversidade de nossa flora e ecossistemas (Monteiro 2002). Deste modo, nosso conhecimento
sobre tripes e suas plantas hospedeiras é largamente subestimado.
São boas as perspectivas para o estudo de tripes no Brasil e no mundo. Hoje existem
diversas técnicas disponíveis para a identificação (Moritz et al. 2000, Mound & Morris 2007)
e criação de tripes em laboratório (Murai & Loomans 2001), apesar de haver poucos
taxonomistas e ecólogos. No Brasil, particularmente no Cerrado, estudos têm sido conduzidos
desde 1996 pelo Dr. Kleber Del Claro a fim de se identificar tripes e suas plantas hospedeiras,
com um enfoque mais ecológico. Contando desde então com o apoio do Dr. Laurence Mound
(Csiro, Austrália), duas novas espécies de tripes foram encontradas (Del-Claro et al. 1997,
Marullo & Mound 2000) e devido a alta diversidade florística do Cerrado (Furley 1999), é
bem provável que novas espécies venham a ser descobertas.
As expectativas para os próximos anos prevêem a caracterização das populações de tripes
presentes nas espécies vegetais mais abundantes no Cerrado buscando identificar padrões
sazonais de sua ocorrência. Isto permitirá o estabelecimento de uma linha de pesquisa firme e
9
duradoura em thysanopterologia em uma fração de um dos mais importantes biomas do país
(Furley & Ratter 1988). A dimensão destes nossos estudos pretende abordar aspectos da
biodiversidade, ecologia e comportamento de tripes.
1.4 REFERÊNCIAS BIBLIOGRÁFICAS
Formatadas de acordo com as normas da Biotropica, com o software EndNote X1 ®.
Anon. 2010. Bug wise. Australian Museum www.bugwise.net.au/invertebrates/ pollination.
Anon. 2010. Entocare biologische gewasbescherming. Preadtrip: Franklinothrips vespiformis,
rooftrips tegen trips. www.entocare.nl/nl/eigen%20producten/predatrip.htm.
Anon. 2010. Pest and diseases. College of Tropical Agriculture and Human Resources,
University of Hawaii at Manoa www.ctahr.hawaii.edu/noni/thrips.asp.
Anon. 2010. Tospovirus. www.lookfordiagnosis.com/mesh_info.php?term=Tospovirus
&lang=3.
AGRAWAL, A. A., C. KOBAYASHI, and J. S. THALER. 1999. Influence of prey availability and
induced host-plant resistance on omnivory by western flower thrips. Ecology 80: 518-523.
ANANTHAKRISHNAN, T. N. 1993. Bionomics of thrips. Annual Review of Entomology 38: 71-
92.
ARMSTRONG, J. E., and D. MARSH. 1997. Floral herbivory, floral phenology, visitation rate,
and fruit set in Anaxagorea crassipetala (Annonaceae), a lowland rain forest tree of Costa
Rica. Journal of the Torrey Botanical Society 124: 228-235.
BAWA, K. S., S. H. BULLOCK, D. R. PERRY, R. E. COVILLE, and M. H. GRAYUM. 1985.
Reproductive biology of tropical lowland rain forest trees .2. Pollination systems. American
Journal of Botany 72: 346-356.
BELLIURE, B., A. JANSSEN, P. C. MARIS, D. PETERS, and M. W. SABELIS. 2005. Herbivore
arthropods benefit from vectoring plant viruses. Ecology Letters 8: 70-79.
COSTA LIMA, A. M. 1936. Insetos do Brasil. Escola Nacional de Agronomia, Rio de Janeiro.
CRESPI, B., J., D. A. CARMEAN, and T. W. CHAPMAN. 1997. Ecology and evolution of galling
thrips and their allies. Annual Review of Entomology 42: 51-71.
CRESPI, B. J. 1988. Alternative male mating tactics in a thrips - effects of sex-ratio variation
and body size. American Midland Naturalist 119: 83-92.
DAVIDSON, J., and H. G. ANDREWARTHA. 1948. Annual trends in a natural population of
Thrips imaginis (Thysanoptera). Journal of Animal Ecology 17: 193-199.
DEL-CLARO, K., R. MARULLO, and L. A. MOUND. 1997. A new Brazilian species of
Heterothrips (Insecta; Thysanoptera) interacting with ants in Peixotoa tomentosa flowers
(Malpighiaceae). Journal of Natural History 31: 1307-1312.
10
DELIGEORGIDIS, P. N., C. G. IPSILANDIS, M. VAIOPOULOU, G. KALTSOUDAS, and G.
SIDIROPOULOS. 2005. Predatory effect of Coccinella septempunctata on Thrips tabaci and
Trialeurodes vaporariorum. Journal of Applied Entomology 129: 246-249.
DREISTADT, S. H., P. A. PHILLIPS, and C. A. O’DONNELL. 2007. Thrips: integrated pest
management for landscape professionals and home gardeners. Agricultural and Natural
Resources 7429: 1-8.
EISIKOWITCH, D., and S. R. J. WOODELL. 1975. Some aspects of pollination ecology of
Armeria maritima (Mill) willd in Britain. New Phytologist 74: 307-322.
FRANTZ, G., G. C. C. INCORPORATION, and T. R. FASULO. 2010. Thrips identification key.
http://www.gladescropcare.com/gidn1.html.
FURLEY, P. A. 1999. The nature and diversity of neotropical savanna vegetation with
particular reference to the Brazilian cerrados. Global Ecology and Biogeography 8: 223-241.
FURLEY, P. A., and J. A. RATTER. 1988. Soil resources and plant communities of the central
Brazilian Cerrado and their development. Journal of Biogeography 15: 97-108.
GOTTSBERGER, G., and I. SILBERBAUERGOTTSBERGER. 1991. Olfactory and visual attraction of
Erioscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescences of Philodendron
selloum (Araceae). Biotropica 23: 23-28.
GRIMALDI, D., and M. S. ENGEL. 2005. Evolution of the insects. Cambridge University Press.
HAGERUP, E., and O. HAGERUP. 1953. Thrips pollination of Erica tetralix. New Phytologist
52: 1-7.
HODDLE, M. 2010. Center for Invasive Species Research, University of California Riverside.
http://cisr.ucr.edu/avocado_thrips.html.
KIRK, W. D. 1997. Feeding. In T. Lewis (Ed.). Thrips as crop pests. Wallingford, pp. 119-174.
CAB International.
MARULLO, R., and L. A. MOUND. 2000. Nexothrips: a new genus of Thripine: Thysanoptera
(Insecta) from the Neotropics, and its paleotropical faunal affinities. Journal of the New York
Entomological Society 108: 231-236.
MCLEISH, M. J., T. W. CHAPMAN, and M. P. SCHWARZ. 2007. Host-driven diversification of
gall-inducing Acacia thrips and the aridification of Australia. Bio Med Central Biology 5: 1-
13.
MILNE, M., and G. H. WALTER. 2000. Feeding and breeding across host plants within a
locality by the widespread thrips Frankliniella schultzei, and the invasive potential of
polyphagous herbivores. Diversity and Distributions 6: 243-257.
MILNE, M., G. H. WALTER, and J. R. MILNE. 2007. Mating behavior and species status of host-
associated populations of the polyphagous thrips, Frankliniella schultzei. Journal of Insect
Behavior 20: 331-346.
11
MOMOSE, K., T. NAGAMITSU, and T. INOUE. 1998. Thrips cross-pollination of Popowia
pisocarpa (Annonaceae) in a lowland dipterocarp forest in Sarawak. Biotropica 30: 444-448.
MONTEIRO, R. C. 2002. The Thysanoptera fauna of Brazil. Proceedings of the 7th
International Symposium on Thysanoptera, Thrips and Tospovirues, pp. 325-340 Reggio
Calabria, Italy.
MONTEIRO, R. C., L. A. MOUND, and R. A. ZUCCHI. 2001. Espécies de Frankliniella
(Thysanoptera: Thripidae) de importância agrícola no Brasil. Neotropical Entomology 1: 65-
72.
MOOG, U., B. FIALA, W. FEDERLE, and U. MASCHWITZ. 2002. Thrips pollination of the
dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia. American Journal
of Botany 89: 50-59.
MORITZ, G., C. DELKER, M. PAULSEN, L. A. MOUND, and W. BURGERMEISTER. 2000. Modern
methods for identification of Thysanoptera. EPPO Bulletin 30: 591-593.
MORSE, J. G., and M. S. HODDLE. 2006. Invasion biology of thrips. Annual Review of
Entomology 51: 67-89.
MOUND, L. A. 2002a. So many thrips so few tospoviruses? Proceedings of the 7th
International Symposium on Thysanoptera, Thrips and Tospovirues, pp. 3-6, Reggio Calabria,
Italy.
MOUND, L. A. 2002b. Thysanoptera biodiversity in the neotropics. Revista de Biologia
Tropical 50: 477-484.
MOUND, L. A. 2005. Thysanoptera: Diversity and interactions. Annual Review of Entomology
50: 247-269.
MOUND, L. A., and R. MARULLO. 1996. The thrips of Central and South America: an
introduction (Insecta: Thysanoptera). Associated Publishers, Gainesville, Florida.
MOUND, L. A., and D. C. MORRIS. 2007. The insect Order Thysanoptera: classification versus
systematics. Zootaxa 1668: 395-411.
MOUND, L. A., and P. REYNAUD. 2005. Franklinothrips; a pantropical Thysanoptera genus of
ant-mimicking obligate predators (Aeolothripidae). Zootaxa: 1-16.
MOUND, L. A., and I. TERRY. 2001. Thrips pollination of the central Australian cycad,
Macrozamia macdonnellii (Cycadales). International Journal of Plant Sciences 162: 147-154.
MURAI, T., and A. J. M. LOOMANS. 2001. Evaluation of an improved method for mass-rearing
of thrips and a thrips parasitoid. Entomologia Experimentallis et Applicata 101: 281-289.
NAGATA, T., and A. C. AVILA. 1999. Transmission of chrysanthemum stem necrosis virus, a
recently discovered Tospovirus, by two thrips species. Journal of Phytopathology 148: 123-
125.
12
NAGATA, T., L. A. MOUND, F. H. FRANÇA, and A. C. ÁVILA. 1999. Identification and rearing
of four Thrips species vectors of Tospovirus in the Federal District, Brazil. Anais da
Sociedade de Entomologia do Brasil 28: 535-539.
PELLMYR, O., and L. B. THIEN. 1986. Insect reproduction and floral fragrances - keys to the
evolution of the angiosperms. Taxon 35: 76-85.
PINENT, S. M. J., H. P. ROMANOWSKI, L. R. REDAELLI, and A. CAVALLERI. 2006. Species
composition and structure of Thysanoptera communities in different microhabitats at the
Parque Estadual de Itapuã, Viamão, RS. Brazilian Journal of Biology 66: 765-779.
RICHARDS, O. W., and R. G. DAVIES. 1988. IMM’S General textbook of entomology.
Chapman and Hall Ltd London.
ROSS, H. H. 1965. A textbook of entomology. John Willey & Sons, Inc.
SAKAI, S. 2001. Thrips pollination of androdioecious Castilla elastica (Moraceae) in a
seasonal tropical forest. American Journal of Botany 88: 1527-1534.
TERRY, I. 2002. Thrips: the primeval pollinators? Proceedings of The 7th International
Symposium On Thysanoptera: Thrips And Tospoviruses, pp. 157-162, Reggio Calabria, Italy.
THIEN, L. B. 1980. Patterns of pollination in the primitive angiosperms. Biotropica 12: 1-13.
WHITTAKER, M. S., and W. D. J. KIRK. 2004. The effect of photoperiod on walking, feeding,
and oviposition in the western flower thrips. Entomologia Experimentalis et Applicata 111:
209-214.
13
2 MALPIGHIACEAE (MALPIGHIALES)
2.1 Características gerais
A família Malpighiaceae apresenta aproximadamente 60 gêneros e 1.200 espécies de
árvores, arbustos e lianas, distribuídas pelas regiões tropicais e subtropicais, especialmente no
continente americano, onde ocorrem 44 gêneros e 800 espécies (Vicentini & Anderson 1999,
Joly 2002). O Brasil é representado por 32 gêneros, com cerca de 300 espécies, distribuídas
nas diversas regiões do país (Barroso et al. 1991). É uma das famílias mais importantes no
Cerrado em termo de diversidade (Furley 1999) contabilizando aproximadamente 62 espécies,
em sua maioria pertencentes aos gêneros Banisteriopsis e Byrsonima (Castro et al. 1999).
A morfologia das flores de Malpighiaceae é bastante homogênea. A corola possui cinco
pétalas livres, alternadas com as sépalas, e um androceu com 10 estames envolvendo um
ovário súpero tricarpelar (Anderson 1979, Joly 2002, Souto & Oliveira 2008). As flores
possuem também uma pétala modificada que atua na atração e orientação de polinizadores,
chamada de pétala estandarte ou guia (FIGURA 1A), que se distingue das demais pelo
tamanho menor e pela maior espessura da unha (Costa et al. 2006). As inflorescências são
paniculadas e surgem nas axilas superiores ou terminais. Seus frutos possuem extrema
diversidade, apresentando-se indeiscentes, secos e carnosos, e frutos secos deiscentes, que
podem ser alados ou não, glabros ou pilosos (Taylor & Crepet 1987, Vicentini & Anderson
1999). Algumas Malpighiaceae possuem sâmaras (FIGURA 1B) que podem ser utilizadas
para taxonomia quando não se conhece a espécie de origem (Mirle & Burnham 1999). As
flores possuem cinco sépalas com um par de glândulas de óleo (elaióforos) (FIGURA 1C). Às
vezes, os elaiófors aparecem sobre quatro sépalas, ficando a quinta sépala desprovida da
glândula (Barroso et al. 1991). Os elaióforos são importantes no mecanismo de polinização e
algumas espécies de Orchidaceae são consideradas miméticas das Malpighiaceae, pois
possuem estruturas similares, envolvidas também na polinização (Stpiczynska et al. 2007). os
indivíduos são perenes com folhas inteiras de disposição alterna. Nas folhas o indumento é
constituído de pêlos simples, unicelulares, implantados em elevações da epiderme e providos
de e de uma porção horizontal, agudos nas extremidades, denominados de pêlos
malpighiáceos. O comprimento do pode ser reduzido ou muito longo e apresentar
ramificações (Barroso et al. 1991).
14
FIGURA 1 (A) flor típica de Malpighiaceae evidenciando suas cinco pétalas, uma delas sendo mais longa, a
pétala estandarte; (B) fruto do tipo sâmara; (C) glândulas de óleo (Figura A: Farmer (2010); B: Spjut (2010); C:
Conrad (2010).
2.2 Espécies abordadas no estudo
Foram investigadas as espécies de Malpighiaceae mais abundantes na área de estudo:
Banisteriopsis malifolia (Nees & Mart.) B. Gates, B. campestris (A. Juss.) Little, B. laevifolia
(A. Juss.) B. Gates, Peixotoa tomentosa A. Juss e Byrsonima intermedia A. Juss.
Os três gêneros, Byrsonima, Banisteriopsis e Peixotoa, e suas respectivas espécies, são
reconhecidas pelos seguintes caracteres:
Byrsonima é um arbusto ereto, com inflorescências simples e constituída de racemos.
Possui brácteas e bractéolas não foliáceas e pêlos malpighiáceos com a parte superior
horizontal e furcada. Seus frutos têm a forma de drupas. A consistência das folhas é
levemente coriácea e pilosa e possuem células com cristais de oxalato de cálcio, sob a forma
de cristais isolados, geminados ou em drusas (Barroso et al. 1991).
15
Byrsonima intermedia A. Juss. é um arbusto que possui muitos ramos com subdivisões. A
folha é coriácea, com coloração verde escuro, de margem lisa e glabra, peciolada e sem
nectários extraflorais. Seus ramos apresentam pequenas flores amarelas com simetria bilateral
reunidas em racemos terminais. A flor é hermafrodita (completa) com corola dialipétala,
composta por cinco pétalas ungüiculadas e franjadas, sendo a pétala estandarte mais elevada
que as outras. As cinco sépalas apresentam um par de elaióforos (cada uma) na face abaxial,
totalizando 10 glândulas de óleo. Os frutos são do tipo drupa. O androceu apresenta 10
estames concêntricos, com deiscência longitudinal nas anteras. O gineceu é tricarpelar, com
os estiletes separados e as superfícies estigmáticas puntiformes localizadas internamente no
anel de anteras.
Banisteriopsis e Peixotoa são arbustos com inflorescências compostas. Em Banisteriopis
as flores contêm 10 estames férteis, desiguais entre si. Os estiletes possuem papilas
estigmáticas localizadas na porção terminal. O samarídeo tem uma porção convexa, mais
espessada e nerviforme, voltada para o centro do fruto (lado interno), com inserção do
samarídeo basal (Barroso et al. 1991).
Banisteriopsis malifolia (Ness & Martius) B. Gates é um arbusto que possui muitos ramos
com subdivisões. As folhas são coriáceas, com coloração verde escuro nas folhas adultas e
verde muito claro nas folhas jovens, a margem é lisa e pilosidade nas duas faces, com um
par de nectários extraflorais margeando a base da nervura principal. A flor é hermafrodita
(completa) de simetria bilateral, possui cinco sépalas, com oito ou 10 elaióforos. A corola é
dialipétala, composta por cinco pétalas rosadas, ungüiculadas e franjadas, sendo a pétala
estandarte mais elevada que as outras. O androceu apresenta cinco estames concêntricos, com
estiletes separados e as superfícies estigmáticas localizadas internamente no anel de anteras.
Os frutos são tipo sâmara, com um, dois, três ou raramente quatro unidades de dispersão por
fruto (Torezan-Silingardi 2006).
Banisteriopsis laevifolia (A. Juss.) B. Gates é um arbusto com ramos pouco divididos.
Suas folhas são coriáceas, com coloração verde escuro, com margem lisa e pilosidade na face
inferior. A flor é hermafrodita (completa) de simetria bilateral, possui cinco sépalas com oito
elaióforos. A corola é dialipétala, composta por cinco pétalas amarelas, ungüiculadas e
franjadas, sendo a pétala estandarte mais elevada que as outras. O androceu apresenta 10
estames e as anteras amarelas circundam o gineceu, que é tricarpelar, com os estiletes
separados e as superfícies estigmáticas puntiformes localizadas internamente no anel de
anteras. Os frutos são do tipo sâmara, com um, dois, três ou raramente quatro unidades de
dispersão por fruto (Torezan-Silingardi 2006).
16
Banisteriopsis campestris (A. Juss.) Little é um arbusto cujos ramos apresentam poucas
subdivisões. As folhas são verde claro, membranosas, com a nervura bem marcada e a
margem lisa, pilosidade nas faces abaxial e adaxial, possuem um par de nectários
extraflorais na base da nervura principal. A flor é hermafrodita (completa), de simetria
bilateral, rosada, possui cinco sépalas com oito elaióforos. A corola é dialipétala, composta
por cinco pétalas ungüiculadas e franjadas, sendo a pétala estandarte mais elevada que as
outras. O androceu apresenta oito estames concêntricos, amarelos. O gineceu é tricarpelar,
com os estiletes separados e as superfícies estigmáticas discóides localizadas internamente no
anel de anteras. Os frutos são tipo sâmara, com um, dois, três ou raramente quatro unidades de
dispersão por fruto (Torezan-Silingardi 2006, Souto & Oliveira 2008).
No gênero Peixotoa o androceu é constituído de cinco estames e cinco estaminódios com
ápice claviforme ou piriforme. As estípulas interpeciolares são cordiformes, bem
desenvolvidas, de dois ou mais centímetros de largura e concrescidas entre si. Suas umbelas
possuem quatro flores, providas na base de duas bractéolas foliáceas ovais ou cordiformes. O
ovário contém três estiletes. A forma de cristalização do oxalato de cálcio nas folhas tem
importância sistemática e os cristais geminados caracterizam as espécies de Peixotoa (Barroso
et al. 1991, Torezan-Silingardi 2006).
Peixotoa tomentosa A. Juss. é uma planta do estrato arbustivo da vegetação de cerrado.
Apresenta, geralmente, um ou dois ramos que podem chegar a três metros de altura, tem
poucas folhas e possui nectários extraflorais pares na face inferior da base das folhas (Del-
Claro et al. 1997), que também possuem pêlos malpighiáceos nas faces adaxial e abaxial.
Suas flores são amarelas e possuem oito glândulas de óleo funcionais distribuídas aos pares,
na base de quatro sépalas. As pétalas são ungüiculadas e fimbriadas. A pétala estandarte é
mais elevada que as outras. cinco estames funcionais com formato típico e coloração
amarela opaca, além de cinco estaminódios globosos de coloração amarela brilhante. Estames
e estaminódios ficam na mesma altura em relação à flor. geralmente três estiletes, cada
qual com seu estigma puntiforme. Cada flor pode produzir até três sementes aladas (raramente
quatro) do tipo sâmara (Torezan-Silingardi 2006).
2.3 Estudos em ecologia com Malpighiaceae
Estudos em ecologia de Malpighiaceae no Brasil, particularmente no cerrado, são bastante
raros. No entanto, por ser uma das famílias mais importantes do cerrado em termo de número
de espécies (Furley 1999), as Malpighiaceae são encontradas com freqüência em
levantamentos fitosociológicos.
17
Castro et al. (1999) em uma revisão sobre a riqueza florística do cerrado, fornecem uma
lista com as principais espécies botânicas encontradas neste bioma. Quanto às Malpighiaceae,
das 61 espécies desta família abordadas, os gêneros mais representativos são Byrsonima, com
31 espécies e Banisteriopsis, com 13 espécies encontradas. Banisteriopsis campestris, B.
laevifolia, B. malifolia e Byrsonima intermedia foram amostradas enquanto que Peixotoa
tomentosa não foi listada neste inventário. No entanto, os próprios autores admitem um erro
na estimativa de riqueza de espécies, visto que os estudos revisados não abrangem toda a área
geográfica do cerrado. Este padrão de maior riqueza de Byrsonima também foi evidenciado
no levantamento feito por Saporetti Jr et al. (2003) em uma área de cerrado no centro-oeste de
Minas Gerais. Das quatro espécies amostradas, três pertenciam ao gênero Byrsonima, sendo
que B. intermedia foi uma das plantas mais abundantes na área, quando comparada a todas as
outras espécies botânicas amostradas. Byrsonima também foi representado no levantamento
realizado por Campos et al. (2006) em um gradiente de cerradão e cerrado, perfazendo duas
das três espécies de Malpighiaceae encontradas.
Na revisão de Castro et al. (1999) o gênero Heteropterys aparece com oito espécies
ocorrendo no cerrado. Schmidt et al. (2005) estudando efeitos do fogo sobre uma população
de Heteropterys pteropetala (Adr. Juss.), verificaram que queimadas prolongadas podem
afetar a viabilidade e a germinação da espécie, porém os diásporos podem resistir às
queimadas caso estejam enterrados no solo. Ainda, queimadas precoces (junho) prejudicam o
recrutamento e crescimento dos indivíduos, além de influenciar a distribuição espacial da
população. Byrsonima também é o gênero mais estudado com relação a interações inseto-
planta, muito provavelmente devido a sua grande ocorrência e abundância no cerrado
(Saporetti Jr. et al. 2003, Campos et al. 2006).
Estudando os efeitos de formigas do gênero Camponotus na comunidade de insetos em
inflorescências de Byrsonima crassifolia (L.) Kunth, Fernandes et al. (2005), constataram que
inflorescências em ramos onde formigas estavam presentes foram significativamente menos
atacadas por insetos mastigadores e sugadores do que inflorescências em ramos com formigas
excluídas. Estes resultados sugerem então que a presença de formigas influencia a estrutura da
comunidade de insetos herbívoros associados com B. crassifolia.
Em outro estudo com formigas, Leal & Oliveira (1998), observaram que indivíduos da
tribo Attini utilizavam os frutos de Byrsonima intermedia para criar fungos e deste modo
serviam de agentes dispersores secundários, já que as sementes de B. intermedia são dispersas
primariamente por aves que se alimentam das drupas. Estes autores sugerem que as formigas
18
se alimentam da polpa dos frutos reduzindo a infestação por fungos e aumentando a taxa de
germinação das sementes.
Galhas também fazem uso de Byrsonima intermedia e também ocorrem em outras três
espécies de Malpighiaceae (Banisteropsis pubipetala, B. pubipetala e Heteropterys
byrsonimifolia) em uma reserva de cerrado no estado de São Paulo (Urso-Guimarães &
Scareli-Santos 2006). Para Byrsonima sericea DC., presentes em restingas, Flinte et al. (2006),
constataram que os meses de outubro e dezembro eram os que apresentavam as maiores
freqüências de plantas atacadas pelos galhadores, tanto Diptera quanto Lepidoptera.
Outros estudos com Malpighiaceae dizem respeito à biologia reprodutiva (Sigrist &
Sazima 2004, Costa et al. 2006) e polinização por abelhas da tribo Centridini (Ramalho &
Silva 2002). Rego et al. (2006) fornecem uma lista com nove malpighiaceaes em diferentes
ecossistemas que são visitadas por abelhas da espécie Centris flavifrons (Friese), (Byrsonima
crassifolia (L.) Kunth, Byrsonima sericea A.DC., Byrsonima amoena Cuatrec., Byrsonima
intermedia A. Juss., Byrsonima coccolobifolia Kunth, Mcvaughia bahiana W.R. Anderson,
Banisteriopsis sp. Malpighia glabra L. e Malpighia punicifolia L.) e adiciona a espécie
Tetrapterys sp. à lista prévia.
Além de polinizadores, as malpighiáceas suportam uma grande gama de insetos fitófagos.
Flinte et al. (2006) encontraram um total de 45 espécies de insetos associados à Byrsonima
sericea DC., sendo 20 de lepidópteros exofíticos, 17 de coleópteros exofíticos, quatro de
minadores e quatro de galhadores. Já Del-Claro et al. (1997) constataram que tripes eram o
principais herbívoros das estruturas reprodutivas de Peixotoa tomentosa. O pequeno tamanho
dos tripes permitia que estes insetos se escondessem abaixo das sépalas, nas câmaras florais,
onde formigas predadoras de tamanho grande não conseguiam entrar.
Percebe-se com estes estudos citados acima que Malpighiaceae possui uma grande
diversidade quanto à entomofauna associada e dada sua grande abrangência,
representatividade e significância no cerrado (Furley 1999), esta família botânica tem
recebido pouca atenção quanto à interações ecológicas.
Segundo Flinte et al. (2006) a escolha de plantas representativas, com ampla distribuição
geográfica, como Malpighiaceae, é promissora para o estudo comparativo da entomofauna
associada, uma vez que fornece subsídios para definir padrões temporais e avaliar a
importância de fatores ambientais sobre a comunidade de insetos fitófagos.
19
2.4 REFERÊNCIAS BIBLIOGRÁFICAS
Formatadas de acordo com as normas da Biotropica, com o software EndNote X1 ®.
ANDERSON, W. R. 1979. Floral conservatism in Neotropical Malpighiaceae. Biotropica 1:
219-223.
BARROSO, G. M., A. L. PEIXOTO, C. G. COSTA, C. L. F. ICHASO, and E. F. GUIMARÃES. 1991.
Sistemática de Angiospermas do Brasil. Universidade Federal de Viçosa, Imprensa
Universitária.
CAMPOS, E. P., T. G. DUARTE, A. V. NÉRI, A. F. SILVA, J. A. A. MEIRA-NETO, and G. E.
VALENTE. 2006. Composição florística de um trecho de Cerradão e Cerrado sensu stricto e
sua relação com o solo na Floresta Nacional (Flona) de Paraopeba, MG, Brasil. Árvore:
Viçosa 30: 471-479.
CASTRO, A. A. J. F., F. R. MARTINS, J. Y. TAMASHIRO, and G. J. SHEPHERD. 1999. How rich is
the flora of Brazilian cerrados? Annals of the Missouri Botanical Garden. 86: 192-224.
CONRAD, J. 2010. http://www.backyardnature.net/n/09/091122mr.jpg.
COSTA, C. B. N., J. A. COSTA, and M. RAMALHO. 2006. Biologia reprodutiva de espécies
simpátricas de Malpighiaceae em dunas costeiras da Bahia, Brasil. Revista Brasilileira de
Botânica 29: 103-114.
DEL-CLARO, K., R. MARULLO, and L. A. MOUND. 1997. A new Brazilian species of
Heterothrips (Insecta; Thysanoptera) interacting with ants in Peixotoa tomentosa flowers
(Malpighiaceae). Journal of Natural History 31: 1307-1312.
FARMER, M. 2010. A Neotropical Savanna, learning a savanna in Panama, plant by plant.
http://ntsavanna.files.wordpress.com/2007/08/malpighi-characters.jpg.
FERNANDES, G. W., M. FAGUNDES, M. K. B. GRECO, M. S. BARBEITOS, and J. C. SANTOS.
2005. Ants and their effects on an insect herbivore community associated with the
inflorescences of Byrsonima crassifolia (Linnaeus) H.B.K. (Malpighiaceae). Revista
Brasileira de Entomologia 49: 264-269.
FLINTE, V., C. O. ARAÚJO, M. V. MACEDO, and R. F. MONTEIRO. 2006. Insetos fitófagos
associados ao murici da praia, Byrsonima sericea (Malpighiaceae), na Restinga de Jurubatiba
(RJ). Revista Brasileira de Entomologia 50: 512-523.
FURLEY, P. A. 1999. The nature and diversity of neotropical savanna vegetation with
particular reference to the Brazilian cerrados. Global Ecology and Biogeography 8: 223-241.
JOLY, A. B. 2002. Botânica: Introdução à taxonomia vegetal. Companhia Editora Nacional,
São Paulo.
LEAL, I., R., and P. S. OLIVEIRA. 1998. Interactions between fungus-growing ants (Attini),
fruits and seeds in Cerrado vegetation in Southeast Brazil. Biotropica 30: 170-178.
MIRLE, C., and R. J. BURNHAM. 1999. Identification of asymmetrically winged samaras from
the Western Hemisphere. Brittonia 51: 1-14.
20
RAMALHO, M., and S. SILVA. 2002. Flora oleífera e sua guilda de abelhas em uma
comunidade de restinga tropical. Sitientibus Série Ciências Biológicas 2 34-43.
REGO, M. M. C., P. M. C. ALBUQUERQUE, M. C. RAMOS, and L. M. CARREIRA. 2006. Aspectos
da biologia de nidificação de Centris flavifrons (Friese) (Hymenoptera: Apidae, Centridini),
um dos principais polinizadores do murici (Byrsonima crassifolia L. Kunth, Malpighiaceae),
no Maranhão. Neotropical Entomology 35: 579-587.
SAPORETTI JR., A. W., J. A. A. M. NETO, and R. P. ALMADO. 2003. Fitossociologia de Cerrado
Sensu Stricto no município de Abaeté-MG. Árvore, Viçosa 27: 413-419
SCHMIDT, I. B., A. B. SAMPAIO, and F. BORGHETTI. 2005. Efeitos da época de queima sobre a
reprodução sexuada e estrutura populacional de Heteropterys pteropetala (Adr. Juss.),
Malpighiaceae, em áreas de Cerrado sensu stricto submetidas a queimas bienais. Acta
Botânica Brasílica 19: 927-934.
SIGRIST, M. R., and M. SAZIMA. 2004. Pollination and reproductive biology of twelve species
of neotropical malpighiaceae: Stigma morphology and its implications for the breeding
system. Annals of Botany 94: 33-41.
SOUTO, L. S., and D. M. T. OLIVEIRA. 2008. Morfoanatomia e ontogênese das sementes de
espécies de Banisteriopsis C.B. Robinson e Diplopterys A. Juss. (Malpighiaceae). Acta
Botânica Brasílica 22: 733-740.
SPJUT, R. W. 2010. A Systematic treatment of fruit types.
http://www.acguanacaste.ac.cr/paginas_especie/plantae_online/magnoliophyta/malpighiaceae/
banisteriopsis_muricata/b_muricata6ene1998/banisteriopsis_muricata_2700/98-ACG-PI-d-
221_g.jpg.
STPICZYNSKA, M., K. L. DAVIES, and A. GREGG. 2007. Elaiophore diversity in three
contrasting members of Oncidiinae (Orchidaceae). Botanical Journal of the Linnean Society
155: 135-148.
TAYLOR, D. W., and W. L. CREPET. 1987. Fossil floral evidence of Malpighiaceae and an
early plant-pollinator relationship. American Journal of Botany 74: 274-286.
TOREZAN-SILINGARDI, H. M. 2006. Influência da variação ambiental na frutificação de
espécies da família Malpighiaceae no Cerrado. Tese de Doutorado. p. 79. Universidade de
São Paulo. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Programa de Pós
Graduação em Entomologia, São Paulo, SP.
URSO-GUIMARÃES, M. V., and C. SCARELI-SANTOS. 2006. Galls and gall makers in plants
from the Pé-De-Gigante Cerrado reserve, Santa Rita do Passa Quatro, SP, Brazil. Brazilian
Journal of Biology 66: 357-369.
VICENTINI, A., and W. R. ANDERSON. 1999. Malpighiaceae. In J. E. L. S. Ribeiro, M. J. G.
Hopkins, A. Vicentini, C. A. Sothers, M. A. S. Costa, J. M. Brito, M. A. D. Souza, L. H. P.
Martins, L. G. Lohmann, P. A. C. L. Assunção, E. C. Pereira, C. F. Silva, M. R. Mesquita and
L. C. Procópio (Eds.). Flora da Reserva Ducke Guia de identificação das plantas vasculares
de uma floresta de terra firme na Amazônia Central, pp. 505-511. INPA-DFID, Manaus.
21
A IMPORTÂNCIA DA FLORAÇÃO SEQÜENCIAL DE MALPIGHIACEAE PARA A
MANUTENÇÃO DE TRIPES (THYSANOPTERA) NO CERRADO
1 INTRODUÇÃO
Tripes são insetos onipresentes, em sua maioria fitófagos, micófagos ou predadores,
(Mound 2002a, Mound & Morris 2007). Muitas espécies são abundantes em estruturas de
vários táxons, principalmente flores de angiospermas (Mound & Terry 2001, Mound 2005) e
os padrões de abundância e ocorrência em muitas plantas são fatores importantes que
determinam a dinâmica de populações de tripes (Ananthakrishnan 1993, Morse & Hoddle
2006). No entanto estas relações são raramente consideradas. A maioria dos registros relativos
a populações de tripes compreende estudos de curta duração em culturas economicamente
importantes (Childers & Bullock 1999, Dreistadt et al. 2007) e com poucas exceções (Cho et
al. 2000, Pearsal & Myers 2001, Seal et al. 2006) os pesquisadores não levam em
consideração o número de espécies envolvidas, a partição de recursos, ou mesmo a
diversidade entre os habitats.
Geralmente a abundância e diversidade de tripes estão ligadas a características estruturais
do meio ambiente que ocorrem em uma escala específica (Pinent et al. 2006) refletindo
importantes requisitos no habitat como disponibilidade de espaço, fuga de predadores,
eficiência no forrageamento e facilidades reprodutivas (Strauss & Karban 1994, Del-Claro,
1998, Mound & Terry 2001, Carvalho et al. 2006). As plantas que oferecem estes benefícios
são definidas por Mound & Marullo (1996) como plantas hospedeiras eficazes ou verdadeiras
de tripes (Mound & Marullo 1996). Como a fenologia das plantas muda no decorrer do ano
dependendo das variações sazonais (Gill et al. 1998), os tripes, assim como outros insetos,
devem procurar por microhabitats favoráveis, migrando entre hospedeiros ao longo do ano
(Barbosa 1988, Mound & Marullo 1996).
Milne & Walter (2000) deram uma abordagem diferente à classificação de plantas
hospedeiras de tripes, estabelecendo os termos “hospedeiros primários” e “secundários”,
levando em consideração como um habitat seria bom em sustentar populações de tripes. A
necessidade para esta caracterização recai no fato de que em alguns casos tripes alternam
entre hospedeiros somente para conseguir alimento e outros recursos que permitam a eles
sobreviverem, mas não se reproduzir; ou tripes adultos podem se acumular em massa em
hospedeiros secundários ou temporários, mas em quantidades menores se comparados aos
hospedeiros principais. Assim sendo, as espécies de tripes podem se reproduzir e atingir picos
de abundância somente em seus hospedeiros primários, e quando estes não estão disponíveis,
22
tripes sobrevivem com poucos indivíduos em hospedeiros secundários. Deste modo, a
alternância entre hospedeiros parece ter uma forte influência no valor adaptativo de tripes
(Barbosa 1988, Ananthakrishnan 1993). Ainda, a presença ou qualidade de estruturas
específicas presentes nos hospedeiros primários podem determinar a abundancia de espécies e
a diversidade de tripes (Pinent et al. 2005, Cavalleri et al. 2006).
Cerca de 6000 espécies de tripes são conhecidas mundialmente e o Brasil é representado
por 700 espécies (Mound 2002b, Mound & Morris 2007). Apesar de existirem algumas
pesquisas realizadas com tripes no Brasil, a maioria restringe estes insetos a pragas e vetores
de viroses na agricultura (Monteiro et al. 1998, Nagata et al. 1999). Considerando o Cerrado
brasileiro como um importante bioma do Brasil (Furley & Ratter, 1988, Oliveira & Marquis
2002), é surpreendente o fato de que pouco é conhecido a respeito dos tripes associados a
plantas de comum ocorrência neste bioma. Até agora um grande número de tripes foi
encontrado provocando danos nas flores de Peixotoa tomentosa A. Juss., (Malpighiaceae)
(Del-Claro et al. 1997). Esta família botânica exibe uma morfologia floral bastante
conservativa e partilha a mesma guilda de polinizadores (Anderson 1979). Observações
posteriores sugeriram que uma comunidade de Malpighiaceae no cerrado apresentava floração
seqüencial e abrigava uma grande comunidade de tripes (Torezan-Silingardi, 2006).
A avaliação da abundância de tripes ao longo do ano em plantas de floração seqüencial
pode fornecer informações sobre a importância de cada hospedeiro em sustentar populações
de tripes. Nos neotrópicos, casos de floração seqüencial foram extensivamente estudados para
Bromeliaceae (Araujo et al. 1994, Varassin & Sazima 2000, Siqueira Filho & Machado 2001,
Machado & Semir 2006, Marques & Lemos Filho 2008). Todos estes autores concordam que
a floração seqüencial das bromeliáceas pode ser de extrema importância para a manutenção de
polinizadores em uma determinada área. Machado & Semir (2006) relataram floração
seqüencial em 14 bromeliáceas na Mata Atlântica no Brasil. No nível de comunidade, certas
espécies de plantas podem facilitar a polinização de outras espécies. A facilitação ocorre
quando espécies que florescem primeiro sustentam polinizadores que posteriormente visitam
as espécies que florescem tardiamente (“mutualismo seqüencial” Waser & Real 1979, Brody
1997), assim é esperado que a comunidade dependente de recursos florais acompanhe os
ciclos de floração (Appanah 1985). Considerando-se que muitas espécies de tripes
neotropicais não sofrem diapausa devido às altas temperaturas nesta região e são ativos
durante o ano todo (Van Houten et al. 1995, Murai 2000) podemos assumir que as
malpighiáceas com floração seqüencial têm um papel significativo em fornecer microhabitats
para tripes em diferentes estações.
23
Para se entender a função ecológica de cada planta na ecologia de um inseto herbívoro,
dois principais critérios precisam ser quantificados: a regularidade temporal em que os
individuos em diferentes estágios de desenvolvimento são encontrados na planta; e sua
abundância em uma planta particularmente a outras (Walter & Benfield 1994, Milne & Walter
2000). Sugere-se que a escolha de plantas representativas, com grande abrangência geográfica,
como as malpighiáceas, é promissora para o estudo comparativo da thysanopterofauna
associada, uma vez que pode fornecer informações que auxiliem na definição de padrões
temporais de ocorrência e permitam examinar a importância de fatores ambientais na
comunidade destes insetos (Flinte et al. 2006).
Neste estudo nós testamos a hipótese de que a floração seqüencial das malpighiáceas é
responsável pela manutenção de tripes ao longo do ano, assumindo a premissa de que tripes
migram entre diferentes plantas de acordo com a fenologia de floração. Além disso, também
procuramos 1) identificar as espécies de tripes presentes em Malpighiaceae; 2) classificar as
diferentes plantas como hospedeiros principais ou secundários; 3) buscar relações entre a
abundância de tripes e o tamanho das flores e ainda 4) buscamos verificar se as variações
sazonais tiveram influência na abundância e diversidade de tripes.
2 CONCLUSÃO
Neste estudo nós amostramos 19 espécies de tripes das quais as mais importantes foram
Frankliniella condei, Heterothrips peixotoa e Scutothrips nudus e mostramos que a floração
seqüencial das malpighiáceas tem um importante papel na manutenção da comunidade de
tripes ao longo do ano, principalmente para Heterothrips peixotoa, a espécie de tripes mais
abundante em todas as amostragens que tem por hospedeiros principais Peixotoa tomentosa e
Banisteriopsis laevifolia. A riqueza e diversidade de Thysanoptera em Malpighiaceae são as
maiores registradas para tripes em um grupo de plantas relacionadas taxonomicamente,
possivelmente devido ao aspecto conservativo das malpighiáceas que podem fornecer
alimento e proteção contra predadores. Flores maiores abrigavam uma quantidade maior de
tripes e a fenologia das plantas foi tão importante quanto o clima na manutenção destes
insetos nas malpighiáceas. Estudos futuros prevêem o exame dos danos ou benefícios
provenientes da ocupação dos hospedeiros por tripes como também a análise da ocorrência
destes insetos em outras plantas comuns no cerrado.
24
3 INTRODUCTION
Thrips are ubiquitous insects, mainly phytophagous, mycophagous or predatory in habit
(Mound 2002a, Mound & Morris 2007). Many species are abundant in structures of a wide
range of plant taxa, mostly in flowers of Angiosperms (Mound & Terry 2001, Mound 2005)
and the patterns of abundance and occurrence in several plants are important factors that
determine the population dynamics of thrips (Ananthakrishnan 1993, Morse & Hoddle 2006).
However these relationships are rarely considered. Massive records comprise short period
studies of thrips populations in economical important crops (Childers & Bullock 1999,
Dreistadt et al. 2007) and with a few exceptions (Cho et al. 2000, Pearsall & Myers 2001,
Seal et al. 2006) researchers often do not take into account the number of species involved,
the portioning of resources and thrips intra and inter habitat diversity.
Generally, species abundance and diversity of thrips are linked to structural characteristics
of environment that occur on a specific scale (Pinent et al. 2006) reflecting important habitat
requirements such as space availability, escape from predation, foraging efficiency and
reproductive needs (for examples see Strauss & Karban 1994, Del-Claro 1998, Terry 2001,
Carvalho et al. 2006). The plants which offer these benefits are defined by Mound & Marullo
(1996) as effective thrips host plants. As plant phenology changes along the year depending
on habitat seasonal variations (Gill et al. 1998), thrips, just like other insects, will search for
more favorable microhabitats, moving between hosts throughout the year (Barbosa 1988).
Milne & Walter (2000) gave a different approach to the classification of thrips host plants,
establishing the terms “major” and “minor” hosts, taking into account how good the habitat
might be in supporting thrips populations. The need for this characterization relies in the fact
that in some cases thrips alternate the hosts only in order to get food and other resources that
allow them to survive, but not to reproduce; or adult thrips can accumulate in mass in
secondary or temporary hosts (minor hosts), but in smaller densities when compared to the
major ones. So thrips species can reproduce and reach a peak of abundance only in its major
hosts, while surviving with a few individuals in minor hosts, when the major ones are not
available in time and space. Therefore, the alternation of hosts seems to have a strong
influence in thrips fitness (Barbosa 1988, Ananthakrishnan 1993). In addition, the presence or
quality of major host specific structures may determine species abundance and in some cases
the richness and diversity of thrips species (Pinent et al. 2005, Cavalleri et al. 2006).
About 6000 species of thrips are known worldwide and Brazil is represented by 700
species (Mound 2002b, Mound & Morris 2007). Although some research has been carried out
with thrips in Brazil, the majority restrict these insects as agricultural pests and crop virus
25
vectors (Monteiro et al. 1998, Nagata et al. 1999). Considering the Brazilian Savanna
(Cerrado) an important biome from Brazil (Furley & Ratter 1988, Oliveira & Marquis 2002),
it is surprising that little is known about the thrips associated with the plants of common
occurrence in this biome. So far, great densities of thrips were found damaging flowers of
Peixotoa tomentosa A. Juss., an oil-rewarding Malpighiaceae (Del-Claro et al. 1997). This
botanical family exhibits highly conservative floral morphology and shares the same guild of
pollinators (Anderson 1979). Previous observations and evidence suggested that
Malpighiaceae community in an area of Cerrado presented sequential flowering and
supported a whole thrips assemblage (Torezan-Silingardi 2006).
The evaluation of the abundance in thrips community along the year in sequential
flowering plant species can provide information about the importance of each host in
supporting thrips populations. In neotropics cases of sequential flowering were extensively
studied for Bromeliaceae (Araujo et al. 1994, Varassin & Sazima 2000, Siqueira Filho &
Machado 2001, Machado & Semir 2006, Marques & Lemos Filho 2008). All these authors
agree that Bromeliaceae sequential flowering may be of extreme importance for the
maintenance of pollinators in a given area. Machado & Semir (2006) reported sequential
flowering in 14 Bromeliaceae at Atlantic Rain Forest in Brazil. At the community level, plant
species may facilitate one another’s pollination. Facilitation occurs when early-flowering
species support pollinators that then visit later-flowering species ("sequential mutualism"
sensu Waser & Real 1979, Brody 1997) so the animal community dependent on flower
resources can be expected to follow the cycles of flowering (Appanah 1985). Given that many
Neotropical thrips are not supposed to overwinter due the high temperatures (see Van Houten
et al. 1995, Murai 2000) and are active throughout the year we may assume that sequential
flowering Malpighiaceae play a significant role to provide thrips microhabitats in different
seasons.
To understand the role of each plant species in the ecology of an herbivore insect, two
principal criteria need to be quantified: the regularity with which individuals of the different
life stages are found on a plant species over time, and their abundance on that particular plant
species relative to other plant species (Walter & Benfield 1994, Milne & Walter 2000). It is
suggested that the choice of representative plants, with wide geographical distribution, like
some Malpighiaceae, is promising for the comparative study of the associated
thysanopterofauna, once it can supply subsidies to define temporary patterns and to evaluate
the importance of environmental factors on the community of these insects (Flinte et al. 2006).
26
In this study we tested the hypothesis that Malpighiaceae sequential flowering is
responsible for the maintenance of thrips throughout the year, assuming the premise that
thrips migrate among different plants according to the flowering phenology. Moreover we 1)
aimed to identify the species of thrips present in Malpighiaceae; 2) to classify the different
plants as major or minor hosts and 3) seek for relations between thrips abundance and the size
of flowers and 4) to verify if seasonal variations in the habitat and host plant phenology had
influence on thrips abundance and diversity.
4 MATERIAL AND METHODS
4.1 Study area
Fieldwork was carried out from March 2007 to February 2009 in an area of Cerrado
vegetation (sensu Goodland 1971) at the Ecological Reserve of Clube de Caça e Pesca Itororó
de Uberlândia (CCPIU, 640 ha, 18º97’S, 48º29’W; 863m) in Uberlândia municipality, Minas
Gerais State, Brazil (FIGURE 1). Cerrado senso strictu (savanna woodland) is the main
vegetation type in the reserve. This vegetation is dominated by trees and shrubs often 2–4m
tall and a fair amount of herbaceous vegetation (Oliveira-Filho & Ratter 2002). The climate in
the region present two well characterized seasons, a dry winter (May to September) and rainy
summer (October to March) (see Reu & Del-Claro 2005 for details about the study site).
FIGURE 1. Aerial photograph of the Clube Caça e Pesca Itorode Uberlândia where the fieldwork was carried
out. The opaque polygon indicates the place where the fieldwork was carried out. On the North, at the top of the
photo, the downtown of Uberlândia municipality. Surrounding the field area there is a predominance of crop
fields. (Point of view altitude 4.88km, photo by Google Earth (2009).
27
4.2 Preliminary observations
Initially, throughout 2007, we sampled the most abundant Malpighiaceae present in the
study area in order to verify the plant species in which thrips were most common associated.
Samplings were made at the peak flowering, based on Torezan-Silingardi (2006).
A single plant of the appropriate species was selected and 5 flowers in anthesis were
collected and conserved in 60% ethanol (Milne & Walter 2000). The 2007 results indicated
that thrips were more abundant in flowers of Banisteriopsis malifolia (Nees & Mart.) B. Gates,
B. campestris (A. Juss) Little, B. laevifolia (A. Juss.) B. Gates, Byrsonima intermedia A. Juss.,
and Peixotoa tomentosa A. Juss. (FIGURE 2). This Malpighiaceae community was supposed
to present sequential flowering and shrubs of all are very common in the study area (Torezan-
Silingardi 2006). Hereafter the species Byrsonima intermedia will be presented without
abbreviation in order to avoid confusion with the Banisteriopsis species.
FIGURE 2. A) Banisteriopsis malifolia; B) Banisteriopsis campestris; C) Banisteriopsis laevifolia; D) Peixotoa
tomentosa; E) Byrsonima intermedia. (Photos A-D: by Estevão Alves-Silva; E by Helena Maura Torezan
Silingardi)
4.3 Data collecting
Once the Malpighiaceae species were chosen, thrips samplings started in March 2008,
when B. malifolia was flowering. Data collecting covered an entire year, from March 2008 to
February 2009, with samples being taken every two weeks. In each sampling five individuals
of each species were randomly chosen and five flowers in anthesis were collected. This
procedure was made until flowers were present in the plant. No plant individuals were
28
sampled more than once, to avoid pseudo-replication of data (Hulbert 1984). The same
procedure adopted for B. malifolia was made in the other four plants: P. tomentosa, B.
laevifolia, Byrsonima intermedia and B. campestris. In the case of overlapping flowering
between two species, flowers of both were collected.
The sampling methodology adopted for determining thrips abundace in the flowers was
the destructive sampling in which the flowers were extracted from the plants and thrips
evaluation (species and number of individuals) was made in laboratory conditions. According
to Pearsall & Myers (2000) this is the best technique for thrips detection because samples are
likely to be less biased and more appropriate for population monitoring. The flowers were
involved with a plastic sack to avoid the escape of the thrips before the cutting and then kept
individually in 60% ethanol. During the samplings some sporadic behavioral observations of
thrips and other arthropod were made on the plants.
Thrips were mounted in microscope slides according to Mound & Marullo (1996) and the
species were primarily identified with keys from different authors (Mound & Marullo 1996,
Monteiro unpubl. data, Milne et al. 1997, Monteiro et al. 2001, Arevalo et al. 2006). Species
level identification was possible only with the collaboration of Dr. Laurence A. Mound
(Commonwealth Scientific and Industrial Research Organisation, Australia). However, in
many cases it was not possible to reach species level, either because the specimens are
undescribed (new species and in some cases new genera) or because the difficulty in
recognize certain intraspecific polymorphic taxonomic patterns inherent to many species.
Additionally, Neotropical thysanopterofauna is poorly known and species not related to crops
are seldom studied. In those cases in which it was not possible to determine the species, the
individuals were presented by genera and morphospecified.
4.4 Thysanopterofauna descriptions
Thysanopterofauna descriptions included the following indexes according to Ludwig &
Raynolds (1988), Manly (1997), Lansac-Tôha et al. (2000), Ott & Carvalho (2001), Magurran
(2004) and Uramoto et al. (2005).
Richness: total number of thrips species observed in each plant species.
Constancy index: it was calculated for each one of the five Malpighiaceae species and their
associated thrips. The formula was given by C=p(100)/N” where p was the number of
samples in that a given thrips taxa was recorded and N was the total number of samples for
29
each plant. According to this index, constant taxa were considered to be those that occurred in
more than 50% of the samples, accessory taxa those occurring in 25% to 49.9% of the
samples and accidental taxa those occurring in less than 24.9% of the samples.
Number of dominant species: it was calculated for each one of the five Malpighiaceae
species and their associated thrips. Species dominance was defined as D%=(i/t).100, where i
was the total number of individuals of a given species and T was the total number of
individuals collected. The categories were established as: eudominant>10%; dominant=5-
10%; subdominant=2-5%; eventual=1-2% and rare<1%.
Jacknife index: used to estimate the species richness in the samplings. We used the formula:
J = S+{(n-1)/n} ƒ, where S was the total number of species observed in all samples, n was the
number of samples and ƒ was the number of a single species recorded in just one of the n
samples.
Simpson index: represented the probability that two randomly selected individuals in any two
consecutively sampling belonged to the same species. It ranged from 0 to 1, with 0
representing infinite diversity and 1 representing no diversity. The formula was D = n(n-
1)/N(N-1), where n was the total number of organisms of a particular species
and N was the total number of organisms of all species.
Species evenness is a diversity index, a measure of biodiversity which quantifies how equal
the communities are numerically. When all species in a sample are equally abundant, the
species evenness assumes its maximum value. It was calculated by the formula: E=H’/H’max
where H’ was the Shannon index and H’max was the natural logarithm of the number of
species in a given plant. E was constrained between 0 and 1. The less variation in
communities among the species, the higher E will be.
Shannon index: is a measure of diversity and was used to compare the thrips diversity in
each plant species. The calculation was made by the following formula H
s
= -
å
=
S
i
nini
1
ln
.
The proportion of species i relative to the total number of species (p
i
) was calculated, and then
multiplied by the natural logarithm of this proportion (lnp
i
). The resulting product was
summed across species, and multiplied by -1: A low Shannon index indicates low diversity.
30
4.5 Flower size and the abundance of thrips
To analyze the influence of flower size in the abundance of thrips, a portion of the flowers
used for thrips sampling (N=60 flowers of each Malpighiaceae species) were measured. A
caliper (1/10 mm accuracy) was used to evaluate the distance between the two petals adjacent
to the flag petal, named here as flower diameter. Data of thrips abundance and the diameter of
flowers were then submitted to a procedure known as Curve Adjustment test, provided by
Bioestat 5.0 software. This technique is used to demonstrate if the data has linear, power,
logarithmic or geometric distribution and regression is made simultaneously. The highest
value of provided in the different regressions shows which regression type is more
appropriate for the data.
The same measurements obtained for flowers of different Malpighiaceae species were also
tested in order to verify differences among the flower sizes, evidenced by a Kruskal-Wallis
test.
4.6 Environmental data
Data of rainfall (mm), mean temperature and relative humidity from March 2008 to
February 2009 were obtained from the Laboratório de Climatologia, Instituto de Geografia of
the Universidade Federal de Uberlândia, MG, Brazil. The month values of each environment
parameter were tested for linear regression with thrips monthly abundance in the plants.
4.7 Plant phenology
Each plant species had 20 adult individuals randomly chosen for the phonological
observations, in order to detect changes in the reproductive phenology throughout the year.
These plants were not used for thrips sampling. Observations were made every 15 days. The
intensity of each plant phenological event was scored from 0 to 4; meaning respectively, 0, 1–
25, 26–50, 51–75, or 76–100 percent of flowers present (sensu Morellato et al. 2000) and the
mean of each month was used for statistical functions.
The patterns of flowering were made according to Newstrom et al. (1994) who consider a
continuum from continuous to very infrequent flowering. Classes are based on frequency,
defined as the number of cycles per year (one cycle consists of a flowering episode followed
by a non-flowering interval). The four basic classes are continual (flowering with sporadic
briefs), subannual (flowering in more than once cycle per year), annual (only one major cycle
per year) and supra-annual (one cycle over more than one year). Brief flowering was
31
understood as a period lesser than 1 month , intermediate flowering as a period from 1 to 5
months and extended flowering as a period over than 5 months.
4.8 Testing the occurrence of seasonality
We performed circular statistical analysis of directional (circular) data, using the
phenology values measured for plant species. Months were converted into single numerical
variables. Each month was given a number from 1 to 12, starting with January and combined
with its respective value of plant phenology. Circular statistics provided (1) the mean angle a,
meaning the time of the year in which the dates of a given phenophase, in our case the
flowering, occurred at most; (2) the Rayleigh test (z) which determines the significance of the
mean angle and (3) the vector r, which is a measure of concentration around the mean angle.
In directional analysis the interest relies in the direction and not in the magnitude of the vector
r and therefore it is unitless, ranging from zero (when phenological activity is distributed
uniformly throughout the year) to one (when phenological activity is concentrated around one
time of year) and indicates the degree of asymmetry or the degree of seasonality (Fisher 1996,
Aradottir et al. 1997, Morellato et al. 2000, Jammalamadaka & Sengupta 2001). As we
predicted that the flower phenology of plants would have seasonality, that is, each species
would not flower uniformly over the year, we expected that there would be a significant angle
or mean direction observed in the circular statistics, denoted by r tending to one.
5. RESULTS
Thrips sampling in all 675 flowers from all plants studied accomplished 3788 (5.61±6.49,
X
±1SD) individuals distributed in 2626 (3.89±4.95,
X
±1SD) adults and 1162 (1.72±3.10,
X
±1SD) immatures. We identified 19 species of thrips in eight genera and three families:
Phlaeothripidae, Thripidae and Heterothripidae. This latter was the most abundant family in
all plants (FIGURE 3).
The plant which presented more thrips was P. tomentosa (10.4±8.0,
X
±1SD, n=1561
thrips in 150 flowers) followed by B. laevifolia (11.41±7.37,
X
±1SD, n=856 thrips in 75
flowers), B. malifolia (3.26±3.19,
X
±1SD, n=489 thrips in 150 flowers), B. campestris
(3.11±3.03,
X
±1SD, n=467 thrips in 150 flowers) and Byrsonima intermedia (2.74±4.45,
n=411 thrips in 150 flowers). Kruskal-Wallis test (H=195.7355, df=4, p<0.0001) and Dunn’s
method of multiple comparisons revealed statistical significant differences between all plants
concerning the number of thrips sampled per plant (FIGURE 4A).
32
Thripidae
Total
Heterothripidae
Phlaeothripidae
N. i
Thripidae
Total
Heterothripidae
Phlaeothripidae
N. i
Thripidae
Total
Heterothripidae
Phlaeothripidae
N. i
Thripidae
Total
Heterothripidae
Phlaeothripidae
N. i
Thripidae
Total
Heterothripidae
Phlaeothripidae
N. i
Banisteriopsis
malifolia
Peixotoa
tomentosa
Banisteriopsis
laevifolia
Byrsonima
intermedia
Banisteriopsis
campestris
Number of thrips per plant
0
200
400
600
800
1000
1200
1400
1600
1800
1
FIGURE 3. Thrips (total number of individuals and individuals per thrips family) observed in flowers of
Malpighiaceae species in the Brazilian savanna. N.i – means “not identified species”.
1
2
3
4
5
0
10
20
30
40
Bma Pto Bla Byi Bca
0
10
20
30
40
Thrips abundance
a
b
b
c
ac
A
B
*** ***
Heterothripidae
Phlaeot
Thripidae
Hetero ThripPhlaeo
-2.0
6.5
15.0
23.5
32.0
Thrips abundance
a
b
c
FIGURE 4. (A) Thrips (
X
± 1SD) observed in flowers of Malpighiaceae species of Brazilian Savanna
vegetation: Bma - Banisteriopsis malifolia, Pto - Peixotoa tomentosa, Bla - Banisteriopsis laevifolia, Byi -
Byrsonima intermedia, Bca - Banisteriopsis campestris; (B) The number of all thrips (
X
± 1SD) observed in all
samplings, divided per thrips families: Hetero Heterothripidae, Phlaeo Phaleothripidae, Thrip Thripidae.
*** means statistical differences (p<0.0001, Kruskal-Wallis test). Lowercase letters upon the bars indicate
significant statistical differences (p <0.0001, Dunn’s test for multiple comparisons).
The most abundant family, Heterothripidae (4.13±5.61,
X
±1SD, n=2790 individuals in
675 flowers) (H=495.24, df=2, p<0.0001) (FIGURE 2B) accounted for eight species in which
only to Scutothrips nudus (Moulton, 1932) and Heterothrips peixotoa Del-Claro, Marullo and
Mound 1997 the species level identification was possible. The other species were identified to
genera and were named as Heterothrips sp. 1to Heterothrips sp. 5” and Lenkothrips sp.
33
Thripidae (0.94±1.99;
X
±1SD, n=633 individuals in 675 flowers) was represented by six
species: Frankliniella condei John, 1928, Frankliniella minuta (Moulton), Frankliniella
schultzei (Trybom), Frankliniella occidentalis (Pergande), Frankliniella sp. 1 and
Halmathrips (Demetriothrips) sp. The family Phlaeothripidae (0.22±0.96;
X
±1SD, n=148
individuals in 675 flowers) was represented by Haplothrips gowdeyi (Franklin 1908) and
other four morphospecies: three Pseudophilothrips and one Liothrips (TABLE 1). All the
morphospecies listed by genus are currently being studied and most of them are likely new
species (Laurence Mound, pers. comm). As soon the information about these species is
available, the results will be brought out.
Heterothrips peixotoa was the most frequent species in all plants and considered constant
in P. tomentosa and B. laevifolia. In the other plants this species was classified as accessory.
Heterothrips peixotoa was also the only eudominant species in all plants. The only thrips
present in all plants were F. condei, H. peixotoa, S. nudus and Frankliniella sp. 1. but
immatures identification was not possible for Frankliniella sp. 1.
Heterothrips peixotoa was seen early in the morning wandering on the petals and anthers,
where it feed (FIGURE 5). Usually no more than three individuals were seen and at the
lighter disturbance (shaking of flowers) these thrips took flight, in this occasion the thrips
stayed still, opened the wings and rapidly disappeared. In the other hand Frankliniella instead
of flighting it firstly leaped on the petals and in case the disturbance continued, the thrips flew
away. Heterothrips peixotoa was active during all the day. Foraging behavior took place in
the mornings, until 1100h approximately and during the hottest part of day, from 1100h to
1500h thrips often stayed inside the flower chambers, foraging again in the evening.
Nocturnal observations were not made. The dissections of flowers showed no immature stage
beyond larvae for any species and for Pseudophilothrips their red larvae were sometimes seen
on the trunks of the plants walking towards the soil, where they get buried to pupate. In the
other species thrips larvae just jumps from flowers to the soil in order to complete the
metamorphosis. Differently from the gregarious habit of Thripidae and Heterothripidae,
Pseudophilothrips was seen very often wandering alone on the buds, flowers, leaves and
branches and was very reticent to take flight, even when disturbed. Although no measures
were made, Pseudophilothrips individuals were two times larger than the other thrips species,
avoiding its entry in the flower chambers used by the other species as shelter.
34
TABLE 1. The values of frequency, constancy and dominance of thrips species in the five Malpighiaceae studied.
(
X
±1SD (N)); nS number of flowers infested by thrips; % - frequency; C (Constancy index) Ct=constant,
Ac=accessory, Acd=accidental; %D percentage of the thrips species in relation to the total thrips found in the
plant; D-dominant; E-eudominant; D-dominant; Sd-subdominant; Ev-eventual; Rr-rare.
X
± 1SD (N)
nS % C %D D
Frankliniella condei 0.57±1.19 (86) 42 0.28 Ac 0.18 E
Frankliniella minuta 0.01±0.08 (1) 1 0.01 Acd 0.01 Ev
Frankliniella sp. 1 0.07±0.38 (10) 5 0.03 Acd 0.02 Sd
Scutothrips nudus 0.48±1.02 (72) 32 0.21 Acd 0.15 E
Heterothrips peixotoa 1.09±1.68 (163) 61 0.41 Ac 0.33 E
Heterothrips sp. 1 0.58±1.39 (87) 33 0.22 Acd 0.18 E
Heterothrips sp. 2 0.04±0.26 (6) 4 0.03 Acd 0.01 Ev
Heterothrips sp. 3 0.02±0.14 (3) 3 0.02 Acd 0.01 Ev
Heterothrips sp. 4 0.01±0.08 (1) 1 0.01 Acd 0.00 Rr
Pseudophilothrips sp. 1 0.07±0.35 (11) 8 0.05 Acd 0.02 Sd
Banisteriopsis malifolia
N. i 0.33±0.94 (109) 31 0.21 - 0.22 -
Frankliniella condei 0.47±1.47 (70) 17 0.11 Acd 0.06 D
Frankliniella sp. 1 0.12±0.65 (18) 7 0.05 Acd 0.02 Sd
Halmathrips sp. 0.01±0.08 (1) 1 0.01 Acd 0.00 Rr
Scutothrips nudus 0.05±0.28 (8) 6 0.04 Acd 0.01 Ev
Heterothrips peixotoa 8.51±6.96 (1276) 132 0.88 Ct 0.82 E
Heterothrips sp. 2 0.02±0.18 (3) 2 0.01 Acd 0.00 Rr
Heterothrips sp. 3 0.02±0.14 (3) 3 0.02 Acd 0.00 Rr
Heterothrips sp. 5 0.04±0.26 (6) 4 0.03 Acd 0.01 Ev
Pseudophilothrips sp. 2 0.58±1.71 (87) 25 0.17 Acd 0.08 D
Liothrips sp. 0.04±0.30 (6) 3 0.02 Acd 0.01 Ev
Peixotoa tomentosa
N. i 0.55±1.41 (83) 28 0.19 - 0.08 -
Frankliniella condei 0.83±2.09 (62) 13 0.17 Acd 0.07 D
Frankliniella schultzei 0.04±0.20 (3) 3 0.04 Acd 0.00 Rr
Frankliniella sp. 1 0.16±0.74 (12) 4 0.05 Acd 0.01 Ev
Lenkothrips sp. 0.01±0.12 (1) 1 0.01 Acd 0.00 Rr
Scutothrips nudus 1.20±2.16 (90) 22 0.29 Ac 0.10 D
Heterothrips peixotoa 8.21±6.57 (616) 50 67 Ct 0.71 E
Heterothrips sp. 3 0.04±0.26 (3) 2 0.03 Acd 0.00 Rr
Liothrips sp. 0.01±0.12 (1) 1 0.01 Acd 0.00 Rr
Pseudophilothrips sp. 3 0.35±0.85 (26) 14 0.19 Acd 0.03 Sd
Banisteriopsis laevifolia
N. i 0.83±2.09 (54) 18 0.24 - 0.06 -
Frankliniella condei 0.03±0.16 (4) 4 0.03 Acd 0.01 Ev
Frankliniella occidentalis 0.01±0.08 (1) 1 0.01 Acd 0.00 Rr
Frankliniella sp. 1 0.06±0.35 (9) 5 0.03 Acd 0.02 Sd
Lenkothrips sp. 0.02±0.14 (3) 3 0.02 Acd 0.01 Ev
Scutothrips nudus 0.07±0.46 (10) 5 0.03 Acd 0.02 Sd
Heterothrips peixotoa 2.27±4.42 (340) 59 0.39 Ac 0.83 E
Phlaeothripidae larvae 0.07±0.53 (11) 3 0.02 Acd 0.03 Sd
Byrsonima
intermedia
N. i 0.22±0.84 (33) 12 0.08 - 0.08 -
Frankliniella condei 0.65±1.29 (98) 43 0.29 Ac 0.21 E
Frankliniella sp. 1 0.31±0.81 (47) 25 0.17 Acd 0.10 D
Scutothrips nudus 0.19±0.76 (28) 10 0.07 Acd 0.06 Sd
Heterothrips peixotoa 1.74±2.23 (261) 84 0.56 Ct 0.56 E
Heterothrips sp. 1 0.14±0.59 (21) 10 0.07 Acd 0.04 Sd
Haplothrips gowdeyi 0.01±0.08 (1) 1 0.01 Acd 0.00 Rr
Phlaeothripidae larvae 0.03±0.41 (5) 1 0.01 Acd 0.01 Ev
Banisteriopsis
campestris
N. i 0.01±0.04 (6) 3 0.02 - 0.01 -
35
FIGURE 5. A) Heterothrips peixotoa feeding on pollen of Banisteriopsis malifolia; B) H. peixotoa between the
stamens of B. malifolia; C) Pseudophilothrips sp. 1 on a pre anthesis flower of B. malifolia; D) thrips under the
chambers of B. malifolia; E) H. peixotoa foraging on a petal of Peixotoa tometosa. Circles in the figures indicate
the position of thrips. (Photos by Estevão Alves-Silva).
In general thrips were most common during the dry season (H=231.84245; df=11;
p<0.0001), from June to October (FIGURE 6A). This pattern was in great part caused by the
abundance of the most profuse species in our study, H. peixotoa (H=235.38337; df=11; p<
0.0001). The FIGURE 6A shows that the pattern of occurrence of the total number of thrips
along the year was similar to that of H. peixotoa, (FIGURE 6B) but different from the other
abundant species like F. condei (H=70.64970; df=11; p<0.0001) (FIGURE 6C) and S. nudus
(H=56.34501; df=11; p<0.0001) (FIGURE 6D). The highest densities of these three species
are coincident with the flowering of P. tomentosa and B. laevifolia, as shown in the next
sections.
36
B
A
C
D
***
***
***
***
a
b
c
d
e
f
g
h
i
j
l
m
-2.0
1.4
4.8
8.2
11.6
15.0
a
a
a
bc
a
ad
a
a
a
bc
bc
bd
M A M F
J
A
S
O N D JJ
2008 2009
-2.0
-1.4
4.8
11.6
15.0
8.2
Number of thrips individuals
a
b
c
d
e
f
g
h
i
j
l
m
-2
3
8
13
M A M F
J
A
S
O N D JJ
2008 2009
-2
3
8
13
a
a
a
a
a
a
c
a
b
b
b
b
Number of thrips individuals
a
b
c
d
e
f
g
h
i
j
l
m
-1
0
1
2
M A M F
J
A
S
O N D JJ
-1
0
1
2
a
a
ab
a
a
ac
a
ac
b
a
b
a
2008 2009
Number of thrips individuals
a
b
c
d
e
f
g
h
i
j
l
m
-2
-1
0
1
2
3
M A M F
J
A
S
O N D JJ
-2
-1
0
2
3
1
2008 2009
a
a
a
a
a
a
a
a
a
b
a
Number of thrips individuals
FIGURE 6. Fluctuation of thrips along the year. A) Total number of thrips; B) Heterothrips peixotoa; C)
Frankliniella condei; D) Scutothrips nudus. *** means statistical differences (p<0.0001; Kruskall-Wallis test).
Lowercase letters upon the bars indicate significant statistical differences (p <0.0001, Dunn’s test for multiple
comparisons).
Other than thrips, ants and spiders were also found on the plants (FIGURE 7). Although
no counting was performed, the most frequent ants were Camponotus crassus (Mayr 1862)
(Formicinae: Formicidae) and Ectatomma tuberculatum (Olivier 1804) (Ectatomminae:
Formicidae) but some Pachycondyla villosa (Fabricius) (Ponerienae: Formicidae) were also
observed foraging on the plants sometimes. Both ants and spiders did not preyed on thrips and
at the time these predators were foraging thrips stayed concealed under the flower chambers.
The tiny entry of chambers allowed thrips to come and go but predators were too big to have
access to these structures.
Species richness estimated through Jacknife had a close value to that observed for the
plants indicating a good effort in thrips sampling (TABLE 2). Simpson index of diversity,
which is influenced by the importance of most dominant species, evidenced differences
between the plants. The elevated value of Simpson index together with the low evenness in
37
FIGURE 7. Potential predators of thrips in Malpighiaceae. A) Pachycondyla villosa on a branch of Peixotoa
tomentosa; B) Ectatoma tuberculatum on a leaf of P. tomentosa; C) Camponotus crassus on a flower of
Banisteriopsis malifolia; D) Oxyopidae spider on a flower of P. tomentosa; E) Salticidae spider on a fruit of B.
campestris; F) Thomisidae spider on a flower of P. tomentosa. (Photos by Estevão Alves-Silva).
P. tomentosa and Byrsonima intermedia resulted from the high abundance and frequency of H.
peixotoa revealing the existence of a dominant species.
TABLE 2. Thysanopterofauna analysis in the five Malpighiaceae species studied
Banisteriopsis
malifolia
Peixotoa
tomentosa
Banisteriopsis
laevifolia
Byrsonima
intermedia
Banisteriopsis
campestris
Flowers collected 150 150 75* 150 150
Species richness 10 10 9 7 7
Jackniffe 11.8 10.9 10.8 7.9 7.9
Shannon index 1.59 0.60 0.88 0.49 1.26
Simpson index 0.24 0.75 0.59 0.81 0.38
Species evenness 0.7 0.26 0.40 0.25 0.65
*This species presented smaller quantities of flowers to be sampled than other ones
According to the Shannon index, B. malifolia was the species with higher thrips diversity,
followed by B. campestris, B. laevifolia, P. tomentosa and Byrsonima intermedia,
respectively. The lowest value for Shannon index was observed in Byrsonima intermedia
since H. peixotoa accounted for 83% of the thrips individuals present. The same situation
occurred in P. tomentosa where the high abundance of H. peixotoa (82%) resulted in low
diversity. The balance between species richness/species diversity was registered B. malifolia
where the Simpson index was lower and species evenness higher.
38
The variation of environmental data can be seen in FIGURE 8. Linear multiple regression
showed that thrips were negatively related with relative humidity (R²=0.74, F
1,8
=7.402
p<0.05) but not with temperature and rainfall (FIGURE 9).
0
2
4
6
8
10
12
14
16
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb
Months
Number of thrips
0.0
5.0
10.0
15.0
20.0
25.0
30.0
Mean temperature ºC
0
2
4
6
8
10
12
14
16
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb
Months
Number of thrips
0
50
100
150
200
250
300
350
400
Rainfall (mm)
0
2
4
6
8
10
12
14
16
Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb
Months
Number of thrips
0
15
30
45
60
75
90
Relative humidity %
A
B
C
Thrips
Thrips
Thrips
Rainfall
Humidity
Temperature
Number of thrips
Number of thrips
Number of thrips
Rainfall (mm)
Temperature ºC
Relative humidity %
Months
Months
Months
50 60 70 80
Relative humidity %
0.0
0.5
1.0
1.5
Thrips (Log)
y = 2.85 - 0.03x
50 60 70 80
Relative humidity %
0.0
0.5
1.0
1.5
Thrips (Log)
y = 2.85 - 0.03x
Phenological analysis (FIGURE 9), showed that the five Malpighiaceae species studied
presented sequential flowering, enabling thrips to find food and shelter in any of these species
along the year. P. tomentosa presented the largest flowering period while B. laevifolia had the
shortest. Low intensity of flowers was noted in B. campestris, as shown by the numbers inside
the circles in FIGURE 5. All plants presented high levels of seasonality (TABLE 3), denoted
by the elevated values of r, and the Rayleigh significance values of the mean angles (a). The
highest value of r was obtained in B. laevifolia, which flowers first appeared in August and
after a short boom in September, the plant ceased the flower production. The patterns of
FIGURE 8. Mean number of thrips found in
Malpighiaceae flowers through the time,
according to (A) rainfall (mm); (B)
temperature (ºC) and (C) relative humidity
(%)
FIGURE 9. Linear multiple regression
showed relation between thrips and relative
humidity. The number of thrips was log
transformed to fit in normal distribution
39
flowering based on frequency showed that these Malpighiaceae species presented annual and
intermediate flowering episodes, in a period varying from two (B. laevifolia) to four months
(P. tomentosa). The other three species bloomed for three months each.
January
February
March
April
May
JuneJuly
August
September
October
November
December
4 4
4
4
3 3
3
3
2 2
2
2
1 1
1
1
January
February
March
April
May
JuneJuly
August
September
October
November
December
4 4
4
4
3 3
3
3
2 2
2
2
1 1
1
1
January
February
March
April
May
JuneJuly
August
September
October
November
December
4 4
4
4
3 3
3
3
2 2
2
2
1 1
1
1
January
February
March
April
May
JuneJuly
August
September
October
November
December
4 4
4
4
3 3
3
3
2 2
2
2
1 1
1
1
January
February
March
April
May
JuneJuly
August
September
October
November
December
4 4
4
4
3 3
3
3
2 2
2
2
1 1
1
1
Byrsonima intermedia Banisteriopsis campestris
Banisteriopsis laevifolia
Banisteriopsis malifolia
Peixotoa tomentosa
FIGURE 9. Phenological data (Circular statistics analysis) of five Malpighiaceae species in the tropical savanna
of Uberlândia, MG, Brazil. The outside and bold curves (circular standard deviation) indicate the flowering
season of each species. Black bars and inside doted lines indicate the percent of flowers from 0 to 4; meaning
1=1–25%; 2=26–50%; 3=51–75% and 4=76–100% percent of flowers present.
TABLE 3. Results of circular statistic analyses tested for five Malpighiaceae species in the Tropical Savanna of
Uberlândia, MG, Brazil.
Phenological Variables
Banisteriopsis
malifolia
Peixotoa
tomentosa
Banisteriopsis
laevifolia
Byrsonima
intermedia
Banisteriopsis
campestris
Mean angle (a) 105° 182.374° 247.631° 323.794° 15°
Month of peak in
flowering
April July September November January
Circular standard
deviation
16.93° 25.88° 9.70° 19.24° 19.50°
Length of mean
vector (r)
0.96 0.90 0.99 0.95 0.94
Rayleigh test of
uniformity (P)
<0.01 <0.001 <0.01 <0.001 <0.05
All flowers present bilateral symmetry with five petals and sepals. Banisteriopsis
laevifolia, B. campestris and P. tomentosa flowers have eight oil glands under the sepals
while B. malifolia may have eight or 10 and Byrsonima intermedia contains 10 elaiophores.
40
Corolla is composed of five nail-shaped free petals. The limb is flat in all species except in
Byrsonima intermedia, which it is concave and the flowers born in great number in dense
inflorescences. In all plants the claw of the posterior "flag" petal is often conspicuously
thicker than the lateral petals. The most conspicuous differences among the flowers rely on
the color and the size (TABLE 4).
TABLE 4. Differences in flower color and size of the five Malpighiaceae species studied. Subscribed lowercase
letters indicate statistical significant differences in flower size.
Flower color
Flower diameter
X
± 1SD (N)
Kruskal-Wallis
Banisteriopsis malifolia Pink 2.6±0.14 (60)
a
Peixotoa tomenosa Yellow 4.11±0.15 (60)
b
Banisteriopsis laevifolia Yellow 1.64±0.13 (60)
c
Byrsnonima intermedia Yellow 1.6±0.06 (60)
cd
Banisteriopsis campestris Pink 2.6±0.07 (60)
a
H=258.8708
Gl=4
p< 0.0001
Regarding the flower size and the abundance of thrips the curve adjustment technique
showed that linear regression was appropriate for all plants. Floral dimensions were positively
related with thrips abundance, thus the bigger was the flower diameter, more thrips could be
hosted inside it (FIGURE 10).
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
0
5
10
15
y = -37.8 + 16.1x
A
****
Flower diameter
Number of thripsNumber of thrips
2.4
2.5
2.6
2.7
2.8
0
5
10
15
Flower diameter
Number of thrips
E
****
y = -100 + 40.4x
1.4
1.5
1.6
1.7
1.8
0
1
2
3
4
5
6
7
8
9
Flower diameter
D
**
y = -18 +12.9x
1.4
1.5
1.6
1.7
1.8
1.9
2.0
0
10
20
30
40
50
Flower diameter
Number
of
thrips
C
****
y = -59.5 + 44x
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
0
10
20
30
Flower diameter
B
****
y = -123.9 + 32x
Flower diameter (cm)
Flower diameter (cm)
Flower diameter (cm) Flower diameter (cm)
Flower diameter (cm)
Number of thrips
Number of thrips
Number of thrips
Number of thrips
Number of thrips
FIGURE 10. Linear regression between
flower size and thrips abundance in
Malpighiaceae species studied in the cerrado
vegetation: (A) Banisteriopsis malifolia
R²=0.42; F
1,58
=41.768; p<0.0001; (B)
Peixotoa tomentosa R²=0.70; F
1,58
=134.570;
p<0.0001; (C) Banisteriopsis laevifolia
R²=0.39; F
1,58
=36.429; p<0.0001; (D)
Byrsonima intermedia R²=0.12; F
1,58
=8.16;
p<0.01 and (E) Banisteriopsis campestris
R²=0.68; F
1,58
=120.52; p<0.0001.
41
6. DISCUSSION
This study showed that Brazilian Savannah Malpighiaceae supports a great diversity of
thrips (at least 19 species) and we present evidence that sequential flowering plays an
important role in the maintenance of this diversity. As a matter of fact, flowering plants and
insects are two of the major groups of living beings. The origin of flowering plants opened
new niches for insect diversification, which in turn may have driven plant speciation.
Alternatively, one group may have tracked the previous diversification of the other group
(Ehrlich & Raven 1964, Pellmyr 1992). In this context, sequential flowering is an important
natural resource to help in the survivorship and diversification of generalist species of
herbivores and/or pollinators (Bascompte & Jordano 2007). Relative to other host plants the
diversity and richness of thrips registered in this study is so far one of the most remarkable
features (see Pinent et al. 2005 for comparisons).
To a better comprehension on the importance of these plants in thrips ecology, and the
impact of these insects as floral herbivores in Brazilian Savanna vegetation, this discussion
will be divided in two parts. The first one will present a brief review of thrips species
recorded and its importance in a Brazilian context. The second part will discuss the ecological
implications of host plant preferences and seasonality in this thrips-Malpighiaceae
relationship.
6.1 Thrips occurrence and its importance: a brief review
6.1.1 Suborder Terebrantia
This suborder was the most representative and important to the study comprising over
95% of all the individuals analyzed occurring in all Malpighiaceae. Suborder Terebrantia
encompasses about 2400 species in eight families: Uzelothripidae, Merothripidae,
Melanthripidae, Aeolothripidae, Fauriellidae, Adiheterothripidae, Heterothripidae and
Thripidae (Mound & Morris 2007) and Brazil is represented by five of them: Uzelothripidae,
Merothripidae, Aeolothripidae, Heterothripidae and Thripidae. About one-third of the 700
species of thrips registered in Brazil are grouped in the suborder Terebrantia and about 22
species are considered to damage cultivated plants and five to transmit tospovirus (Monteiro
2002, Mound 2002a). Inventories in natural areas of Brazil revealed that Thripidae and
Heterothripidae are the most common families to be sampled (Pinent et al. 2006)and in our
study this pattern was maintained. Thripidae and Heterothripidae accounted for 14 species
and were responsible for the high levels of diversity. The Thripidae pests we found in our
42
study like Frankliniella schultzei and F. occidentalis were of low occurrence and not thought
to be causing notable damages to Malpighiaceae species.
Terebrantia members have the ovipositor well developed and saw-like, their wings are
usually covered with microtrichia and the fore wing presents ate least one longitudinal vein
reaching to apex (Richards & Davies 1988). The eggs are inserted below the plant cuticle,
into the tissue of the plant on which the female is feeding. Terebrantia has two pupal stages
(Mound & Marullo 1996). Individuals in this suborder have very wide habits, from fungus,
leaf and flower-feeding to predatory and ectoparasitic behavior habits (Grimaldi & Engel
2005, Alves-Silva & Del-Claro unpubl. data). In Malpighiaceae we presumed that all fed on
flower tissues and pollen, either because thrips lived on the flowers and also because fungus
were not registered.
Family Heterothripidae
Heterothripidae accounted for the most diversity in Terebrantia with eight species against
six from Thripidae. The high richness and diversity of Heterothripidae in all Malpighiaceae
studied shows that these plants are very important as major and/or minor hosts for thrips
maintenance along the year in Cerrado natural areas, particularly for H. peixotoa.
Heterothripidae is a family comprising over 70 species in four genera and it is usually
found in dicotyledons and only in the New World (Mound & Marullo 1996, Mound & Morris
2007). With one exception, all the species are flower-living. The exception, Aulacothrips
dictyotus Hood has been shown to be ectoparasitic on a species of Homoptera (Izzo et al.
2002) and also uses the membracids for phoresy (Alves-Silva & Del-Claro unpubl. data). Out
of the 71 species described in Heterothripidae, 64 belong in Heterothrips, however almost
nothing is known of the biology of the species (Mound & Marullo 1996). Available studies
reported the occurrence of Heterothripidae in only a few plants. Feller et al. (2002), observed
Heterothrips arisaemae Hood feeding on Arisaema triphyllum (L.) Schott. (Araceae) in
United States and this thrips was also implicated on pollination. In Brazil Heterothripidae was
found on flowers of Poaceae, Myrtaceae, Rubiaceae, Asteraceae (Pinent et al. 2005) and
Malpighiaceae (Del-Claro et al. 1997). In our study Heterothrips sp. 1 was very frequent in B.
malifolia, its major host but the other Heterothrips morphospecies were not representative.
The possibility that these Heterothrips morphs are new species is big, particularly for
Heterothrips sp 4. which possesses a pair of curved horns on the abdomen dorsally, an
anatomic feature never seen before.
43
Heterothrips peixotoa Del-Claro, Marullo and Mound 1997 This was the most abundant
species in this study and its dominance in the plants was constant and regular all over the year.
All Malpighiaceae analyzed can be considered good hosts for H. peixotoa but population rates
reach its maximum on P. tomentosa and B. laevifolia, though the other plants serve as quite
good hosts as well, since adults and immatures were found simultaneously. Heterothrips
peixotoa was an undescribed species until 1997, when it was first discovered and studied in
the flowers of P. tomentosa coexisting with ants (Del-Claro et al. 1997). So far H. peixotoa
was registered only in Brazil and other than Malpighiaceae this species was recorded in
Eryngium sp. (Apiaceae) and Homolepis glutinosa (Sw.) F. Zuloaga & Soderstr. (Poaceae)
(Pinent et al. 2005).
Scutothrips nudus (Moulton, 1932) This species was abundant in B. malifolia and B.
laevifolia which may be considered major hosts. In the other plants S. nudus occurrence was
low, blurred either by H. peixotoa as well as F. condei (Thripidae). Though its commonness
in B. malifolia and B. laevifolia, this thrips species was not seen foraging on the anthers and
petals like H. peixotoa and its habits remain unknown. In structure this genus is intermediate
between Aulacothrips and Heterothrips. Four South American species are currently placed in
this genus (Mound & Marullo 1996). No information is available of S. nudus biology or
ecology. In our study this species was present in all plants but the major hosts were B.
malifolia and B. laevifolia.
Lenkothrips sp. There is not what to say about this species since only three individuals
were sampled in the flowers of Byrsonima intermedia. This taxon is recognized at generic
level because of anatomical remarkable features of the only included species (Mound &
Marullo 1996). No information about its host associations is available.
Family Thripidae
This family is, with 2060 known species, by far the largest of the Sub Order Terebrantia
(Mound & Morris 2007) but in this study the abundance of Thripidae individuals was exceed
by Heterothripidae members. The Thripidae is found worldwide, and includes almost all of
the pest species of thrips (Morse & Hoddle 2006) which were represented by F. condei, F.
schultzei and F. occidentalis in our study, but only F. condei was adundant whereas the other
two were represented by one individual each. The species of many genera are associated only
with grasses, whereas others are associated only with dicotyledonous plants, some in flowers
44
but others only on leaves (Mound 2002a). Pest species are commonly more adaptable in their
habits, and many of them feed and breed both on leaves and in flowers (Strauss & Karban
1994, Leite et al. 2006). There are no registers of the number of Thripidae species in Brazil,
however in the genera Frankliniella about 40 species have been recorded, 18 of them
described originally from this country (Monteiro 2002). This diversity is quite similar to
Costa Rica with 44 species (Mound & Marullo 1996). Frankliniella is a large genus of about
180 species, 90% of which are from the Neotropics; species recognition is peculiarly difficult
particularly amongst the small pale bodied forms (Mound & Marullo 1996).
Frankliniella condei John, 1928 Among the Thripidae this species was the most abundant
occurring in all Malpighiaceae studied, its population was low only in Byrsonima intermedia
therefore not considered a host for F. condei. These individuals are very vagile and easily
come and go from flowers all day long. They often stayed under the flower chambers with
other co-specifics and went out to forage on the petals alone. The small size together with
pale-yellow color of individuals makes them hard to see on the flowers. Frankliniella condei
seems to be common and endemic to Brazil and it was already found in several plants both
mono and dicocotyledons in Santa Catarina, Minas Gerais and São Paulo States (Monteiro et
al. 2001). This species has economic importance by attacking nectarine (Prunus persica var.
nuscipersica (L.) Batsch) causing damage to flower’s ovarium and fruits (Hickel &
Ducroquet 1998, Pinent et al. 2008). Other registers include Rosa sp., Citrus aurantium L.,
Citrus limon (L.) Burm. f., Persea Americana Mill., Mangifera indica L., Zea mays L. and
Medicago sativa L. (Silveira et al. 2005). In Cerrado F. condei was found in the flowers of
Hancornia speciosa Gomez in high densities and coexisting with staphilinidae beetles.
Apparently there was no competition between these two taxa and while beetles fed on pollen
thrips fed on floral tissues (pers. obs). Natural enemies of F. condei are unknown (Silveira et
al. 2005).
Frankliniella minuta (Moulton) The only one individual sampled in our study does not
permit us to state about its ecology and host associations and therefore we may not consider B.
malifolia as a host plant for F. minuta. By the way is the first register of this species on
Cerrado natural plants. Frankliniella minuta is a group of related species which were initially
thought to be pollinators of daisy flowers in United States (Annand 1926). Indeed Asteraceae
seems to be the main hosts for this group where they breed and feed (Mound & Marullo 1996).
Frankliniella minuta distribution seems to be restricted to Americas where it was registered
45
from United States to Peru (Mound & Marullo 1996, Kirk 2002). In Brazil, F. minuta had
been described based in a few specimens and the records were very doubtful (Monteiro 2002)
with no information about its host plants. Later samples brought out three species of minuta
group: F. bertelsi (De Santis, 1967), F. distinguenda Bagnall, 1919 and F. oxyura Bagnall,
1919, all of them common to Asteraceae (Pinent et al. 2005, Cavalleri et al. 2006).
Frankliniella schultzei (Trybom) This was also a low occurrence thrips species with only
three individuals found on P. tomentosa. This polymorphic pollen feeding species is common
to South America and has been seen in large numbers in southern Brazil on cultivated flower
crops such as Chrysanthemum (Asteraceae) and Gladiolus (Iridaceae) (Mound & Marullo
1996). In Australia this species was recorded in eight natural plants in which Malvaviscus
arboreus Cav. (Malvaceae) was considered as F. schultzei main host (Milne & Walter 2000,
Milne et al. 2007). Although F. schultzei is sometimes considered a pest and a vector of
Tospovirus (Sakurai 2004), it is also known as a predator of mites in Australia (Mound &
Marullo 1996). Frankliniella schultzei, like F. occidentalis, does not seem to be specifically
adapted for preying on mite eggs, even though such predation enhances performance and
reproductive output of F. schultzei when constrained on leaves (Milne & Walter 2000). In
Brazil most studies on F. schultzei regards its association with crops and the transmission of
virus (Nagata & de Avila 2000, Monteiro et al. 2001) and its ecology and biology on Brazil
natural plants are unknown. The three individuals found in B. laevifolia are not representative
and this is not a major host F. schultzei.
Frankliniella occidentalis (Pergande) Like F. minuta, F. occidentalis was represented by
only one individual and we may assume that no Malpighiaceae is a host for this species.
Known as western flower thrips, this polymorphic, polyphagous and omnivorous thrips is the
species which accounts for almost all of the published studies about these thrips. Such
importance is not surprising given that this species is a major worldwide pest of agricultural
and horticultural crops (Trichilo & Leigh 1986, Agrawal & Klein 2000, Morse & Hoddle
2006). The species causes considerable damage to a wide range of plants through feeding,
oviposition and transmission of tospoviruses, and the financial cost of this spread has been
enormous (Kirk & Terry 2003). Frankliniella occidentalis populations in crops are suppressed
by predators like Orius insidiosus (Say 1832) (Hemiptera: Anthocoridae) (Funderburk et al.
2000) or by the use of chemicals (Helyer & Brobyn 1992), however the vagility, high
reproduction rates and the intrinsic resistance of F. occidentalis to pesticides (Immaraju et al.
46
1992), makes this species difficult to control on integrated pest management programmes
(Gaum et al. 1994, Jensen 2000, Bielza 2008). In Brazil it has been registered in many plants
(Monteiro 2002). In Byrsonima intermedia its occurrence is rare and clearly this is not a host
for this thrips species.
Halmathrips (Demetriothrips) One more species to join the group of one individual
sampled which does not permit assumptions about the ecology and host associations. So far,
five species have been described in this genus; but few individuals exist to compare. Because
so few specimens are available and because all of them are inadequately mounted for critical
study it is not possible to assess their taxonomic or systematic positions with any confidence
(Mound & Marullo 1996). In Brazil Halmathrips was found on the leaves of Casearia
decandra Jacq. (Flacourtiaceae) (Pinent et al. 2005). The subgenus Demetriothrips was
described by a single female from Mexico and no information about its ecology is available.
In Brazil this is the first register for this subgenus. They probably all feed on the leaves of
forest trees (Mound & Marullo 1996).
6.1.2 Sub Order Tubulifera, family Phlaeothripidae
The large individuals of suborder Tubulifera were well represented and if we take into
account that most species in this suborder are fungivorous, its occurrence in flowers of
Malpighiaceae is quite interesting. The suborder Tubulifera comprises the single and largest
family within Thysanoptera, the Phlaeothripidae with about 3500 described species (Mound
& Morris 2007). About two-thirds of the 700 species of thrips registered in Brazil are grouped
in the suborder Tubulifera and only two species are considered to damage cultivated plants
and none are known to be associated with any tospoviruses (Monteiro 2002, Mound 2002a).
This family exhibits a wide range of life styles, particularly fungus feeding and gall forming
(Mound & Marullo 1996). Members of this suborder have the ovipositor developed into a
chute, the wings have no microtrichia and the veins are absent or vestigial (Richards & Davies
1988). Eggs are usually deposited horizontally, but more rarely vertically on the leaf or other
surface on which the female is feeding. Tubuliferans have three pupal stages (Mound &
Marullo 1996).
Pseudophilothrips Surprisingly each one of the three Malpighiaceae in which this genera
was found (B. malifolia, P. tomentosa and B. laevifolia) supports one different species of
Pseudophilothrips (Laurence Mound pers. comm.) which account for four species worldwide
47
(Mound & Marullo 1996). Malpighiaceae are host for Pseudophilothrips because both adult
and immature were found concomitant on the plant. This genus is known as leaf feeding and
responsible for high levels of herbivory on their hosts (Hight et al. 2002, Cuda et al. 2009 ).
The most remarkable case occurs in Schinus terebinthifolius Raddi, a native Anarcadiaceae
from Brazil (Manrique et al. 2008). Pseudophilothrips ichini (Hood), damage the plant with
their rasping-sucking mouthparts and frequently kill the new shoots. Because of this behavior,
P. ichini is being considered as a biological control agent for S. terebinthifolius in Florida,
where the past introduction of this plant is causing nowadays the loss of Florida natural
vegetation (Cuda et al. 2008).
Liothrips The single individual found in P. tomentosa accounted for the high diversity of
thrips in this plant. This is one of the largest genera in the Thysanoptera with about 230
species (approximately 15 in Brazil), all leaf-feeding (Mound & Marullo 1996). In Hawaii
Liothrips urichi Karny is a biological control agent against the weed Clidemia hirta (L.) D.
Don (Melastomataceae) but predators like Pheidole megacephala (Fabricius) (Formicidae)
and Montandoniola moraguesi (Puton) (Anthocoridae) reduces thrips effectiveness in
controlling weed plants (Reimer 1988). In Brazil Varanda & Pais (2006) noted that Liothrips
didymopanacis Del-Claro & Mound (1996) was the main herbivore on Didymopanax vinosum
(Cham. & Schltdl.) Seem. (Apiaceae) throughout the year in Cerrado causing necrosis and
twisting of young leaves and these thrips were not affected by leaf defenses like the toughness
and tannins. Liothrips are also implicated with galls (Monteiro 2002). This genus was
registered in five plants in Southern Brazil (Pinent et al. 2005) and we showed that
Malpighiaceae is not a host for this thrips.
Haplothrips gowdeyi (Franklin 1908) – The single individual of this species was found in the
flowers of B. campestris. Unlike the dark color of Pseudophilothrips and Liothrips, H.
gowdeyi is brown in color and micropterous. This species is probably African in origin,
judging from its frequency in collections from that continent. However it is now widespread
around the tropics and one of the most common flower thrips in Caribbean (Mound &
Marullo 1996). In Brazil it was found coexisting with three species of Frankliniella in
chrysanthemum (Dendrathema grandiflora Tzvelev) crops in greenhouses (Carvalho et al.
2006) and it seems to be common for H. gowdeyi to be associated with other thrips species,
particularly Frankliniella (Annadurai & Velayudhan 1986). In nectarine (Prunus persica var.
nuscipersica (L.) Batsch) H. gowdeyi, together with other thrips, was responsible for causing
48
damage to flower’s ovarium and fruits (Hickel & Ducroquet 1998, Pinent et al. 2008); In
maize the predator Orius insidiosus (Say) was found positively associated with H. gowdeyi
and other two thrips species (Silveira et al. 2005). The significance of this co-occurence of H.
gowdeyi with other thrips species was not analyzed and deserves further attention.
6.2 Thrips community and host plant preferences
Studies of thrips communities are very rare and usually researchers focus on only one or a
few species of thrips (Agrawal et al. 1999, Seal et al. 2006), the exception accounting for pest
thrips in crops where more than one species is involved (see Carvalho et al. 2006, Dreistadt et
al. 2007). In an inventory conducted in Southern Brazil, Pinent et al. (2005) found three
coexisting thrips species in Banisteriopsis metallicolor (A. Juss.) O Donell & Lourteig.
(Malpighiaceae) and most diversity occurred in Asteraceae, recognizably to host several
thrips species (Mound 2005). Furthermore in Pinent et al. (2005) the only Malpighiaceae
present, from 72 plants analyzed, was B. metallicolor which hosted three species of thrips.
This contrasts with our findings in the present study since the least number of thrips species
found in a Malpighiaceae was six and the maximum was ten species, indicating the great
importance of these plants in Brazilian Savanna as pool of thrips diversity, relative to other
biomes.
The coexistence of many thrips species in a same microhabitat is quite common and may
involve portioning or resources like food, shelter and places to oviposit (Hickel & Ducroquet
1998, Pulliam 2000, Sakai 2001, Silveira et al. 2005, Pinent et al. 2008). Malpighiaceae
flowers are a homogeneous habitat; their flowers are very similar either in structure as in food
resources offered for thrips like pollen and floral tissues (Del-Claro et al. 1997). The ways in
which species within ecological communities partition available resources among themselves
is a major determinant of the diversity of coexisting species. All else being equal, a
community with more resource sharing, or greater niche overlap, will clearly support more
species than one with less niche overlap (Pianka 1974).
Heterothrips peixotoa was the most abundant thrips in all plants and may be considered
the species to make the best use of Malpighiaceae flowers, being a stronger competitor
relative to other species. Generally in communities of thrips, species of the genus
Frankliniella are the most abundant accounting in some cases for more than 90% of the
species sampled (Pearsall & Myers 2001, Carvalho et al. 2006) demonstrating either a good
adaptation to its habitat, high reproductive rates and better invasive and competitive behavior
than the other species (Morse & Hoddle 2006). However, in Malpighiaceae the situation is
49
opposite; H. peixotoa was the main herbivore in relation to the other thrips in all
Malpighiaceae studied, its dominance was constant and not exceeded by any other species.
Usually the dominance of species varies over time so allowing many species to coexist. Cho
et al. (2000) studied the spatial and temporal occurrence of three thrips species on tomato and
concluded that thrips shared the same space on the plants (upper and lower plant strata) but on
foliage, the thrips feeding resources, Frankliniella fusca (Hinds) was predominant while few
F. triciti (Fitch) and F. occidentalis were observed. This dominance changed as the season
progressed and F. occidentalis became dominant one month later.
Most cases of interspecific competition are indirect interactions between species mediated
by the influence of one species in the limiting resources of another species (Pulliam 2000). In
relation to reproduction, by avoiding sites already crowded with eggs of H. peixotoa, females
of other species might be forced to oviposit on other plants or in resources of lower nutritional
quality for their offspring thus bringing about a density-dependent regulation of population
size (Jaenike 1990).
In Malpighiaceae, except for H. peixotoa, the dominance of thrips species changed over
time depending on the plant, and the causes may be in the ecology and host ranges of the
species. For instance, F. condei was well represented in all plants except in Byrsonima
intermedia. This plant flowers in October in the beginning of the rainy season in the same
occasion that Hancornia speciosa Gomez (Apocynaceae) starts blooming. This Apocynaceae
is a major host of F. condei and large populations are found within its flowers until January,
when flower production ceases (Alves-Silva & Del-Claro unpul data). Moreover F. condei
was also found in abundance in Tocoyena formosa (Schum. & Schlecht) Schum (Rubiaceae)
and Himatanthus obovatus (Müll. Arg.) Woodson (Apocynaceae) (pers. obs). All these
species share the similarity of large white flowers with long tubular corolla and presence of
scent. The low numbers F. condei in Byrsonima intermedia may be explained by the high
invasive and the potential of this thrips to occupy new available microhabitats. Such statement
was corroborated by the fact that in B. campestris, the following plant in the chain of
Malpighiaceae sequential flowering, F. condei was abundant as at this period the other host
plants mentioned above do not produce flowers. Changes in host plants may be important in
determining which plant an insect will or will not choose. The simplest but perhaps most
common reason why certain plants are not preferred by a given herbivore may be related to
phenologies (Barbosa 1988). The overlapping of flowering between Byrsonima intermedia
and H. speciosa and the preference of F. condei for the latter is a reflection of the thrips
species lifestyle, a specific response to a specific set of selective forces. Frankliniella condei
50
host changing puts Malpighiaceae as major hosts in part of the year and minor hosts in other.
Also, in this context Malpighiaceae has a significant importance in the maintenance of species
such as F. condei which change their hosts according the availability of other resources in
time and space.
6.3 Resource and predators
Apparently Heterothrips species in Malpighiaceae are also common in other parts of the
world. In Costa Rica several species of Heterothrips were found in the flowers of common
Byrsonima and other species of Malpighiaceae (Mound & Marullo 1996). The conservative
aspect of floral morphology in all Malpighiaceae, with five petals and sepals forming a
chamber, may have profound implications on thrips occupation in the flowers. For example,
to leaf-mining or bud-boring insects, plant anatomy rather than plant phytochemistry or
phylogenetic relationships may determine host range (Powell 1980). Not only H. peixotoa,
but all thrips species may benefit of living under the sepal chambers. This microhabitat offers
escape from predators and also protection against environment (Del-Claro et al. 1997, Mound
& Terry 2001) indicating that both bottom-up and top-down forces are important in
structuring thrips communities (see Hunter & Price 1992). There is a wide acceptance that
thrips populations are limited by bottom-up forces (food or resource) (Mound 2005) but
enemy free space may be also a selecting force to make Malpighiaceae suitable for thrips
living.
In field observations Pseudophilothrips were the species most susceptible to predation. In
some occasions Pseudophilothrips stayed for long periods on the petals and its contrasting
dark color on this surface was very conspicuous. It could either expose the individuals to
predators as well as provoke desiccation through direct sun exposition. However no predator
attack to these thrips was observed and desiccation presumably did not take place because
these thrips species possesses a tough cuticle which may minimize the effects of sunlight and
heat. The most likely predators, jumping and crab spiders, did not spend their efforts on
Pseudophilothrips, possibly because thrips are low rewarding resources (Charnov 1976, Pyke
et al. 1977) or because their long setae along the body are defense mechanisms against
predators, the same strategy used by caterpillars (see Hare & Eisner 1993). Observations
indicated that predators played a negligible role in controlling all thrips populations, not only
Pseudophilothrips. Natural enemies of thrips are not well known and besides some Hemiptera
and Hymenoptera (Dreistadt et al. 2007) in crops and greenhouses little is known about thrips
predators in natural ecosystems.
51
According to Morse & Hoddle (2006) most resident natural enemies that attack thrips are
generalist predators and even those which presents some degree of specificity, such as
hymenopteran parasitoids that attack thrips eggs, (Megaphragma spp.) (Steyn et al. 1993,
Bernardo & Viggiani 2002, Tamo et al. 2002) and larvae (Ceranisus spp.: Eulophidae)
(Castineiras et al. 1996) generally inflict low levels of mortality (Hessein & Mcmurtry 1988).
But the most likely factor affecting the susceptibility to natural enemies is the life cycle of
thrips. Usually, eggs are laid inside plant tissues; there are two free-living larval instars; two
or three pupal stages that pupate within protective cracks on branches or in soil, buried
beneath the host plants; and winged vagile adults (Mound & Marullo 1996). Under such
conditions, a guild of generalist natural enemies would need to be simultaneously available in
several distinct habitats (e.g., arboreal to attack thrips larvae and adults exposed on leaves,
and subterranean to attack pupal stages in the soil) to minimize the number of life stages
benefiting from refuge in natural enemy free space. In addition, the “boom and bust” ecology,
patchy distribution of high-density populations, and occurrence of life stages that occupy
widely varied niches make invasive thrips an unstable resource for resident natural enemies
(Morse & Hoddle 2006). Obrist et al. (2005) have shown that pupal and prepupal thrips,
which are restricted in their mobility, were killed most successfully by Chrysoperla carnea
(Stephens) (Neuroptera: Chrysopidae) whereas older larvae and winged adults were more
likely to escape the attacks of predator and caught less successfully.
The behavior of both predator and prey is a crucial factor influencing predation and in
Malpighiaceae. The fluctuation of thrips populations along the year, the movements between
plants, the concealed habitats under the sepals, the small size and the flying-at-any-
disturbance behavior of these insects makes them hard to find and to capture by predators.
Parasitoids of thrips are species-specific (Triapitsyn 2005) and to succeed in Malpighiaceae,
parasitoids would have to be able to enter the tiny chambers where thrips live and be lucky to
find the certain species to parasitize, like the genera Frankliniella and Thrips (Tagashira &
Hirose 2001) but our observations showed no other arthropod species than thrips inside
flower chambers. The last but not less important to be mentioned is the defensive behavior of
some thrips in the form of anal exudates or volatile unpleasant odors (Tschuch et al. 2002).
In Malpighiaceae ants are the main predators of thrips and Fernandes et al. (2005) showed
that in Byrsonima crassifolia (Linnaeus) H. B. K. (Malpighiaceae) ants exerted strong
influences on the structure, composition, and dynamics of phytophagous insect communities,
including thrips, diminishing the damages of these insects through the herbivory (see Del-
Claro et al. 2006). Ants observed in our study were too big to enter the flower chambers to
52
prey on thrips and foraged rather on the leaves in order to get the nectar from extrafloral
nectaries. The impact of natural enemies may favor host specialization in phytophagous
insects but as a single host does not produce flowers all along the year, thrips are forced to
look for other flowering plants. The similarity between habitats may facilitate the occupation
because previous learning may maximize the use of this new habitat and save energy which
otherwise would be spent to know and explore this new habitat (Jaenike 1990). Therefore the
conservative aspect of flowering Malpighiaceae is so important either in providing food as
well as enemy free spaces (Del-Claro et al. 1997). So it is common to find so many thrips and
often the same species in sequential flowering Malpighiaceae.
6.4 Polyphagy
Sequential flowering Malpighiaceae offer a predictable and useful microhabitat for thrips
maintenance along the year because the different plants bloom in a series that allow thrips to
migrate between hosts where it can find food and protection. However, not all species of
thrips migrate from plants. Of all the thrips species common to the five Malpighiaceae, only
H. peixotoa abundantly infested all plant species, while Frankliniella condei and Scutothrips
nudus also occurred in all plants, but in low abundance sometimes.
The higher H. peixotoa abundancy shows that this species is able to feed and develop
successfully on all five plant species, suggesting that it is a Malpighiaceae generalist
herbivore. Peixotoa tomentosa and B. laevifolia presented the higher rates of H. peixotoa
infestation, indicating that these two plants are the major hosts while the other three plants are
placed as minor ones. The other thrips species in which the approach major/minor hosts are
suitable were F. condei and S. nudus since adult and immature of these species occurred in all
plants. Their indexes of dominance shows that for F. condei its major hosts were
Banisteriopsis malifolia and B. campestris while for S. nudus the major host was B. malifolia.
All these three thrips species may be considered polyphagous as herbivorous species tend to
have this designation simply on the basis of incidence records from numerous plant species
(Zalucki et al. 1986). Polyphagy is a main ecological feature for these thrips because it allows
the migration from plants whenever there are resources available so population can persist in
time and space in a variety of hosts. In this view, sequential flowering Malpighiaceae serve as
a predictable reservoir of food in which thrips may continue to make use of, independently of
the flowering species. This statement is according to Mound & Teulon (1995) who consider
polyphagous organisms to evolve local 'preferences' to suite local plant species availability.
53
That may be the reason why we found great diversity of thrips in Brazilian Savanna
Malpighiaceae and thrips are so successful in exploring these plants.
According to Milne & Walter (2000) polyphagy in thrips represents a survival mechanism
against periodic stressful conditions but may also mean an adaptation for a species to exploit a
diversity of sporadically and unpredictable abundant hosts opportunistically. Such an
adaptation can be considered a functional equivalent of the other mechanisms used by various
thrips species to span unfavorable periods, namely aestivation and diapause (Ananthakrishnan
1993, Van Houten et al. 1995, Nakao 1998). Thrips in our study breed throughout the year
and do not overwinter so Neotropical sequential flowering provides habitats and food so
thrips do not need to enter the diapause.
6.5 Seasonality and phenology
Despite its uniqueness, thrips movements and maintenance in different seasons along the
year has not caught the attention of thysanopetorologists and there are few data available on it.
The first and most time consuming study was conducted by Davidson & Andrewartha (1948)
who recorded Thrips imaginis Bagnall, 1926, population during 14 years in two varieties of
roses in Australia. They concluded that thrips populations come and go from flowers more or
less in waves and this may be due to inherent gregariousness of the species. Also, the species
were more common in the localities where flowers were abundant and were highly influenced
by weather; the population was high in summer and low in winter. Relations with rain,
moisture and temperature were considered to increase thrips populations. More recently Leite
et al. (2002) did not observe relation between Scirtothrips manihoti Bondar, 1924 population
on cassava (Manihot esculenta Crantz var. Cacau) with rainfall, temperature and relative
humidity. Thrips populations were rather controlled by senescence of the plant and predators
than environmental factors. On Brassica oleracea L. var. acephala, Thrips tabaci Lind.
populations tended to increase as the mean temperature increased while heavy rain and high
humidity were deleterious to these insects (Leite et al. 2005). In Prunus persica var.
nuscipersica (L.) Batsch thrips are associated with years of dry winter (Hickel & Ducroquet
1998). In Brazilian Savannah thrips were related negatively with relative humidity. However,
since we analyzed five different host plants thrips might be related primarily with a particular
host and not with the climate solely. Data shows that both climate and host are apparently
responsible for thrips population rates given that thrips were more abundant in P. tomentosa
and B. laevifolia. These plants flowers in wet season when the rains are rare and relative
54
humidity is low. In cerrado vegetation rains may be a strong force reducing small herbivores
abundance (Del-Claro & Oliveira 2000).
6.6 The importance of sequential flowering and major hosts
Since a high proportion of plants expend their reproductive energy in single brief annual
pulses, the animal community dependent on flower resources can be expected to follow the
cyclicity of flowering and be reduced during the intervening periods, like pollinators such as
bees, butterflies and also thrips attracted to their foraging plants (Appanah 1993, Mound &
Terry 2001). For instance, in temperate zone the staggered annual flowering, instead the
sequential flowering, seems to be common. It comprises a progression of annual population
patterns in a sequence of species that extends for only part of the year. For example, in a
lowland tropical forest at La Selva, Costa Rica, beetle pollinated species flower in a staggered
sequence for part of the year (Young 1986). During the non flowering interval or gap the
beetles are dormant (Newstrom et al. 1994). Marquis & Braker (1994) discussed that in
tropical forests host plant seasonality is one of the main forces structuring the herbivores
communities. In the present study, the seasonal variation and sequential flowering of
Malpighiaceae followed by thrips species migration suggest that it is also applicable in the
tropical savannas.
In Neotropics sequential flowering is common (Frankie et al. 1974, Machado & Semir
2006, Marques & Lemos Filho 2008) and considering the level of competition for pollinators
during a general flowering the sequential flowering noted so far among trees with close floral
affinity may be a much more widespread phenomenon (Appanah 1993). As the five
Malpighiaceae in this study are sympatric and flowers are very similar, competition for
pollinators would be expected if the species bloomed at the same time. Competitive plant
effects will commonly occur when a shared pollinator forages so as to transfer pollen
interspecifically, since this will reduce the availabilities of effective pollinator movements,
pollen, and stigmatic surfaces to individuals of both species and may thereby limit their
reproductive output. Such effects will occur even if each plant species has additional
pollinators not shared by the other (Waser 1978). The timing of plant reproductive cycles
affects plant–plant interactions such as competition for resources or for pollinators (Newstrom
et al. 1994). This competition for pollinators has often been suggested as the primary selective
force molding flowering schedules (Brody 1997). For associated animal community,
sequential flowering plants represent a predictable and continuous source of resources
55
(Siqueira Filho & Machado 2001). Again, our data suggest that not only plant-pollinator
system is influenced by phenology and seasonality, but also plant-herbivore relationships.
Thrips have the capacity to increase their populations rapidly in response to the
availability of a massive source of flowers (Bawa & Hadley 1990). Mixed continual flowering
patterns have dramatic influence on amplitude peaks of thrips. This pattern has been described
for thrips pollinated species in Malaysia. After many years of sporadic light flowering, a
staggered but slightly sequential flowering of six Shorea (Dipterocarpaceae) species burst into
full, high intensity flowering. At this time, the short-lived thrips pollinators had an
exponential population explosion (Chan 1981, Appanah 1985). Shorea species are thrips
major hosts and at other times, when these hosts are not available, other species that flower
more frequently at low or intermediate amplitudes maintain the thrips at low population levels
(Appanah 1985, Bawa & Hadley 1990, Newstrom et al. 1994). Malpighiaceae also present the
same features as Shorea species such as increasing thrips populations and serve as major hosts
for some thrips species, but unlike Shorea which flowers only in part of the year, the
sequential flowering Malpighiaceae provides habitats for thrips maintenance during the entire
year. Moreover, the destination of Shorea thrips in the gaps of flowering is unknown whereas
for Brazilian savanna Malpighiaceae at least for H. peixotoa, F. condei, S. nudus their
whereabouts are known.
Davidson & Andrewartha (1948) noted that Thrips imaginis Bagnall populations
presented annual fluctuations related to availability of host plants. During the spring, fields
and gardens harbored flowering plants which provided favorable situations for T. imaginis.
During the summer these plants disappeared and the insects died almost completely. The
survivors were to be found in restricted local situations scattered thinly throughout the area of
distribution of the species, in minor hosts. Therefore major hosts are an essential and limiting
factor in maintaining thrips populations and have direct and undoubted implications for
conservation efforts in areas where the flora is endangered like Cerrado in Central Brazil
(Myers et al. 2000). The group of five sequential flowering Malpighiaceae analyzed in this
study has not been found elsewhere in plant inventories in cerrado vegetation. Usually these
inventories are made in protected reserves and accomplish mostly trees excluding shrubs and
vines from analysis and the Malpighiaceae eventually sampled, are mostly Byrsonima (Silva
et al. 2002, Assunção & Felfili 2004). It is really surprising the fact that Banisteriopsis and
Peixotoa are so rare in other Cerrado areas (Urso-Guimarães & Scareli-Santos 2006) as in
ours these plants are so abundant. Cerrado biota is not homogeneous, so additional
distribution data for different groups of organisms must be collected and organized in a
56
retrievable way to help conservationists to determine whether there are additional unidentified
subareas of endemism (Silva & Bates 2002 ).
If thrips, particularly H. peixotoa, are dependent of sequential flowering to maintain its
population along the seasons, the lack of any plant may have strong consequences because
thrips would be at least two months without host and thrips adult life span is about one month
(Murai & Loomans 2001). The register of this thrips species in plants other than
Malpighiaceae (Pinent et al. 2005) suggests wider habit exploitation. Also it has been argued
that polyphagy should favor risk spreading, with females laying their eggs on many host
plants in order to ensure that at least some offspring survive. Such a strategy, if beneficial,
could lead to the acceptance of a greater variety of host species for oviposition (Jaenike 1990)
and thrips could survive in small number in these minor hosts in the lack of the major ones.
The fact that some species matter more than others becomes especially clear in the case of
keystone species which refers to species whose loss has a disproportionate impact on the
community when compared to the loss of other species (Mills et al. 1993). We still cannot
assume Malpighiaceae as keystone species for thrips given that no large scale samplings were
made in other plants to compare. Yet most ecosystem processes are driven by the combined
biological activities of many species, and it is often not possible to determine the relative
contributions of individual species to ecosystem processes (Loreau et al. 2001, Naeem 2002,
Hooper et al. 2005). However our results and our knowledge of thrips occurrence so far,
particularly H. peixotoa, allow us to propose that the community of these sequential flowering
plants have a significant and noteworthy role in thrips time and space maintenance.
It would be useful to learn how thrips community would adapt itself to a change in its
staple food resources through availability in time and space. Would the diversity of potential
food species be a factor determining whether thrips could remain, feeding on substitutes, or
whether they would have to move to other habitats or plants? This approach will be the aim of
future studies and may elucidate different aspects of thrips biology and ecology and enrich
our knowledge about these minute and ubiquitous insects.
7 CONCLUSION
In this study we showed that sequential flowering Malpighiaceae has an important role in
the maintenance of thrips community throughout the year, especially for H. peixotoa, the most
abundant species in all samplings. The richness and diversity recorded is the highest ever
sampled for thrips living in a group of related taxonomic plants, possibly because the
conservative aspect of Malpighiaceae flowers provide food resources and protection against
57
predators. Large flowers support more thrips and the environment may be as important as the
plant flowering phenology in maintaining thrips in time and space. Future studies will attain
on the damages or benefits of thrips in their hosts as well as their occurrence on other
common plants on Brazilian Savanna vegetation.
Acknowledgements: Dr. Laurence A. Mound for the indentification of thrips and insightufull contribution on the
boardless knowledge of thrips worldwide; Ms. Adriano Cavalleri for the help in some aspects of Brazilian thrips;
Msc. Andrea Andrade Vilela for the fieldwork companion; Msc. Pietro Kiyoshi Maruyama Mendonça for
comments on the manuscript; Programa de Pós Graduação em Ecologia e Conservação de Recursos Naturais,
UFU and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the finnancial support.
8 REFERENCES
Formatado de acordo com as normas da Biotropica, com o software EndNote X1 ®.
AGRAWAL, A. A., and C. N. KLEIN. 2000. What omnivores eat: direct effects of induced plant
resistance on herbivores and indirect consequences for diet selection by omnivores. Journal of
Animal Ecology 69: 525-535.
AGRAWAL, A. A., C. KOBAYASHI, and J. S. THALER. 1999. Influence of prey availability and
induced host-plant resistance on omnivory by western flower thrips. Ecology 80: 518-523.
ANANTHAKRISHNAN, T. N. 1993. Bionomics of thrips. Annual Review of Entomology 38: 71-
92.
ANDERSON, W. R. 1979. Floral conservatism in Neotropical Malpighiaceae. Biotropica 1:
219-223.
ANNADURAI, R. S., and R. VELAYUDHAN. 1986. Pollination of potential thrips (Insecta:
Thysanoptera) in some fabaceous plants. Proceedings of the Indian Academy of Sciences
(Animal Sciences) 95: 745-750.
ANNAND, P. N. 1926. Thysanoptera and the pollination of flowers. The American Naturalist
60: 177-182.
APPANAH, S. 1985. General flowering in the climax Rain Forests of South-East Asia. Journal
of Tropical Ecology 1: 225-240.
APPANAH, S. 1993. Mass flowering of dipterocarp forests in the aseasonal tropics. Journal of
Biosciences 18: 457-474.
ARADOTTIR, A. L., A. ROBERTSON, and E. MOORE. 1997. Circular statistical analysis of birch
colonization and the directional growth response of birch and black cottonwood in south
Iceland. Agricultural and Forest Meteorology 84: 179–186.
58
ARAUJO, A. C., E. A. FISCHER, and M. SAZIMA. 1994. Floração seqüencial e polinização de
três espécies de Vriesea (Bromeliaceae) na região da Juréia, sudeste do Brasil. Revista
Brasileira de Botânica 17: 113-118.
AREVALO, H. A., A. B. FRAULO, and O. E. LIBURD. 2006. Key to the most common species of
thrips found in early-season blueberry fields in Florida and Southern Georgia. Extension
ENY-836, p. 5. University of Florida, IFAS.
ASSUNÇÃO, S. L., and J. M. FELFILI. 2004. Fitossociologia de um fragmento de cerrado sensu
stricto na APA do Paranoá, DF, Brasil. Acta Botânica Brasílica 18: 903-909.
BARBOSA, P. 1988. Some thoughts on the evolution of host range. Ecology 69: 912-915.
BASCOMPTE, J., and P. JORDANO. 2007. Plant-animal mutualistic networks: the architecture of
biodiversity. Annual Review of Ecology, Evolution and Systematics 38: 567-593.
BAWA, K. S., and M. HADLEY. 1990. Reproductive ecology of tropical forest plants. Taylor &
Francis.
BERNARDO, U., and G. VIGGIANI. 2002. Biological data on Megaphragma amalphitanum
Viggiani and Megaphragma myrmaripenne Timberlake (Hymenoptera: Trichogrammatidae),
egg-parasitoids of Heliothrips haemorrhoidalis (Bouché) (Thysanoptera: Thripidae) in
southern Italy. Boll. Lab. Ent. Agr. Filippo Silvestri 58: 77-85.
BIELZA, P. 2008. Insecticide resistance management strategies against the western flower
thrips, Frankliniella occidentalis. Pest Management Science 64: 1131-1138.
BRODY, A. K. 1997. Effects of pollinators, herbivores, and seed predators on flowering
phenology. Ecology 78: 1624-1631.
CARVALHO, L. M., V. H. P. BUENO, and S. M. MENDES. 2006. Ocorrência e flutuação
populacional de tripes, pulgões e inimigos naturais em crisântemo de corte em casa de
vegetação. Bragantia 65: 139-146.
CASTINEIRAS, A., R. M. BARANOWSKI, and H. GLENN. 1996. Temperature response of two
strains of Ceranisus menes (Hymenoptera: Eulophidae) reared on Thrips palmi
(Thysanoptera: Thripidae). Florida Entomologist 79: 13-19.
CAVALLERI, A., H. P. ROMANOWSKI, and L. R. RODRIGUES REDAELLI. 2006. Thrips species
(Insecta, Thysanoptera) inhabiting plants of the Parque Estadual de Itapuã, Viamão, Rio
Grande do Sul state, Brazil. Revista Brasileira de Zoologia 23: 367–374.
CHAN, H. T. 1981. Reproductive biology of some Malaysian dipterocalps. III. Breeding
systems. Malaysian Forester 38: 160-170.
59
CHARNOV, E. L. 1976. Optimal foraging, the marginal value theorem. Theoretical Population
Biology 9: 129-136.
CHILDERS, C. C., and R. C. BULLOCK. 1999. Controlling Frankliniella bispinosa
(Thysanoptera : Thripidae) on Florida citrus during bloom and increased fruit set on navel and
'Valencia' oranges. Florida Entomologist 82: 410-424.
CHO, K., J. F. WALGENBACH, and G. G. KENNEDY. 2000. Daily and temporal occurence of
Frankliniella spp. (Thysanopetra: Thripidae) on tomato. Applied Entomology and Zoology
35: 207-214.
CUDA, J. P., J. L. GILLMORE, J. C. MEDAL, and J. H. PEDROSA-MACEDO. 2008. Mass rearing of
Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae), an approved biological control
agent for Brazilian peppertree, Schinus terebinthifolius (Sapindales: Anacardiaceae). Florida
Entomologist 91: 338-340.
CUDA, J. P., J. C. MEDAL, J. L. GILLMORE, D. H. HABECK, and J. H. PEDROSA-MACEDO. 2009
Fundamental host range of Pseudophilothnps ichini s.l. (Thysanoptera: Phlaeothripidae): a
candidate biological control agent of Schinus terebinthifolius (Sapindales: Anacardiaceae) in
the United States. Environmental Entomology 38: 1642-1652.
DAVIDSON, J., and H. G. ANDREWARTHA. 1948. Annual trends in a natural population of
Thrips imaginis (Thysanoptera). Journal of Animal Ecology 17: 193-199.
DEL-CLARO, K. 1998. A importância do comportamento de formigas em interações. Um
exemplo no Cerrado: formigas e tripes em Peixotoa tomentosa (Malpighiaceae). Revista de
Etologia 1: 3-10.
DEL-CLARO, K., J. BYK, G. M. YUGUE, and M. G. MORATO. 2006. Conservative benefits in an
ant-hemipteran association in the Brazilian tropical savanna. Sociobiology 47: 415-421.
DEL-CLARO, K., R. MARULLO, and L. A. MOUND. 1997. A new Brazilian species of
Heterothrips (Insecta; Thysanoptera) interacting with ants in Peixotoa tomentosa flowers
(Malpighiaceae). Journal of Natural History 31: 1307-1312.
DEL-CLARO, K., and P. S. OLIVEIRA. 2000. Conditional outcomes in a Neotropical ant-
homoptera mutualistic association. Oecologia 124: 156-165.
DREISTADT, S. H., P. A. PHILLIPS, and C. A. O’DONNELL. 2007. Thrips: integrated pest
management for landscape professionals and home gardeners. Agricultural and Natural
Resources 7429: 1-8.
EHRLICH, P. R., and P. H. RAVEN. 1964. Butterflies and plants: a study in coevolution.
Evolution 18: 568-608.
FELLER, I. C., H. KUDOH, C. E. TANNER, and D. F. WHIGHAM. 2002. Sex-biased herbivory in
Jack-in-the-pulpit (Arisaema triphyllum) by a specialist thrips (Heterothrips arisaemae).
60
Proceedings of the 7th International Symposium on Thysanoptera, Thrips and Tospovirues,
Reggio Calabria, Italy.
FERNANDES, G. W., M. FAGUNDES, M. K. B. GRECO, M. S. BARBEITOS, and J. C. SANTOS.
2005. Ants and their effects on an insect herbivore community associated with the
inflorescences of Byrsonima crassifolia (Linnaeus) H.B.K. (Malpighiaceae). Revista
Brasileira de Entomologia 49: 264-269.
FISHER, N. I. 1996. Statistical analysis of circular data. Cambridge University Press.
FLINTE, V., C. O. ARAÚJO, M. V. MACEDO, and R. F. MONTEIRO. 2006. Insetos fitófagos
associados ao murici da praia, Byrsonima sericea (Malpighiaceae), na Restinga de Jurubatiba
(RJ). Revista Brasileira de Entomologia 50: 512-523.
FRANKIE, G. W., Η. G. BAKER, and Ρ. A. OPLER. 1974. Comparative phenological studies of
trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology 62:
881-919.
FUNDERBURK, J., J. STAVISKY, and S. OLSON. 2000. Predation of Frankliniella occidentalis
(Thysanoptera : Thripidae) in field peppers by Orius insidiosus (Hemiptera : Anthocoridae).
Environmental Entomology 29: 376-382.
FURLEY, P. A., and J. A. RATTER. 1988. Soil resources and plant communities of the central
Brazilian Cerrado and their development. Journal of Biogeography 15: 97-108.
GAUM, W. G., J. H. GILIOMEE, and K. L. PRINGLE. 1994. Life-history and life-tables of
western flower thrips, Frankliniella occidentalis (Thysanoptera, Thripidae), on English
cucumbers. Bulletin of Entomological Research 84: 219-224.
GILL, D. S., J. S. AMTHOR, and F. H. BORMANN. 1998. Leaf phenology, photosynthesis, and
the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiology
18: 281-289.
GOODLAND, R. 1971. A physiognomic analysis of the cerrado vegetation of central Brazil.
Journal of Ecology 59: 411-419.
GOOGLE. 2009. Google Earth. Google.
GRIMALDI, D., and M. S. ENGEL. 2005. Evolution of the insects. Cambridge University Press.
HARE, J. F., and T. EISNER. 1993. Pyrrolizidine alkaloid deters ant predators of Utetheisa
ornatrix eggs: effects of alkaloid concentration, oxidation state, and prior exposure of ants to
alkaloid-laden prey. Oecologia 96: 9-18.
HELYER, N. L., and P. J. BROBYN. 1992. Chemical control of western flower thrips
(Frankliniella occidentalis Pergande). Annals of Applied Biology 121: 219-231.
61
HESSEIN, N. A., and J. A. MCMURTRY. 1988. Observations on Megaphragma mymaripenne
(Timberlake) (Hymenoptera: Trichogrammatidae), an egg parasite of Heliothrips
haemorrhoidales Bouche (Thysanoptera : Thripidae). Pan Pacific Entomologist 64: 250-254.
HICKEL, E. R., and J. P. H. J. DUCROQUET. 1998. Tripes associados à floração da nectarina em
Santa Catarina. Anais da Sociedade Entomológica do Brasil 27: 307-308.
HIGHT, S. D., J. P. CUDA, and J. C. MEDAL. 2002. Brazilian Peppertree. In R. van Driesche, B.
Blossey, M. Hoddle, S. Lyon and R. Reardon (Eds.). Biological Control of Invasive Plants in
the Eastern United States, pp. 311-322. USDA Forest Service Publication FHTET,
Morgantown, West Virginia, USA.
HOOPER, D. U., F. S. CHAPIN III, J. J. EWEL, A. HECTOR, P. INCHAUSTI, S. LAVOREL, J. H.
LAWTON, D. M. LODGE, M. LOREAU, S. NAEEM, B. SCHMID, H. SETÄLÄ, A. J. SYMSTAD, J.
VANDERMEER, and D. A. WARDLE. 2005. Effects of biodiversity on ecosystem functioning: a
consensus of current knowledge. Ecological Monographs 75: 3-35.
HULBERT, S. H. 1984. Pseudoreplication and the design of ecological field experiments.
Ecological Monographs 54: 187-211.
HUNTER, M. D., and P. W. PRICE. 1992. Playing chutes and ladders - heterogeneity and the
relative roles of bottom-up and top-down forces in natural communities. Ecology 73: 724-732.
IMMARAJU, J. A., T. D. PAINE, J. A. BETHKE, K. L. ROBB, and J. P. NEWMAN. 1992. Western
flower thrips (Thysanoptera: Thripidae) resistance to insecticides in Coastal California
greenhouses. Journal of Economic Entomology 85: 9-14.
IZZO, T. J., S. M. J. PINENT, and L. A. MOUND. 2002. Aulacothrips dictyotus (Heterothripidae),
the first ectoparasitic thrips (Thysanoptera). Florida Entomologist 85: 281-283.
JAENIKE, J. 1990. Host specialization in phytophagous insects. Annual Review of Ecology and
Systematics 21: 243-273.
JAMMALAMADAKA, S. R., and A. SENGUPTA. 2001. Topics in circular statistics: Series on
multivariate analysis. World Scientific.
JENSEN, S. E. 2000. Insecticide resistance in the western flower thrips, Frankliniella
occidentalis. Integrated Pest Management Reviews 5: 131-146.
KIRK, D. J. 2002. The pest and vector from the West: Frankliniella occidentalis. Proceedings
of The 7th International Symposium on Thysanoptera, Thrips and Tospoviruses, pp. 33-42.
KIRK, W. D., and L. I. TERRY. 2003. The spread of the western flower thrips Frankliniella
occidentalis (Pergande). Agricultural and Forest Entomology 5: 301-310.
62
LANSAC-TÔHA, F. A., L. F. V. MACHADO, C. C. BONECKER, and A. S. M. AOYAGUI. 2000.
Horizontal distribution patterns of testate amoebae (Rhizopoda, Amoebozoa) in plankton
samples of the Corumbá reservoir area, state of Goiás, Brazil Acta Scientiarum: Agronomy
22: 347-353.
LEITE, G. L. D., M. PICANÇO, G. N. JHAM, and M. R. GUSMÃO. 2002. Effects of leaf
compounds, climate and natural enemies on the incidence of thrips in cassava. Pesquisa
Agropecuária Brasileira 37: 1657-1662.
LEITE, G. L. D., M. PICANÇO, G. N. JHAM, and M. D. MOREIRA. 2005. Bemisia tabaci,
Brevicoryne brassicae and Thrips tabaci abundance on Brassica oleracea var. acephala.
Pesquisa Agropecuária Brasileira 40: 197-202.
LEITE, G. L. D., M. PICANCO, J. C. ZANUNCIO, and C. C. ECOLE. 2006. Factors affecting
herbivory of Thrips palmi (Thysanoptera : Thripidae) and Aphis gossypii (Homoptera :
Aphididae) on the eggplant (Solanum melongena). Brazilian Archives of Biology and
Technology 49: 361-369.
LOREAU, M., S. NAEEM, P. INCHAUSTI, J. BENGTSSON, J. P. GRIME, A. HECTOR, D. U. HOOPER,
M. A. HUSTON, D. RAFFAELLI, B. SCHMID, D. TILMAN, and D. A. WARDLE. 2001. Biodiversity
and ecosystem functioning: current knowledge and future challenges. Science 294: 804-808.
LUDWIG, J. A., and J. F. REYNOLDS. 1988. Statistical ecology: a primer on methods and
computing. Wiley-IEEE.
MACHADO, C. G., and J. SEMIR. 2006. Fenologia da floração e biologia floral de bromeliáceas
ornitófilas de uma área da Mata Atlântica do Sudeste brasileiro. Revista Brasileira de
Botânica 29: 163-174.
MAGURRAN, A. E. 2004. Measuring biological diversity. Blackwell Publishing.
MANLY, B. F. J. 1997. Randomization, bootstrap and Monte Carlo methods in biology.
Chapman & Hall, London.
MANRIQUE, V., J. P. CUDA, W. A. OVERHOLT, D. A. WILLIAMS, and G. S. WHEELER. 2008.
Effect of host-plant genotypes on the performance of three candidate biological control agents
of Schinus terebinthifolius in Florida. Biological Control 47: 167-171.
MARQUES, A. R., and J. P. LEMOS FILHO. 2008. Fenologia reprodutiva de espécies de
bromélias na Serra da Piedade, MG, Brasil. Acta Botânica Brasílica 22: 417-424.
MARQUIS, R. J., and H. E. BRAKER. 1994. Plant-herbivore interactions: diversity, specificity,
and impact. In L. A. McDade, K. S. Bawa, H. A. Hespenheide and G. S. Hartshorn (Eds.). La
selva: Ecology and natural history of a neotropical rain forest, pp. 261-281. Chicago Press,
Chicago.
63
MILLS, L. S., M. E. SOULE, and D. F. DOAK. 1993. The keystone-species concept in ecology
and conservation. BioScience 43: 219-224.
MILNE, J. R., M. MILNE, and G. H. WALTER. 1997. A key to larval thrips (Thysanoptera) from
Granite Belt stonefruit trees and a first description of Pseudanaphothrips achaetus (Bagnall)
larvae. Australian Journal of Entomology 36: 319-326
MILNE, M., and G. H. WALTER. 2000. Feeding and breeding across host plants within a
locality by the widespread thrips Frankliniella schultzei, and the invasive potential of
polyphagous herbivores. Diversity and Distributions 6: 243-257.
MILNE, M., G. H. WALTER, and J. R. MILNE. 2007. Mating behavior and species status of host-
associated populations of the polyphagous thrips, Frankliniella schultzei. Journal of Insect
Behavior 20: 331-346.
MONTEIRO, R. C. 2002. The Thysanoptera fauna of Brazil. Proceedings of the 7th
International Symposium on Thysanoptera, Thrips and Tospovirues, pp. 325-340 Reggio
Calabria, Italy.
MONTEIRO, R. C., L. A. MOUND, and R. A. ZUCCHI. 2001. Espécies de Frankliniella
(Thysanoptera: Thripidae) de importância agrícola no Brasil. Neotropical Entomology 1: 65-
72.
MONTEIRO, R. C., R. A. ZUCCHI, and L. A. MOUND. 1998. Thrips tabaci Lind.: É Realmente
uma Praga do Algodoeiro no Brasil? Anais da Sociedade Entomológica do Brasil 27: 489-494
MORELLATO, L. P. C., D. C. TALORA, A. TAKAHASI, C. C. BENCKE, E. C. ROMERA, and V. B.
ZIPPARRO. 2000. Phenology of Atlantic rain forest trees: A comparative study. Biotropica 32:
811-823.
MORSE, J. G., and M. S. HODDLE. 2006. Invasion biology of thrips. Annual Review of
Entomology 51: 67-89.
MOUND, L. A. 2002a. So many thrips so few tospoviruses? Proceedings of the 7th
Internatinal Symposium on Thysanoptera, Thrips and Tospovirues, pp. 3-6, Reggio Calabria,
Italy.
MOUND, L. A. 2002b. Thysanoptera biodiversity in the neotropics. Revista de Biologia
Tropical 50: 477-484.
MOUND, L. A. 2005. Thysanoptera: Diversity and interactions. Annual Review of Entomology
50: 247-269.
MOUND, L. A., and R. MARULLO. 1996. The thrips of Central and South America: an
introduction (Insecta: Thysanoptera). Associated Publishers, Gainesville, Florida.
64
MOUND, L. A., and D. C. MORRIS. 2007. The insect Order Thysanoptera: classification versus
systematics. Zootaxa 1668: 395-411.
MOUND, L. A., and I. TERRY. 2001. Thrips pollination of the central Australian cycad,
Macrozamia macdonnellii (Cycadales). International Journal of Plant Sciences 162: 147-154.
MOUND, L. A., and D. A. J. TEULON. 1995. Thysanoptera as phytophagous opportunists.
Thrips biology and management. Plenum Press, New York.
MURAI, T. 2000. Effect of temperature on development and reproduction of the onion thrips,
Thrips tabaci Linderman (Thysanoptera: Thripidae), on pollen and honey solution. Applied
Entomology and Zoology 35: 499-504.
MURAI, T., and A. J. M. LOOMANS. 2001. Evaluation of an improved method for mass-rearing
of thrips and a thrips parasitoid. Entomologia Experimentallis et Applicata 101: 281-289.
MYERS, N., R. A. MITTERMEIER, C. G. MITTERMEIER, G. A. B. DA FONSECA, and J. KENT.
2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
NAEEM, S. 2002. Ecosystem consequences of biodiversity loss: the evolution of a paradigm.
Ecology 83: 1537-1552.
NAGATA, T., and A. C. DE AVILA. 2000. Transmission of Chrysanthemum stem necrosis virus,
a recently discovered tospovirus, by two thrips species. Journal of Phytopathology 148: 123-
125.
NAGATA, T., L. A. MOUND, F. H. FRANÇA, and A. C. ÁVILA. 1999. Identification and rearing
of four Thrips species vectors of Tospovirus in the Federal District, Brazil. Anais da
Sociedade de Entomologia do Brasil 28: 535-539.
NAKAO, S. 1998. Thrips setosus, reproductive diapause, photoperiod, temperature. Japan
Journal of Applied Entomology and Zoology 42: 172-173.
NEWSTROM, L. E., G. W. FRANKIE, and H. G. BAKER. 1994. A new classification for plant
phenology based on flowering patterns in lowland tropical rain-forest trees at La-Selva,
Costa-Rica. Biotropica 26: 141-159.
OBRIST, L. B., H. KLEIN, A. DUTTON, and F. BIGLER. 2005. Effects of Bt maize on
Frankliniella tenuicornis and exposure of thrips predators to prey-mediated Bt toxin.
Entomologia Experimentalis et Applicata 115: 409-416.
OLIVEIRA-FILHO, A. T., and J. A. RATTER. 2002. Vegetation physiognomies and woody flora
of the cerrado biome. In P. S. Oliveira and R. J. Marquis (Eds.). The Cerrados of Brazil:
Ecology and natural history of a neotropical savanna, pp. 91-120. Columbia University Press,
New York.
65
OLIVEIRA, P. S., and R. J. MARQUIS. 2002. The Cerrados of Brazil: ecology and natural history
of a Neotropical Savanna. Columbia University Press, New York.
OTT, A. P., and G. S. CARVALHO. 2001. Comunidade de cigarrinhas (Hemiptera:
Auchenorrhyncha) de uma área de campo do município de Viamão, Rio Grande do Sul, Brasil.
Neotropical Entomology 30: 233-243.
PEARSALL, I. A., and J. H. MYERS. 2000. Evaluation of sampling methodology for determining
the phenology, relative density, and dispersion of western flower thrips (Thysanoptera :
Thripidae) in nectarine orchards. Journal of Economic Entomology 93: 494-502.
PEARSALL, I. A., and J. H. MYERS. 2001. Spatial and temporal patterns of dispersal of western
flower thrips (Thysanoptera : Thripidae) in nectarine orchards in British Columbia. Journal of
Economic Entomology 94: 831-843.
PELLMYR, O. 1992. The phylogeny of a mutualism: evolution and coadaptation between
Trollius and its seed parasitic pollinators. Biological Journal of the Linnean Society 47: 337
365.
PIANKA, E. R. 1974. Niche overlap and diffuse competition. Proceedings of the National
Academy of Sciences of the United States of America 71: 2141-2145.
PINENT, S. M. J., F. MASCARO, M. BOTTON, and L. R. REDAELLI. 2008. Thrips (Thysanoptera:
Thripidae, Phlaeothripidae) damaging peach in Paranapanema, Sao Paulo State, Brazil.
Neotropical Entomology 37: 486-488.
PINENT, S. M. J., H. P. ROMANOWSKI, L. R. REDAELLI, and A. CAVALLERI. 2005.
Thysanoptera: plantas visitadas e hospedeiras no Parque Estadual de Itapuã, Viamão, RS,
Brasil. Iheringia, Sér. Zool. 95: 9-16.
PINENT, S. M. J., H. P. ROMANOWSKI, L. R. REDAELLI, and A. CAVALLERI. 2006. Species
composition and structure of Thysanoptera communities in different microhabitats at the
Parque Estadual de Itapuã, Viamão, RS. Brazilian Journal of Biology 66: 765-779.
POWELL, J. A. 1980. Evolution of larval food preferences in microlepidoptera. Annual Review
of Entomology 25: 133-159.
PULLIAM, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:
349-361.
PYKE, G. H., H. R. PULLIAM, and E. L. CHARNOV. 1977. Optimal foraging: a selective review
of theory and tests. The Quarterly Review of Biology 52: 137-154.
REIMER, N. J. 1988. Predation on Liothrips urichi Karny (Thysanoptera: Phlaeothripidae): a
case of biotic interference. Environmental Entomology 17: 132-134.
66
REU, W. F., and K. DEL-CLARO. 2005. Natural history and biology of Chlamisus minax
Lacordaire (Chrysomelidae: Chlamisinae). . Neotropical Entomology 34: 357-362.
RICHARDS, O. W., and R. G. DAVIES. 1988. IMM’S General textbook of entomology.
Chapman and Hall Ltd London.
SAKAI, S. 2001. Thrips pollination of androdioecious Castilla elastica (Moraceae) in a
seasonal tropical forest. American Journal of Botany 88: 1527-1534.
SAKURAI, T. 2004. Transmission of tomato spotted wilt virus by the dark form of
Frankliniella schultzei (Thysanoptera: Thripidae) originating in tomato fields in Paraguay.
Applied Entomology and Zoology 39: 189-194.
SEAL, D. R., M. A. CIOMPERLIK, M. L. RICHARDS, and W. KLASSEN. 2006. Distribution of
chilli thrips, Scirtothrips dorsalis (Thysanoptera : Thripidae), in pepper fields and pepper
plants on St. Vincent. Florida Entomologist 89: 311-320.
SILVA, J. M. C., and J. M. BATES. 2002 Biogeographic patterns and conservation in the South
American Cerrado: a Tropical Savanna Hotspot. BioScience 52: 225-233.
SILVA, L. O., D. A. COSTA, K. E. S. FILHO, H. D. FERREIRA, and D. BRANDÃO. 2002.
Levantamento florístico e fitossociológico em duas áreas de Cerrado sensu stricto no Parque
Estadual da Serra de Caldas Novas, Goiás. Acta Botânica Brasílica 16: 43-53.
SILVEIRA, L. C. P., V. H. P. BUENO, J. N. C. LOUZADA, and L. M. CARVALHO. 2005.
Percevejos predadores (Orius spp.) (Hemiptera: Anthocoridae) e tripes (Thysanoptera):
interação no mesmo habitat? Revista Árvore 29: 767-773.
SIQUEIRA FILHO, J. A., and I. C. S. MACHADO. 2001. Biologia reprodutiva de Canistrum
aurantiacum E. Morren (Bromeliaceae) em remanescente da Floresta Atlântica, Nordeste do
Brasil. Acta Botânica Brasílica 15: 427-443.
STEYN, W. P., W. J. TOIT, and M. S. DE BEER. 1993. Natural enemies of thrips on avocado.
South African Avocado Growers’ Association Yearbook 16: 105-106.
STRAUSS, S. Y., and R. KARBAN. 1994. The significance of outcrossing in an intimate plant
herbivore relationship 2. Does outcrossing pose a problem for thrips adapted to the host plant
clone? Evolution 48: 465-476.
TAGASHIRA, E., and Y. HIROSE. 2001. Development and reproduction of Ceranisus menes
(Hymenoptera: Eulophidae), a larval parasitoid of thrips: effects of two host species,
Frankliniella intonsa and Thrips palmi (Thysanoptera: Thripidae). Applied Entomology and
Zoology 36: 237-241.
TAMO, M., N. ARODOKOUN, N. ZENZ, M. TINDO, C. AGBOTON, and R. ADEOTI. 2002. The
importance of alternative host plants for the biological control of two key cowpea insect pests,
the pod borer Maruca vitrata (Fabricius) and the flower thrips Megalurothrips sjostedti
67
(Trybom). In C. A. Fatokun, S. A. Tarawali, B. B. Singh, P. M. Kormawa and M. Tamo
(Eds.). Challenges and opportunities for enhancing sustainable cowpea production.
Proceedings of the World Cowpea Conference III held ate the International Institute of
Tropical Agriculture (IITA), Ibadan, Nigeria, 4-8 September 2000, pp. 81-93. International
Institute of Tropical Agriculture, Ibadan, Nigeria.
TERRY, I. 2001. Thrips and weevils as dual, specialist pollinators of the Australian cycad
Macrozamia communis (Zamiaceae). International Journal of Plant Sciences 162: 1293-1305.
TOREZAN-SILINGARDI, H. M. 2006. Influência da variação ambiental na frutificação de
espécies da família Malpighiaceae no Cerrado. Tese de Doutorado. p. 79. Universidade de
São Paulo. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Programa de Pós
Graduação em Entomologia, São Paulo, SP.
TRIAPITSYN, S. V. 2005. Revision of Ceranisus and the related thrips-attacking entedonine
genera (Hymenoptera: Eulophidae) of the world. African Invertebrates 46: 261-315.
TRICHILO, P. J., and T. F. LEIGH. 1986. Predation on spider-mite eggs by the western flower
thrips, Frankliniella occidentalis (Thysanoptera, Thripidae), an opportunist in a cotton
agroecosystem. Environmental Entomology 15: 821-825.
TSCHUCH, G., P. LINDEMANN, and G. MORITZ. 2002. Chemical defence in thrips. 7th
International Symposium on Thysanoptera, Thrips and Tospoviruses, pp. 277-278, Reggio
Calabria, Italy.
URAMOTO, K., J. M. M. WALDER, and R. A. ZUCCHI. 2005. Análise quantitativa e distribuição
de populações de espécies de Anastrepha (Diptera: Tephritidae) no Campus Luiz de Queiroz,
Piracicaba, SP. Neotropical Entomology 34: 33-39.
URSO-GUIMARÃES, M. V., and C. SCARELI-SANTOS. 2006. Galls and gall makers in plants
from the Pé-De-Gigante Cerrado reserve, Santa Rita do Passa Quatro, SP, Brazil. Brazilian
Journal of Biology 66: 357-369.
VAN HOUTEN, Y. M., P. VAN STRATUM, J. JAN BRUIN, and A. VEERMAN. 1995. Selection for
non-diapause in Amblyseius cucumeris and Amblyseius barkeri and exploration of the
effectiveness of selected strains for thrips control. Entomologia Experimentalis et Applicata
77: 289-295.
VARANDA, E. M., and M. P. PAIS. 2006. Insect folivory in Didymopanax vinosum (Apiaceae)
in a vegetation mosaic of Brazilian Cerrado. Brazilian Journal of Biology 66: 671-680.
VARASSIN, I. G., and M. SAZIMA. 2000. Recursos de Bromeliaceae utilizados por beija-flores
e borboletas em mata atlântica no sudeste do Brasil. Boletim do Museu de Biologia Prof.
Mello Leitão 11/12: 57-70.
68
WALTER, G. H., and M. D. BENFIELD. 1994. Temporal host plant use in three polyphagous
Heliothinae, with special reference to Helicovepa punctigera (Wallengren) (Noctuidae:
Lepidoptera). Australian Journal of Ecology 19: 458-465.
WASER, N. M. 1978. Competition for hummingbird pollination and sequential flowering in
two Colorado wildflowers. Ecology 59: 934-944.
WASER, N. M., and L. A. REAL. 1979. Effective mutualism between sequentially flowering
plant species. Nature 281: 670–672.
YOUNG, H. J. 1986. Beetle pollination of Dieffenbachia longispatha (Araceae). American
Journal of Botany 73: 931-944.
ZALUCKI, M. P., G. DAGLISH, S. FIREMPONG, and P. H. TWINE. 1986. The biology and ecology
of Heliothis armigera (Hubner) and H. punctigera Wallengren (Lepidoptera: Noctuidae) in
Australia: what do we know? Australian Journal of Zoology 34: 779-814.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo