Download PDF
ads:
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
FACULDADE DE MEDICINA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS:
ENDOCRINOLOGIA
TESE DE DOUTORADO
CURSO EVOLUTIVO E FATORES DE PROGRESSÃO DA NEFROPATIA
DIABÉTICA EM PACIENTES COM DIABETE MELITO TIPO 2
MARCIA MURUSSI
Porto Alegre, 2005
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
FACULDADE DE MEDICINA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS:
ENDOCRINOLOGIA
TESE DE DOUTORADO
CURSO EVOLUTIVO E FATORES DE PROGRESSÃO DA NEFROPATIA
DIABÉTICA EM PACIENTES COM DIABETE MELITO TIPO 2
MARCIA MURUSSI
Orientadora: Profª. Drª. Sandra Pinho Silveiro
Co-orientador: Prof. Dr. Jorge Luiz Gross
Porto Alegre, 2005
ads:
DEDICATÓRIA
A todas as mulheres, que de uma maneira singular, têm
trabalhado arduamente nas múltiplas funções, às vezes monumentais,
que elas mesmas escolheram ao conduzir suas vidas, tais como filhas,
esposas, mães, profissionais, amigas, madrinhas, administradoras no
lar e no trabalho, voluntárias, professoras, síndicas, comerciantes,
escritoras, artistas, atletas, etc, não muito diferente do que as mulheres
sempre foram...
E a todos os homens que respeitam, admiram, ajudam e
amam essas mulheres...
AGRADECIMENTOS
À minha orientadora, Profª. Drª. Sandra Pinho Silveiro, pelo exemplo de como um
professor deve ser. Pelo seu carinho, respeito, dedicação, perfeccionismo e bom senso; e
pela sua paciência, ajuda, humildade, compreensão, perseverança e amizade. Por todos os
ensinamentos que ela me proporcionou, os quais vão além do desafio da vida acadêmica...
Ao Prof. Dr. Jorge Luiz Gross, por ter acreditado no meu trabalho e por estar
semeando ao longo dos anos um legado para os novos pesquisadores.
Às acadêmicas de medicina, Ariane Coester e Nicole Campagnolo, que certamente
terão uma brilhante carreira, pela ajuda inestimável na execução deste trabalho e pelo
companheirismo.
À Dra. Maristela de Oliveira Beck, que gentilmente contribuiu com seu trabalho
para a inclusão de inúmeros pacientes desta pesquisa.
À Profª Drª Mirela Jobim de Azevedo, pela disponibilidade para auxiliar os pós-
graduandos com tanto carinho.
Às estatísticas Vânia Naomi Hirakata e Daniela Benzano Bugamin, pelo auxílio
prestado na análise dos dados, e por terem me ensinado a trabalhar nessa difícil tarefa de
executar análises tantas repetidas vezes.
Aos meus professores da Residência de Endocrinologia do Hospital Nossa Senhora
da Conceição, Airton Golbert, Balduíno Tschiedel, Fernando Azambuja, Iracema
Gonçalves e Maria Amélia Alves de Campos e à Enfermeira Silvana Speggiorin, por terem
sido meus exemplos e por terem contribuído significativamente para minha formação
profissional e pessoal.
Aos pacientes, pela disponibilidade com que contribuíram para a realização desta
pesquisa; pelas palavras de incentivo que recebi, mesmo quando eles precisavam mais do
que minha ajuda como médica e conselheira.
Ao meu pai, Luiz, que sempre quis que eu fosse médica, e à minha mãe, Edi, que
sempre quis que eu fosse professora, pelo constante apoio e pelos preceitos de honestidade
e perseverança que me ensinaram, incutindo-me o caráter. Ao meu irmão Ednei, pelo
entusiasmo, e à minha irmã Nádia, que vem trilhando por caminhos semelhantes aos meus,
que tanto já me emprestou seu ombro mais jovem para que eu pudesse me debruçar...
Ao meu marido, Luiz Alberto Beheregaray Filho, que tem sido um grande
companheiro, e pela paciência e ajuda que me dispensou ao longo da realização deste
trabalho.
E, finalmente, à minha filha Clara, pelo sorriso com o qual me recebe cada vez que
eu chego em casa... E pelas vezes que, mesmo na inocência de seus dois aninhos, tem me
consolado quando eu penso que não darei conta de tudo...
SUMÁRIO
Lista de Tabelas................................................................................................................. ix
Lista de Figuras................................................................................................................. xi
Lista de Abreviaturas........................................................................................................ xiii
CAPÍTULO 1
Diagnóstico e Curso Evolutivo da Nefropatia Diabética
em Pacientes com Diabete Melito Tipo 2
Resumo............................................................................................................................. 2
Abstract............................................................................................................................ 4
I. Introdução.................................................................................................................... 6
II. Definição..................................................................................................................... 7
III. Fatores de Risco para Nefropatia Diabética.......................................................... 7
1. Fatores de Risco Genéticos................................................................... 8
2. Fatores de Risco Não-Genéticos........................................................... 8
IV. Diagnóstico............................................................................................................... 14
V. Curso Clínico.................................................................................................... 17
1. Estágio de Nefropatia Incipiente (Microalbuminúria)......................... 17
2. Estágio de Nefropatia Clínica (Macroalbuminúria) ............................. 21
3. Estágio de Uremia (Insuficiência Renal Terminal) ............................. 23
Considerações finais....................................................................................................... 25
Bibliografia…………………………………………………………………………….. 27
CAPÍTULO 2
High Normal Levels of Albuminuria are Predictors of Diabetic Nephropathy
in Type 2 Diabetic Patients: an 8-year Follow-up Study
Abstract………………………………………………………………………………… 51
Introduction………………………………………………………………………......... 53
Research design and methods………………………………………………………… 54
Results……………………………………………………………………….................. 57
Conclusions…………………………………………………………………………….. 61
References………………………………………………………………………............ 66
CAPÍTULO 3
Course of Microalbuminuria in Type 2 Diabetic Patients: a 6-year Follow-up Study
Abstract…........................................................................................................................ 79
Introduction……………………………………………………………………………. 81
Research design and methods………………………………………………………… 82
Results……………………………………………………………………….................. 86
Conclusions ………………………………………………………………..................... 90
References………………………………………………………………………............ 96
Comentários finais ............................ m............................................................................
112
LISTA DE TABELAS
CAPÍTULO 1
Tabela 1. Diagnóstico da Nefropatia Diabética………………….…………...... 44
Tabela 2. Fatores de risco para Nefropatia Diabética.......................................... 45
Tabela 3. Fatores que aumentam os valores de albuminúria .............................. 46
CAPÍTULO 2
Table 1. Baseline clinical and laboratory characteristics of DM 2 patients with and
without progression to DN…………………………………………… 71
Table 2. Baseline risk factors for diabetic nephropathy development in 158
normoalbuminuric DM 2 patients ……………..…………………….. 72
Table 3. Final clinical and laboratory characteristics of DM 2 patients with and
without progression to DN…………………………………………… 73
CAPÍTULO 3
Table 1. Baseline clinical and laboratory characteristics of the 52 microalbuminuric
DM 2 patients ………………………………………………………… 102
Table 2. Baseline clinical and laboratory characteristics of microalbuminuric DM 2
patients according to clinical course of DN at follow-up …..………... 103
Table 3. Baseline risk factors for diabetic nephropathy development in 43
microalbuminuric DM 2 patients ……….....………………………….. 104
Table 4. Baseline clinical and laboratory characteristics of DM 2 patients with and
without GFR values <60 ml/min/1.73m
2
at follow-up.......................... 105
Table 5. Final characteristics of DM 2 patients according to DN evolution in 6
years....................................................................................................... 106
LISTA DE FIGURAS
CAPÍTULO 1
Figura 1. Declínio da taxa de filtração glomerular (média ± DP) em pacientes com
DM 2 inicialmente normoalbuminúricos e em indivíduos não-diabéticos (grupo controle),
e a evolução de acordo com o estágio da nefropatia diabética após 10 anos de
acompanhamento.............................................................................................................. 47
Figura 2. Declínio da taxa de filtração glomerular em pacientes macroalbuminúricos
com DM tipo 2................................................................................................................. 48
Figura 3. Sobrevida de pacientes com e sem DM em estudo de 18 centros de diálise
na área metropolitana de Porto Alegre............................................................................ 49
CAPÍTULO 2
Figure 1. Flow chart of normoalbuminuric DM 2 patients..................................... 74
Figure 2. Baseline urinary albumin excretion (UAE) in normoalbuminuric and micro-
plus macroalbuminuric DM 2 patients at follow-up (to UAE >5.1 µg/min, OR 2.4 [1.15-
5.06])…………………………………………………………………………………… 75
Figure 3. Kaplan-Meier estimates of survival in DM 2 patients (158 re-evaluated + 15
dead before re-evaluation) according to UAE above the median 5.1 µg/min at
baseline…………………………………………………………………………………. 76
Figure 4. Kaplan-Meier estimates of the development of micro- and macroalbuminuria
in DM 2 patients according to the presence of diabetic retinopathy (DR) at
baseline…………………………………………………………………………………. 77
CAPÍTULO 3
Figure 1. Flow chart of the microalbuminuric type 2 diabetic patients…………... 107
Figure 2. Baseline UAE (µg/min) values according to follow-up renal status:
progressor group (MA, n=14) vs. non-progressor group (MI + NO, n=29). Outliers are
indicated by yellow circles…………………………………………….……….….….. 108
Figure 3. Kaplan-Meier estimates of DN progression according to baseline median
UAE (48 µg/min), n=43……………………………………………………………… 109
Figure 4. Kaplan-Meier estimates of DN progression according to the presence of
diabetic retinopathy (DR) at baseline, n=43 ………………………………………….. 110
Figure 5. Kaplan-Meier estimates of cumulative survival regarding DN status at
follow-up……….………………………………………………………………….……. 111
LISTA DE ABREVIATURAS
CAPÍTULO 1
ADA: American Diabetes Association
BRA-II: bloqueador do receptor da angiotensina-II
DCCT: Diabetes Control and Complications Trial
DM: diabete melito
DRC: doença renal crônica
ECA: enzima conversora da angiotensina
EUA: excreção urinária de albumina
HAS: hipertensão arterial sistêmica
HPS: Heart Protection Study
IRT: insuficiência renal terminal
ND: nefropatia diabética
NKF: National Kidney Foundation
TFG: taxa de filtração glomerular
UKPDS: United Kingdom Prospective Diabetes Study
CAPÍTULO 2 e CAPÍTULO 3
ACE: angiotensin-converting enzyme
ADA: American Diabetes Association
BMI: body mass index
CI: confidence interval
CKD: chronic kidney disease
DBP: diastolic blood pressure
DM 2: type 2 diabetes mellitus
DN: diabetic nephropathy
DR: diabetic retinopathy
ESRD: end stage renal disease
FPG: fasting plasma glucose
GFR: glomerular filtration rate
HPLC: high-performance liquid chromatography
HR: hazard ratio
IT: immunoturbidimetry
KF: kidney failure
MA: macroalbuminuric
MDRD: Modification of Diet in Renal Disease equation
MI: microalbuminuric
NKF: National Kidney Foundation
NO: normoalbuminuric
RIA: radioimmunoassay
RRT: renal replacement therapy
SBP: systolic blood pressure
UAE: urinary albumin excretion
UKPDS: United Kingdom Prospective Diabetes Study
WHO: World Health Organization
1
DIAGNÓSTICO E CURSO EVOLUTIVO DA NEFROPATIA DIABÉTICA
EM PACIENTES COM DIABETE MELITO TIPO 2
DIAGNOSIS AND CLINICAL COURSE OF DIABETIC NEPHROPATHY
IN TYPE 2 DIABETIC PATIENTS
Marcia Murussi
1
Nicole Campagnolo
1
Jorge Luiz Gross
1
Sandra Pinho Silveiro
1
1
Serviço de Endocrinologia do Hospital de Clínicas de Porto Alegre
Universidade Federal do Rio Grande do Sul, RS, Brasil
Título Abreviado: Curso Clínico da Nefropatia Diabética
Abbreviated title: Clinical Course of Diabetic Nephropathy
Artigo a ser submetido para publicação na revista Arquivos Brasileiros de Endocrinologia e
Metabologia.
2
Resumo
A nefropatia diabética (ND) é uma complicação microvascular freqüente, que
acomete cerca de 40% dos indivíduos com diabete melito (DM). A ND associa-se a
significativo aumento de morte por doença cardiovascular. É a principal causa de
insuficiência renal terminal em países desenvolvidos e em desenvolvimento, representando,
dessa forma, um custo elevado para o sistema de saúde.
Os fatores de risco para o desenvolvimento e a progressão da ND mais definidos na
literatura são a hiperglicemia e a hipertensão arterial sistêmica. Outros fatores descritos são
o fumo, a dislipidemia, o tipo e a quantidade de proteína ingerida na dieta e a presença da
retinopatia diabética. Alguns parâmetros de função renal também têm sido estudados como
fatores de risco, tais como a excreção urinária de albumina (EUA) normal-alta e a taxa de
filtração glomerular excessivamente elevada ou reduzida. Alguns genes candidatos têm sido
postulados como risco, mas sem um marcador definitivo.
O diagnóstico da ND é estabelecido pela presença de microalbuminúria (nefropatia
incipiente: EUA 20-199 µg/min) e macroalbuminúria (nefropatia clínica: EUA 200
µg/min).
À medida que progride a ND, aumenta mais a chance de o paciente morrer de
cardiopatia isquêmica. Quando o paciente evolui com perda de função renal, há necessidade
de terapia de substituição renal e, em diálise, a mortalidade dos pacientes com DM é muito
mais significativa do que nos não-diabéticos, com predomínio das causas cardiovasculares.
A progressão nos diferentes estágios da ND não é, no entanto, inexorável. Há
estudos de intervenção que demonstram a possibilidade de prevenção e de retardo na
evolução da ND principalmente com o uso dos inibidores da enzima conversora da
angiotensina, dos bloqueadores da angiotensina II e do tratamento intensivo da hipertensão
arterial. Os pacientes podem entrar em remissão, ou até mesmo regredir de estágio.
3
A importância da detecção precoce e da compreensão do curso clínico da ND tem
ganhado cada vez mais ênfase, porque a doença renal do DM é a principal causa de diálise
no mundo e está associada ao progressivo aumento de morte por causas cardiovasculares.
Descritores: fatores de risco, nefropatia diabética, diabete melito tipo 2, prevenção, curso
clínico
4
Abstract
Diabetic nephropathy (DN) is a frequent microvascular complication, which affects
about 40% of diabetes mellitus (DM) patients. DN is associated with an increased
cardiovascular death rate. DN is the major cause of kidney failure in developing as well as
in developed countries, and it is, therefore, associated with increased health system costs.
The more defined risk factors for the development and progression of DN are
sustained hyperglycemia and hypertension. Other putative risk factors are smoking,
dyslipidemia, the amount and source of protein in the diet, and the presence of diabetic
retinopathy. Some renal function parameters have also been studied as risk factors, such as
high normal urinary albumin excretion (UAE) and extremely high or low glomerular
filtration rate levels. Some candidate genes have been analyzed as risk factors, but without
any definitive marker.
DN diagnosis is established by the presence of microalbuminuria (incipient
nephropathy: UAE 20-199 µg/min), and macroalbuminuria (overt nephropathy: UAE 200
µg/min).
As DN progress, the chance of death from coronary artery disease increases. When
patients progress to kidney failure with uremia, renal replacement therapy becomes
necessary, and when on dialysis, diabetic patients have higher mortality rates in comparison
to non-diabetic ones, primarily from cardiovascular causes.
DN progression through stages is not always the rule. Intervention studies
demonstrate that DN prevention and remission are possible, mainly with angiotensin-
converting enzyme inhibitors, angiotensin-II receptor blockers, and intensive hypertension
treatment.
The importance of the earlier detection, and the understanding of clinical course of
DN, have progressively grown, because it is the leading cause of dialysis in the world, and is
5
associated with increased cardiovascular mortality.
Keywords: Risk factors, diabetic nephropathy, type 2 diabetes mellitus, prevention, clinical
course
6
INTRODUÇÃO
A nefropatia diabética (ND) é uma complicação crônica microvascular freqüente
que acomete cerca de 40% dos pacientes com diabete melito (DM) (1,2). Em indivíduos
brasileiros com DM tipo 2, observou-se uma incidência cumulativa em 10 anos de 31% (3),
semelhante à incidência de 34% em finlandeses (4) e de 35% em israelenses (5). No estudo
UKPDS (United Kingdom Prospective Diabetes Study), a prevalência após 10 anos de DM
foi de 31% (6). Na Ásia, a prevalência chega aos alarmantes índices de 58,6% (7).
Atualmente, a ND é a principal causa de insuficiência renal terminal (IRT),
variando de 25% no Reino Unido (8), 24% na Suécia (9), 40% nos Estados Unidos (10) até
51% no Canadá (11). No Rio Grande do Sul, no ano de 1996, 26% dos pacientes admitidos
em programas de diálise tinham DM (12). Como o DM tipo 2 representa aproximadamente
90% dos casos de DM, a maioria dos indivíduos admitidos em programas de diálise são
pacientes com DM tipo 2 (10).
Além de uma prevalência elevada, a ND associa-se com aumento na taxa de
mortalidade, principalmente por doença cardiovascular (13-15). No estudo UKPDS, os
pacientes com ND têm risco progressivo de morte cardiovascular à medida que progride a
ND (6). O aumento da mortalidade dos pacientes com IRT é significativo (16) e ainda mais
dramático em pacientes com DM tipo 2 (6,17). A sobrevida de pacientes brasileiros com
DM tipo 2 em 2 anos é de apenas 50%, e a principal causa de morte é a doença
cardiovascular (12).
A prevalência global do DM está aumentando em proporções epidêmicas, com
estimativas de aumentar o número total de pacientes com DM de 171 milhões em 2000 para
366 milhões em 2030 (18) e, por conseguinte, de aumentar a prevalência da ND. No Brasil,
7
o DM é uma doença de alta prevalência, atingindo níveis de 7,6% na década de 90 (19). Um
estudo recente de base populacional, realizando screening em 22,1 milhões de brasileiros
acima de 40 anos, em 5.301 municípios, apontou que 15,7% dos indivíduos testados
apresentaram screening positivo para DM (20). Dessa forma, é esperado que a prevalência
da ND aumente sensivelmente. Considerando que o custo do tratamento do DM aumenta em
65% na nefropatia incipiente, 195% na nefropatia clínica e 771% na IRT (21), é previsível
que os gastos com o tratamento na ND sejam ainda maiores nos próximos anos.
Portanto, a detecção precoce e a instituição de medidas preventivas eficazes
apresentam elevada relação custo-benefício, estando relacionadas à diminuição de
mortalidade (22).
DEFINIÇÃO
A ND é dividida, didaticamente, em estágios evolutivos (Tabela 1) conforme os
valores de excreção urinária de albumina (EUA) e de função renal. O primeiro estágio é a
nefropatia incipiente, que se caracteriza pela presença de microalbuminúria (EUA 20-199
µg/min). O segundo estágio é a nefropatia clínica, que é definida pela presença de
macroalbuminúria (EUA 200 µg/min) ou de proteinúria (valores de proteínas totais na
urina 500 mg/24 h) (23). Alguns pacientes podem progredir com perda de função renal
para o terceiro estágio, que se define pela IRT (24).
FATORES DE RISCO PARA NEFROPATIA DIABÉTICA
Vários fatores de risco genéticos e não-genéticos têm sido implicados no
desenvolvimento e na progressão da ND.
8
Fatores de Risco Genéticos
Existe uma predisposição genética para a ND, já que apenas 40% dos pacientes
com DM são afetados independentemente do controle metabólico (25). Há estudos
demonstrando uma agregação familiar da ND (26,27), o que também foi observado em
pacientes brasileiros com DM tipo 2 provenientes de uma população geneticamente
heterogênea (28). A influência de fatores genéticos no desenvolvimento da síndrome
metabólica, na qual existe associação de DM, hipertensão, dislipidemia e microalbuminúria,
também foi demonstrada (29).
Sexo masculino (5,30) e algumas etnias, como negros (31), hispânicos (32) e índios
americanos (33) têm maior chance de apresentar ND. A predisposição familiar para
hipertensão, nefropatia e doença cardiovascular também tem sido documentada (25,34).
Vários polimorfismos candidatos têm sido analisados em relação à predisposição
genética para ND. Alguns exemplos são os dos genes da enzima conversora da angiotensina
(ECA) (35-37), do ENPP-1 (PC-1: ecto-nucleotide pyrophosphatase/phosphodiesterase-1
ou plasma cell differentiation antigen) (38,39), da paraoxonase 2 (PON 2) (40), do PAI-1
(plasminogen activator inhibitor-1) (41), da aldose redutase (Z-2) (42), e do contratransporte
sódio-lítio (43). No entanto, nenhum marcador genético específico foi identificado de forma
definitiva (44).
Fatores de Risco Não-Genéticos
Os fatores de risco não-genéticos (tabela 2) são aqueles potencialmente
modificáveis com intervenção. A intervenção médica pode ter como objetivo a prevenção
primária (evitar a instalação da ND, ou seja, de normoalbuminúria para ND), a prevenção
secundária (de micro para macroalbuminúria) e a prevenção terciária (de macroalbuminúria
para IRT). Os fatores de risco que estão plenamente estabelecidos na literatura são a
9
hiperglicemia (3,4,30,45,46) e a hipertensão arterial sistêmica (5,46-48). Outros possíveis
fatores de risco são o fumo (49-51), a dislipidemia (5,30,52), os fatores dietéticos (23,53,54)
e a presença da retinopatia diabética (3,30,55). Alguns parâmetros de função renal têm sido
estudados como fatores de risco, tais como a EUA normal-alta (3,30) e a taxa de filtração
glomerular excessivamente elevada (56,57) ou diminuída (58,59).
O mau controle glicêmico tem-se mostrado como fator de risco para o
desenvolvimento da ND através de estudos observacionais tanto em pacientes com DM tipo
1 (60-62) quanto em pacientes com DM tipo 2 (3,4,30,45). Além disso, estudos
randomizados demonstraram que o tratamento da hiperglicemia evitou o surgimento da
microalbuminúria nos pacientes com DM tipo 1 (63,64) e tipo 2 (45,65,66). O DCCT
(Diabetes Control and Complications Trial) (67) e o UKPDS (45) estabeleceram a eficácia
do melhor controle metabólico na prevenção da ND e das outras complicações
microvasculares. Em análise observacional, o UKPDS demonstrou que qualquer redução da
glico-hemoglobina implica redução de risco de complicações, sendo o menor risco
observado quando a glico-hemoglobina encontra-se em níveis normais (<6%). A redução de
1% da glico-hemoglobina associa-se à diminuição significativa do risco para qualquer
desfecho relacionado ao DM em 21% e para complicações microvasculares em 37% (45).
Em relação à prevenção secundária no DM tipo 1, os estudos disponíveis envolvem menor
número de pacientes (63,67,68), mas o estudo EDIC (63) e o seu seguimento (69)
mostraram resultados promissores de que o tratamento intensivo da glicemia diminui a
chance de progressão de microalbuminúria para nefropatia clínica. Finalmente, ainda não
está totalmente esclarecido o papel do controle da glicemia na progressão da ND (prevenção
terciária), em fase de declínio da TFG. Estudos não-controlados de pacientes com DM tipo 1
sugerem que o controle da glicemia preserva a taxa de filtração glomerular (TFG) mesmo
em pacientes com nefropatia clínica e perda de função renal (70,71). Além disso, após 10
10
anos de transplante de pâncreas, a normalização da glicemia pode, inclusive, reverter as
lesões da ND (72).
Estudos prospectivos confirmam que a hipertensão arterial sistêmica (HAS) é um
fator de risco importante para o desenvolvimento da ND em pacientes com DM tipo 2 (5,55)
e também o fator de progressão mais relevante (73). Estudos de intervenção têm confirmado
os benefícios do tratamento da HAS. No UKPDS 38, que avaliou o controle rigoroso da
pressão arterial em pacientes com DM tipo 2, houve diminuição do surgimento das
complicações microvasculares (74). A análise observacional do UKPDS demonstra que,
para cada 10 mmHg de diminuição na pressão sistólica média, houve uma diminuição
significativa de 13% do risco de complicações microvasculares (48). O tratamento da HAS
tem se mostrado como um importante aliado na prevenção primária (74-76), secundária (77-
79) e terciária (77,80) da ND, principalmente com o uso dos inibidores da ECA e dos
bloqueadores do receptor da angiotensina II (BRA-II). O estudo BENEDICT, prospectivo,
multicêntrico, randomizado, com o maior número de pacientes com DM tipo 2
normoalbuminúricos já avaliado por 3 anos, comparou o uso de inibidor da ECA
(trandolapril) com bloqueador do canal de cálcio não-dihidropiridínico (verapamil), e
demonstrou que a progressão para microalbuminúria foi a metade no grupo que usou
inibidor da ECA em comparação à outra, comprovando o benefício dessa droga no arsenal
da prevenção primária da ND (76).
O fumo afeta tanto a estrutura como a função glomerular (50). Pacientes com DM
tipo 2 fumantes têm maior risco de apresentar microalbuminúria do que pacientes não-
fumantes e, além disso, a velocidade de progressão para IRT é 2 vezes mais rápida (49). Em
estudo da população com DM na Suécia, foi observado, em pacientes com DM tipo 1 e tipo
2, que o fumo relacionava-se a níveis mais elevados de glico-hemoglobina e de EUA de
forma independente (81). No entanto, em pacientes com DM tipo 1 com nefropatia clínica, o
11
fumo não foi um fator de progressão do declínio da TFG (82). Por outro lado, foi
recentemente demonstrado em pacientes com DM tipo 2 que a suspensão do fumo é efetiva
para evitar a progressão da ND (51).
Estudos longitudinais sugerem que o colesterol elevado seja um fator de risco para
o desenvolvimento da ND em pacientes com DM tipo 2 (5,30). Essa hipótese é confirmada
pelos achados do estudo EURODIAB, onde níveis de triglicerídeos, apolipoproteína B,
colesterol total e LDL elevam-se de maneira proporcional ao aumento da albuminúria (83).
Embora a relação causal entre dislipidemia e ND ainda não esteja completamente
esclarecida, algumas evidências apontam para um papel patogênico dos lipídeos no
desenvolvimento e na progressão da ND (84-86). A diminuição do colesterol pelo uso de
drogas associa-se à redução do declínio da TFG (85,87) e a uma tendência à diminuição da
proteinúria (85) em pacientes com DM. Além disso, o estudo HPS (87), que avaliou o uso
de 40 mg de sinvastatina em quase 6 mil pacientes com DM, demonstrou redução de 27% de
eventos cardiovasculares independentemente dos níveis basais de colesterol e também
preservou a função renal.
Dietas com maior ingestão de proteína oriunda de peixe (88) parecem estar
associadas à redução do risco de desenvolver ND em pacientes com DM tipo 1, enquanto
que dietas com com restrição protéica (89) estão associadas a menor risco de progressão.
Em pacientes com DM tipo 2 microalbuminúricos, demonstrou-se que uma dieta
normoprotéica à base de galinha reduziu a TFG, o colesterol total, o LDL, a apolipoproteína
B e a EUA (em 46%) em comparação à dieta hipoprotéica (53). Esses efeitos estão
possivelmente relacionados a menor quantidade de gordura saturada, em concordância com
os achados de outro estudo (54), e à maior proporção de ácidos graxos poliinsaturados
encontrados na carne de galinha em relação à carne vermelha. Já foi relatado o efeito
12
benéfico dos ácidos graxos poliinsaturados na função endotelial (90), e isso poderia ser
extensivo ao rim, diminuindo a EUA.
Estudos prospectivos envolvendo pacientes com DM tipo 2 têm demonstrado que a
presença de retinopatia no início do acompanhamento é preditiva de surgimento futuro de
ND (3,30,55). Dados recentes demonstram que a presença de retinopatia precede a
ocorrência da ND, sugerindo que a retina seja, possivelmente, mais suscetível aos fatores
mencionados ou necessite de menos tempo para sofrer suas influências (3). A retinopatia
seria mais um marcador de risco do que um fator de risco para a ND per se. Provavelmente,
essas duas complicações microvasculares compartilhem os mesmos fatores de risco, e talvez
a retinopatia seja detectada mais precocemente.
Níveis de EUA mais elevados, ainda que dentro da faixa de normoalbuminúria, têm
sido indicados como marcadores de risco para o desenvolvimento da ND. Estudos
prospectivos de pacientes com DM tipo 2 (3,4,30,91,92) e de pacientes com DM tipo 1
(62,68) sugerem que mesmo níveis “normais-altos” de EUA podem ser preditivos de
progressão ou refletir o processo patológico que leva à ND. Forsblom e colaboradores
demonstraram que a progressão para micro ou macroalbuminúria foi mais prevalente nos
pacientes com DM tipo 2 com EUA inicial superior à mediana (2,5 mg/24 h) (4). Um estudo
dinamarquês observou uma média geométrica basal de EUA significativamente maior nos
pacientes com DM tipo 2 que progrediram para micro ou macroalbuminúria quando
comparada à dos que permaneceram normoalbuminúricos (14 vs. 7 mg/24 h) (30). Em
estudo prospectivo de 10 anos, a análise multivariada demonstrou um risco 29 vezes maior
de desenvolvimento da ND em pacientes com DM tipo 2 portadores de EUA acima de 10
µg/min (3). Da mesma forma, em pacientes com DM tipo 1 seguidos por 7 anos, esse
mesmo valor de EUA aumentou o risco em 19 vezes (93). Além disso, um estudo realizado
em pacientes normoalbuminúricos com DM tipo 2 demonstrou que valores de EUA
13
5µg/min estão associados a valores mais altos da pressão arterial avaliado por MAPA
(medida ambulatorial da pressão arterial) (94). Portanto, níveis de EUA ainda que abaixo do
valor crítico de 20 µg/min já poderiam ser preditivos de doença renal futura e, portanto,
poderiam identificar os pacientes com risco de desenvolvimento de ND. Em pacientes com
nefropatia clínica, níveis de proteinúria acima de 2g/24h estão relacionados a um maior risco
de progressão para IRT (1,95), sendo que o risco dobra cada vez que duplica a proteinúria
basal (96). Esses dados sugerem que, seja na fase inicial do surgimento da ND, seja nas
etapas mais avançadas, à medida que aumenta a EUA, aumenta o risco de progressão para
estágios evolutivos subseqüentes de lesão renal. Isso confirma o papel direto da perda
urinária de albumina no mecanismo de promoção de dano renal através de indução de
mecanismos inflamatórios (97).
A prevalência de hiperfiltração glomerular, isto é, elevação supranormal da TFG
>137ml/min/1,73m
2
(98) é de 20% a 40% em pacientes com DM tipo 2 (99,100). Nesses
pacientes, os que se apresentam normoalbuminúricos com hiperfiltração glomerular têm
uma redução da TFG ao longo do tempo significativamente maior do que aqueles com TFG
normal (57) sem, no entanto, aumentar o risco de desenvolver ND durante 10 anos de
acompanhamento (3), em concordância com estudos realizados em índios Pima (33) e em
afro-americanos (101). A favor de um papel da hiperfiltração no desenvolvimento da ND,
está a observação de que os pacientes com rim único (um modelo de marcada hiperfiltração
glomerular) e DM tipo 2 apresentam mais freqüentemente microalbuminúria do que os não-
diabéticos (56). Portanto, o papel da hiperfiltração na patogênese da ND ainda não está
completamente esclarecido, mas parece ser um contribuinte entre os demais fatores. Por
outro lado, níveis de TFG <60 ml/min/1,73m
2
(24) têm sido associados a maior risco de
insuficiência renal em pacientes com DM tipo 2 mesmo na ausência de albuminúria em
14
estudos transversais (58,59), alertando para a possibilidade de que outras causas de lesão
parenquimatosa renal, além da glomerulopatia clássica avaliada por EUA, possam estar
associadas à progressão para IRT, principalmente quando o paciente com DM tipo 2 não
apresenta retinopatia diabética concomitante (59). Foi observado que cerca de 30% dos
pacientes com DM tipo 2 e insuficiência renal não apresentam albuminúria (58,59,102,103)
e que a redução da TFG nesses pacientes está associada com aumento de eventos
cardiovasculares (102).
DIAGNÓSTICO
A nefropatia incipiente é caracterizada por aumento da EUA em níveis de 20 a 199
µg/min, que se denomina microalbuminúria (tabela 1). Outros valores recomendados pela
Associação Americana de Diabetes (ADA) são de 30 a 299 mg em urina de 24 horas, ou de
30 a 299 mg/g de creatinina em amostra urinária (23). As diretrizes da National Kidney
Foundation (NKF) de 2003 estabelecem um ponto de corte sexo-específico da proporção
albumina/creatinina de 17 mg/g para homens e de 25 mg/g para mulheres (24). Uma forma
prática e simples de se realizar o rastreamento é medir a EUA em uma amostra de urina
coletada ao acaso, como, por exemplo, durante a consulta médica. Valores de albumina
entre 17 e 174 mg/l, em amostra casual de urina, apresentam sensibilidade de 100% e
especificidade de 80% para o diagnóstico de microalbuminúria (104).
A nefropatia clínica é definida por valores de EUA 200 µg/min
(macroalbuminúria) ou por proteinúria persistente superior a 500 mg/24 h (23).
A variação diária da EUA é de 40 a 50 % (105) e, por essa razão, o diagnóstico
necessita de confirmação com uma segunda medida, idealmente utilizando-se a urina com
tempo marcado (23). Há inúmeros fatores (tabela 3) que interferem na medida da EUA e
15
devem ser, portanto, considerados quando o exame for solicitado (106).
Os pontos de corte que tradicionalmente definem os estágios da ND foram
determinados a partir de estudos prospectivos da década de 80, que definiram risco
aumentado de progressão acima desses limites de albuminúria (2). No entanto, esses pontos
de corte possivelmente venham a sofrer uma diminuição, já que tem sido observada
associação de níveis “normais-altos” com risco de progressão para ND e mortalidade
(3,4,30,92,94). Uma possível explicação para justificar que níveis relativamente baixos de
EUA venham a trazer risco renal e cardiovascular, são os estudos recentes que têm relatado
a presença de uma fração não-imunorreativa detectada por HPLC (high performance liquid
chromatography) da albumina intacta total (que é composta pelas frações imunorreativa
mais não-imunorreativa) (107,108). Esses estudos sugerem, inclusive, que esse método
poderia detectar mais precocemente a nefropatia incipiente do que os métodos
convencionais (107-109). Talvez esses dados também expliquem parcialmente que
alterações histopalotógicas não se relacionem precisamente aos valores de EUA nos
pacientes com DM tipo 2 (110). Os métodos convencionais de imunoensaio
[imunonefelometria (IN), imunoturbidimetria (IT), radioimunoensaio (RIA)] detectam
apenas a albumina intacta total imunorreativa. Esses são os métodos que estão bem
estabelecidos na literatura para avaliação da albuminúria (23) com excelente correlação
entre si (111). Além disso, os estudos observacionais e de intervenção existentes em relação
à ND foram embasados nesses métodos. Ainda não é conhecido o significado da fração não-
imunorreativa da albumina intacta total (109,112), mas pode envolver alterações
conformacionais da albumina devido a reações bioquímicas durante a passagem através dos
túbulos renais (112).
A EUA ainda é o método mais precoce para detectar a presença da ND, porém o
papel da microalbuminúria como fator preditivo isolado da ND tem sido questionado, com a
16
necessidade da busca de marcadores complementares (110). Isso se deve às constatações de
que apenas um terço dos pacientes microalbuminúricos de fato progridem para estágios mais
avançados da ND (110), e que alguns regridem, inclusive, para normoalbuminúria (91,113).
No entanto, não há, até o presente momento, um marcador de risco melhor para ND do que a
microalbuminúria, que parece refletir a lesão endotelial a nível renal (22). Além disso, a
microalbuminúria é um marcador de risco independente para cardiopatia isquêmica e para
aumento da mortalidade tanto em pacientes com DM (114,115) como sem DM (116-118).
No entanto, uma proporção significativa de pacientes com DM tipo 2 já mostra
declínio da função renal (23% com TFG <60 ml/min/1,73 m
2
) mesmo na presença de
normoalbuminúria (58). A redução da TFG nesses pacientes já se associa ao aumento de
eventos cardiovasculares (102). Por conseguinte, a EUA não deve ser o único método de
avaliação das alterações renais no DM. A TFG é a melhor medida da função renal e deve ser
avaliada nesses pacientes (24). O NKF estipula que a creatinina sérica não deva ser usada de
forma isolada para avaliar a função renal, visto que é afetada por outros fatores que não a
TFG, tais como formação e secreção de creatinina e excreção extra-renal, mas, sim, inserida
em equação incluindo idade, sexo, etnia e índice de massa corporal (24). A avaliação da
TFG é realizada por meio de equações de estimativa, como a fórmula de Cockroft-Gault em
ml/min = [(140-idade) × peso/ 72 × Creatinina sérica] × 0.85 se mulher, e a equação da
MDRD (Modification of Diet in Renal Disease) em ml/min/1,73 m
2
= 186 × (Creatinina
sérica)
-1,154
× (idade)
-0,203
× (0,742 se mulher) × (1,210 se afro-americano) (24). A fórmula de
Cockroft-Gault no DM superestima (119,120), e a equação da MDRD, por sua vez,
subestima a TFG (24). Apesar dessas limitações, elas são aceitas como métodos de
monitorização da TFG (24,121) que, por sua vez, é usada pela NKF (24) para classificar os
estágios da doença renal crônica (DRC). A DRC é definida por lesão renal (avaliada pela
17
proteinúria persistente) ou pela diminuição da função renal por mais de 3 meses (avaliada
pela TFG), e está classificada em 5 estágios: estágio 1 - lesão renal com TFG normal ou
aumentada ( 90 ml/min/1,73 m
2
), estágio 2 - lesão renal com leve diminuição da TFG (60-
90 ml/min/1,73 m
2
), estágio 3 - moderada diminuição da TFG (30-59 ml/min/1,73 m
2
),
estágio 4 - grave diminuição da TFG (15-29 ml/min/1,73 m
2
) e estágio 5 - IRT (<15
ml/min/1,73 m
2
ou diálise) (24).
CURSO CLÍNICO
A história natural representa o acompanhamento de uma doença sem intervenção
terapêutica, o que não é mais viável na ND, já que estudos de intervenção na glicemia
(65,66) e na hipertensão (48,74-80,122) claramente demonstraram redução das
complicações microvasculares nos pacientes com DM tipo 1 e tipo 2 com os tratamentos
empregados. Portanto, será descrito o curso clínico da ND, que é definido pela evolução de
uma doença com intervenção médica.
Estágio de Nefropatia Incipiente = Microalbuminúria
No maior estudo já realizado em pacientes com DM tipo 2, o UKPDS (6),
envolvendo mais de 5 mil pacientes do Reino Unido, a incidência de microalbuminuria foi
de 2% ao ano, e a prevalência após 10 anos de diagnóstico do DM foi de 25%. Em
populações européias, a prevalência de microalbuminúria varia de 13% a 26% (123) e, em
indivíduos brasileiros, chega a 24% (124). A prevalência de microalbuminúria na população
geral é de 7 a 12% (116,125), cerca da metade da prevalência descrita para os pacientes com
DM (6,123). No entanto, a prevalência da microalbuminúria no momento do diagnóstico do
DM é de 7,2% no estudo UKPDS (6), semelhante à da população geral.
Os pacientes com DM tipo 2 microalbuminúricos estão sob risco de desenvolver
18
macroalbuminúria ao redor de 2,8% ao ano (6). A presença de microalbuminúria prediz o
desenvolvimento de proteinúria franca em cerca de 20% a 50% dos pacientes com DM tipo
2 (110). Em estudo de base populacional italiano de 7 anos, a presença de microalbuminúria
estava associada ao aumento do risco de progressão para nefropatia clínica de 42% quando
comparado ao da normoalbuminúria (126).
A função renal, avaliada pela TFG, usualmente mantém-se estável na fase de
nefropatia incipiente, com um declínio ao redor de 0,1 ml/min/mês (33,127,128). Entretanto,
em estudo prospectivo, os pacientes que desenvolveram microalbuminúria apresentaram um
declínio marcado da TFG (-0,39 ml/min/mês) (129) em relação aos normoalbuminúricos e
aos indivíduos não-diabéticos (Figura 1).
A microalbuminúria é um fator de risco independente para doença cardiovascular
tanto para pacientes com DM tipo 2 (15,14,130,131) e tipo 1 (132) como para indivíduos
não-diabéticos (116,117). Inclusive, em indivíduos não-diabéticos hipertensos, à medida que
aumenta a EUA (mesmo para valores considerados normais), aumenta o risco cardiovascular
(133,134).
O aumento da mortalidade nos pacientes é de 3% ao ano (6). Isso pode ser
explicado pela associação da microalbuminúria com níveis pressóricos mais elevados e
alterações da função endotelial
e dos fatores de coagulação (115). Há também,
freqüentemente, alterações dos lipídios séricos, como aumento do LDL colesterol, da
apolipoproteína B e dos triglicerídeos e diminuição do HDL2 colesterol (135). As alterações
da função endotelial e hemostática caracterizam-se por aumento do fator de von Willebrand,
da atividade do PAI-1 e do fibrinogênio plasmático (136,137).
O mecanismo fisiopatológico que relaciona a microalbuminúria com a doença
cardiovascular ainda não é conhecido. Tem sido sugerido que o aumento da EUA, além de
19
refletir um estado de disfunção endotelial, possa estar associado à inflamação crônica de
baixo grau (138,139).
Os marcadores de disfunção endotelial (fator de von Willebrand, PAI-1, selectina-E
solúvel, molécula de adesão vascular celular solúvel-1, fator de crescimento vascular
endotelial, endotelina-1) (138,140,141) e os marcadores inflamatórios (proteína-C-reativa e
fibrinogênio) (138,142) são fatores implicados na patogênese da aterosclerose (143), têm
sido relacionados ao aumento da EUA (138) e são considerados potenciais mediadores da
relação entre microalbuminúria e doença macrovascular.
Stehouwer e colegas descreveram os dados de uma coorte constituída por 328
indivíduos com DM tipo 2, cujo objetivo foi avaliar se disfunção endotelial e inflamação
crônica poderiam explicar a associação entre microalbuminúria e mortalidade (138). Após
um período médio de 9 anos, a taxa de mortalidade era maior nos indivíduos micro- (OR
1,78) e macroalbuminúricos (OR 2,86) no início do estudo, em comparação aos
normoalbuminúricos. A mortalidade também era maior nos pacientes que apresentavam
níveis séricos mais altos de molécula de adesão vascular celular solúvel-1 e de proteína-C-
reativa. Além disso, os marcadores de disfunção endotelial e de inflamação estavam
envolvidos no aumento da EUA. Esse estudo sugere que a disfunção endotelial e a atividade
inflamatória estão envolvidas na patogênese da microalbuminúria e que esses fatores
poderiam explicar em parte a associação entre microalbuminúria e risco cardiovascular.
O achado de microalbuminúria parece, portanto, representar um estado
generalizado de disfunção endotelial do rim (139). Esta, por sua vez, pode ser a causa da
aterosclerose acelerada e, por conseguinte, do aumento do risco cardiovascular e renal
(22,144). Um estudo que avaliou a espessura da íntima das artérias carótidas comuns por
ultra-sonografia, em pacientes com DM tipo 2, demonstrou que os indivíduos com
20
microalbuminúria apresentavam aumento da espessura da íntima, sendo que a associação da
albuminúria era independente de outros fatores de risco cardiovasculares (145), reforçando a
relação entre microalbuminúria e aterosclerose.
Outra possível explicação para o aumento do risco cardiovascular é a presença da
síndrome metabólica, cujos critérios, de acordo com a Organização Mundial da Saúde,
incluem, além da presença de DM ou tolerância diminuída à glicose, mais dois dos
seguintes: HAS, obesidade, dislipidemia e microalbuminúria. A prevalência dessa síndrome
chega a mais de 75% em italianos (146) e de 85% em brasileiros com DM tipo 2 (147) e está
associada com aumento da prevalência de complicações micro e macrovasculares no DM
tipo 2 (147). Em um estudo brasileiro de base populacional da síndrome metabólica,
realizado em indivíduos de origem japonesa, observou-se que a prevalência de
microalbuminúria era maior quando os pacientes apresentavam associação de HAS e
tolerância diminuída aos carboidratos (148).
No entanto, em relação à evolução da ND, os pacientes com microalbuminúria não
progridem necessariamente para macroalbuminúria. Alguns estudos da década de 90, apesar
do pequeno número de pacientes, já demonstravam que parte dos pacientes permanecia no
estágio de microalbuminúria e que outros regrediam para normoalbuminúria (9% a 15% dos
pacientes) (91,113).
Atualmente, o curso clínico da microalbuminúria sofre as influências dos efeitos
favoráveis das intervenções disponíveis. Um estudo de intervenção de 2 anos com BRA-II
(79) mostrou que 34% dos pacientes regrediram de micro para normoalbuminúria. O uso do
inibidor da ECA, comparado a outras drogas em pacientes com (149) ou sem (150) HAS,
também mostrou regressão dos níveis de EUA em pacientes microalbuminúricos.
Um estudo realizado em pacientes com DM tipo 1 (151) demonstrou a regressão de
21
micro para normoalbuminúria em cerca de 40% dos pacientes em 6 anos de
acompanhamento, sendo que 45% dos pacientes permaneceram microalbuminúricos,
enquanto que 15% progrediram para macroalbuminúria. Em estudo prospectivo de 7,8 anos
em pacientes com DM tipo 2, houve remissão para normoalbuminúria em 30% dos
pacientes, sendo que os fatores preditores da remissão foram o melhor controle glicêmico e
pressórico. Além disso, os pacientes que entraram em remissão tiveram diminuição do
declínio da TFG (152).
Outras drogas têm mostrado efeito na redução da microalbuminúria, como a
eplerenona (bloqueador seletivo da aldosterona) (153,154), a indapamida (diurético) (155), a
rosiglitazona (tiazolidinediona) (156) e a sulodexida (glicosaminoglicano) (157).
Portanto, os pacientes microalbuminúricos têm a mesma chance de progredir para
nefropatia clínica ou morte cardiovascular, em torno de 3% ao ano. Contudo, cerca de um
terço desses pacientes ainda podem regredir para normoalbuminúria, principalmente com o
uso de drogas que bloqueiam o sistema renina-angiotensina, que, no caso do uso do inibidor
da ECA, está associado inclusive à diminuição de morte cardiovascular (158).
Estágio de Nefropatia Clínica = Macroalbuminúria ou Proteinúria
A prevalência de macroalbuminúria em pacientes com DM tipo 2 varia de 5% a 20%
(6,159), sendo maior nos afro-americanos, asiáticos e índios americanos do que nos
caucasianos (10,160). No Rio Grande do Sul, um estudo multicêntrico, envolvendo 927
pacientes com DM tipo 2, observou uma prevalência de macroalbuminúria de 12% (124).
Uma vez estabelecida a proteinúria, há uma perda progressiva de função renal, de
modo que 10% dos pacientes evoluem para IRT em 10 anos (161). Em estudo prospectivo
observacional de população caucasiana seguida por uma média de 6,5 anos, 7% dos
pacientes progrediram para IRT e outros 28% dobraram o valor da creatinina inicial (162).
22
A incidência anual de progressão de macroalbuminúria para IRT ou de duplicação da
creatinina sérica é de 2,3% ao ano, mas a chance de morte por ano desses pacientes é duas
vezes maior (6). Outro estudo de base populacional também encontrou significativo aumento
da mortalidade nos pacientes com macroalbuminúria acompanhados por 12 anos, tanto por
causas cardiovasculares como por todas as outras causas (159). Esse aumento significativo da
mortalidade pode ser devido à piora dos fatores de risco pré-existentes (163).
Estudos demonstram que quanto mais elevada a proteinúria de pacientes com DM
tipo 2, (3g/g de creatinina) maior é o risco de doença cardiovascular e de desenvolver
insuficiência cardíaca (14). Para níveis acima de 2 g/24 h, maior é a chance de progressão
para IRT (95).
Nos pacientes com DM tipo 2, o declínio da TFG é heterogêneo, sendo que o
declínio da função renal pode variar de 0,43 ml/min/mês (162) até 1,8 ml/min/mês (164)
(Figura 2), podendo, inclusive, manter-se estável por longos períodos (165). Os pacientes
que apresentam um declínio mais acentuado da função renal geralmente são os pacientes
com glomerulopatia diabética mais grave e com pior controle metabólico (127). Um estudo
observacional de pacientes caucasianos com DM tipo 2 de 6,5 anos de acompanhamento
demonstrou que os fatores associados ao acentuado declínio da TFG foram médias mais
elevadas ao longo do tempo de EUA, de pressão arterial sistólica e de HbA1c, e mais baixos
de hemoglobina, além da presença de retinopatia diabética e do hábito do tabagismo (162).
A TFG inicialmente mais baixa prediz risco de progressão para IRT (166) e para
doença cardiovascular (102) em pacientes com DM tipo 2, além de aumentar o risco de
morte tanto em pacientes com DM tipo 2 (6) como também na população geral (16). Nessa,
houve um progressivo aumento da representatividade de pacientes com DM à medida que
caía a TFG.
23
No entanto, também para os pacientes com macroalbuminúria, a progressão para
IRT não é inexorável. Parving e colaboradores já haviam demonstrado que o tratamento
agressivo da hipertensão diminuía o declínio da TFG na ND (167,168). Estudos usando
BRA-II, como o irbesartan (80) e o losartan (169), diminuíram a progressão para IRT em 23
a 28%, respectivamente. Um estudo multicêntrico (96) avaliou pacientes com DM tipo 2,
HAS e proteinúria de pelo menos 0,9 g/24 h, tratados por 4 anos com o uso de irbesartan,
amlodipina ou placebo. Esses pacientes foram mantidos com níveis semelhantes de pressão
arterial. Foi observado que o risco de incidência de novos casos de IRT foi reduzido à
metade (36%) no grupo que usou irbesartan, que também apresentou os maiores benefícios
na proteinúria. Esse estudo, além de demonstrar as vantagens do bloqueio do sistema renina-
angiotensina para retardar a progressão da DRC, também salienta a importância do
tratamento da proteinúria como meta terapêutica para evitar a progressão da ND.
Em estudo de coorte envolvendo pacientes com DM tipo 1 proteinúricos (mediana
de albumina >2.500 mg/24 h), seguidos por 3 anos, observou-se que 22% dos pacientes
entraram em remissão (albuminúria < 600 mg/24 h por pelo menos 1 ano). Esses pacientes
eram em sua maioria mulheres, e foi observado maior redução da pressão arterial média e do
colesterol e menor declínio da TFG nos pacientes que obtiveram remissão, o que caracteriza
um perfil cardiovascular melhor (170). Com o mesmo grupo de pacientes seguidos por mais
3 anos, demonstrou-se que somente 25% dos pacientes que entraram em remissão,
comparados a 74% dos que não entraram em remissão, evoluíram para IRT ou morte. O
grupo que obteve redução de albuminúria tinha menor chance de progredir para diálise,
transplante renal ou morte (171).
Estágio de Uremia = Insuficiência Renal Terminal
A progressiva perda de função renal leva à uremia. Os pacientes com DM que
24
iniciam terapia de substituição renal têm alta prevalência de doença cardiovascular e de
HAS (34). O método de diálise mais freqüentemente utilizado para pacientes com DM é a
hemodiálise, seguido do transplante renal e do diálise peritoneal ambulatorial contínua
(10,172,173). Nesse último método, a proporção de pacientes com DM é significativamente
menor no Rio Grande do Sul (172). A sobrevida em 5 anos de pacientes com DM em
diálise é de 20% a 40%, consideravelmente mais baixa em pacientes com DM em
comparação a indivíduos não-diabéticos (Figura 3) em vários países (12,173). Uma vez em
hemodiálise, a taxa de mortalidade é muito alta, atingindo, no terceiro ano, 55% em
população do Canadá (11) e 72% no Rio Grande do Sul (12). O aumento da mortalidade
está associado principalmente a alterações cardiovasculares relacionadas à aterosclerose
(cardiopatia isquêmica) e à disfunção ventricular (cardiomiopatia). Segundo o UKPDS, os
pacientes com aumento da creatinina plasmática ou em terapia de substituição renal estão
sob chance de 19% ao ano de morrer, principalmente de doença cardiovascular. O tempo
médio que um paciente permanece com elevação de creatinina até finalmente seguir para
diálise é de 2,5 anos (6).
Dados do United States Renal Data System (10) revelam que a prevalência de
pacientes com DM que evoluem para IRT aumentou 68% desde 1992. Para os pacientes
entre 20 e 44 anos, a prevalência segue estável nos últimos anos, mas triplicou para
pacientes com mais de 75 anos. Apesar de os índices de IRT, devido ao DM, terem
estabilizado nos últimos anos (10), esse índice ainda é duas vezes maior do que as metas
projetadas de 78 casos por milhão da população para o ano de 2010 nos Estados Unidos.
Considerando que a perspectiva é de dobrar o número de pacientes com DM tipo 2 até o
ano de 2030 (18), devido ao aumento da sobrevida geral dos pacientes e da epidemia de
obesidade, a previsão é de que a ND será ainda mais onerosa ao sistema de saúde pública
em todo o mundo. Os dados atuais do United States Renal Data System (10) já mostram o
25
progressivo aumento do índice de massa corporal (IMC em kg/m
2
) que vem ocorrendo
desde 1996, sendo que a média já é de 25 kg/m
2
. A média de IMC dos pacientes com DM
tipo 2 no Rio Grande do Sul é de 24 kg/m
2
(12).
Entre os pacientes com DM tipo 2, 80% deles são também hipertensos (34).
Quando os pacientes com IRT, além do DM, têm HAS, eles têm o dobro de chance de
complicações cardiovasculares do que o paciente com uma condição isolada (174). E já que
a HAS é também muito comum nos pacientes com DM (95% dos pacientes com DM tipo 2
em Porto Alegre) (12) e que é um fator de risco independente para doença cardiovascular, é
uma condição que deve ser tratada agressivamente em qualquer paciente com DM,
independente da presença ou não de ND (174,175).
CONSIDERAÇÕES FINAIS
A nefropatia diabética (ND) é diagnosticada pela medida da excreção urinária de
albumina (EUA) por métodos de imunoensaio que detectam a porção imunorreativa da
albumina total. A medida da EUA classifica a ND em nefropatia incipiente ou
microalbuminúria (EUA 20-199 µg/min) e nefropatia clínica ou macroalbuminúria (EUA
200 µg/min). No entanto, diversas evidências apontam para a necessidade de redução do
atual ponto de corte da EUA de 20 µg/min, a partir do qual se define doença, visto que
valores em torno de 5 a 10 µg/min já têm sido associados com risco de progressão para ND
e para doença cardiovascular. Esses valores mais baixos estariam diretamente relacionados à
detecção e à intervenção mais precoces nos pacientes com diabete melito (DM).
Adicionalmente, a introdução recente de novos métodos laboratoriais de detecção
de albumina urinária intacta total (imunorreativa mais não-imunorreativa) parece ser
promissora. Esses métodos poderiam identificar mais precocemente os indivíduos sob maior
26
risco de desenvolver ND.
Outro dado importante é a recomendação da avaliação da taxa de filtração
glomerular (TFG) no DM, além da EUA, visto que uma significativa parcela desses
pacientes pode apresentar redução da TFG mesmo na presença de valores normais de EUA.
Nesses casos, a própria redução da TFG já está associada à evolução desfavorável com
maior risco de insuficiência renal e de morte cardiovascular.
Portanto, a busca de marcadores de risco de instalação e de progressão da ND é
plenamente justificada para identificar os pacientes mais suscetíveis. O uso dos marcadores
disponíveis e a pesquisa de outros elementos são extremamente relevantes para o
diagnóstico mais precoce. Isso pode contribuir para aumentar o desempenho das
intervenções terapêuticas nos pacientes com DM.
27
REFERÊNCIAS BIBLIOGRÁFICAS
1. Ruggenenti P, Remuzzi G. Nephropathy of type 2 diabetes mellitus. J Am Soc Nephrol
1998;9:2157-69.
2. Gross JL, Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic
Nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005;28:164-76.
3. Murussi M, Baglio P, Gross JL, Silveiro SP. Risk factors for microalbuminuria and
macroalbuminuria in type 2 diabetic patients. Diabetes Care 2002;25:1101-3.
4. Forsblom CM, Groop PH, Ekstrand A, Tötterman KJ, Sane T, Saloranta C, et al. Predictors of
progression from normoalbuminuria to microalbuminuria in NIDDM. Diabetes Care
1998;21:1932-8.
5. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R. Main risk factors for nephropathy in
type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and
hyperglycemia. Arch Intern Med 1998;158:998-1004.
6. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and
progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study
(UKPDS 64). Kidney Int 2003;63:225-32.
7. Wu AY, Kong NC, de Leon FA, Pan CY, Tai TY, Yeung VT, et al. Weir MR; for the MAPS
Investigators: An alarmingly high prevalence of diabetic nephropathy in Asian type 2 diabetic
patients: the Microalbuminuria Prevalence (MAP) Study. Diabetologia 2005; 48:17-26.
8. Ansell D, Feest T. The Second Annual Report, in the UK Renal Registry. Bristol, The UK Renal
Registry. Southmead Hospital, 1999.
9. Schon S, Ekberg H, Wikstrom B, Oden A, Ahlmen J. Renal replacement therapy in Sweden.
Scand J Urol Nephrol 2004; 38:332-9.
10. US Renal Data System. Annual data report. Am J Kidney Dis 2005; 45: S69-S80.
11. Lok CE, Oliver MJ, Rothwell DM, Hux JE. The growing volume of diabetes-related dialysis: a
population based study. Nephrol Dial Transplant 2004;19:3098-103.
28
12. Bruno RM, Gross JL: Prognostic factors in Brazilian diabetic patients starting dialysis: a 3.6-year
follow-up study. J Diabetes Complications 2000;14:226-71.
13. Moloney A, Tunbridge WM, Ireland JT, Watkins PJ. Mortality from diabetic nephropathy in the
United Kingdom. Diabetologia 1983;25:26-30.
14. De Zeeuw D, Remuzzzi G, Parving HH, Zhang Z, Shahinfar S, Snapinn S, et al. Albuminuria, a
therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy.
Circulation 2004;110: 921-7.
15. Anavekar NS, Gans DJ, Berl T, Rohde RD, Cooper W, Bhaumik A, et al. Predictors of
cardiovascular events in patients with type 2 diabetic nephropathy and hypertension: A case for
albuminuria. Kidney Int 2004;66(Suppl 92):S50-S55.
16. Go AS, Cherlow GM, Fan D, McClloch CE, Hsu C. Chronic kidney disease and the risks of
death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-305.
17. Chantrel F, Enache I, Bouiller M, Kolb I, Kunz K, Petitjean P, et al. Abysmal prognosis of
patients with type 2 diabetes entering dialysis. Nephrol Dial Transplant 1999;14:129-36.
18. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes. Diabetes Care
2004;27:1047-53.
19. Malerbi DA, Franco LJ. Multicenter study of the prevalence of diabetes mellitus and impaired
glucose tolerance in the urban Brazilian population aged 30-69 yr. The Brazilian Cooperative
Group on the Study of Diabetes Prevalence. Diabetes Care 1992;15:1509-16.
20. Nucci LB, Toscano CM, Maia AL, Fonseca CD, Brito MM, Duncan BB, et al. Brazilian National
Campaign for Diabetes Mellitus Detection Working Group. Rev Panam Salud Publica
2004;16:320-7.
21. Brown JB, Pedula KL, Bakst AW. The progressive costs of complications in type 2 diabetes
mellitus. Arch Intern Med 1999;159:1873-80.
22. De Zeeuw D. Albuminuria, not only a cardiovascular/renal risk marker, but also a target for
treatment? Kidney Int 2004;66(Suppl 92):S2-S6.
23. American Diabetes Association. Diabetic Nephropathy (Position Statement). Diabetes Care
2004;27 (Suppl 1):S79-S83.
29
24. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation
Practice Guidelines for Chronic Kidney Disease: evaluation, classification, and stratification. Ann
Intern Med 2003;139:137-47.
25. Bakris GL. The evolution of treatment guidelines for diabetic nephropathy. Postgrad Med
2003;113:35-50.
26. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease.
Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 1989;320:1161-5.
27. Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal
disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes
mellitus. Diabetologia 1990;33:438-43.
28. Canani LH, Gershman F, Gross JL. Familial clustering of diabetic nephropathy in Brazilian type
2 diabetic patients. Diabetes 1999; 48:909-13.
29. Liese AD, Mayer-Davs EJ, Tyroler HÁ, Davis CE, Keil U, Schmidt MI, et al. Familial components
of the multiple metabolic syndrome: The ARIC study. Diabetologia 1997; 40:963-70.
30. Gall MA, Hougaard P, Borch-Johnsen K, Parving HH. Risk factors for development of incipient
and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus:
prospective, observational study. BMJ 1997;314:783-8.
31. Krop JS, Coresh J, Chambless LE, Shahar E, Watson RL, Szklo M, et al. A community-based
study of explanatory factors for the excess risk for early renal function decline in blacks vs whites
with diabetes: the Atherosclerosis Risk in Communities Study. Arch Intern Med 1997;159:1777-
83.
32. Earle KK, Porter KA, Ostberg J, Yudkin JS. Variation in the progression of diabetic nephropathy
according to racial origin. Nephrol Dial Transplant 2001;16:286-90.
33. Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE, et al. The Diabetic Renal
Disease Study Group: development and progression of renal disease in Pima Indians with non-
insulin-dependent diabetes mellitus. N Engl J Med 1996;335:1636-42.
34. Deferrari G, Ravera M, Berruti V. Treatment of diabetic nephropathy in its early stages.
Diabetes Metab Res Rev 2003;19:101-14.
30
35. Fujisawa T, Ikegami H, Kawaguchi Y, Hamada Y, Ueda H, Shintani M, et al. Meta-analysis of
association of insertion/deletion polymorphism of angiotensin I – converting enzyme gene with
diabetic nephropathy and retinopathy. Diabetologia 1998;41:47-53.
36. Hadjadj S, Belloum R, Bouhanick B, Gallois Y, Guilloteau G, Chatellier G, et al: Prognostic value
of angiotensin-I converting enzyme I/D polymorphism for nephropathy in type 1 diabetes
mellitus: a prospective study. J Am Soc Nephrol 2001;12:541-9.
37. Yoshida H, Kuriyama S, Atsumi Y, Tomonari H, Mitarai T, Hamaguchi A, et al. Angiotensin I
converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus. Kidney Int
1996;50:657-64.
38. De Cosmo S, Argiolas A, Miscio G, Thomas S, Piras GP, Trevisan R, et al. A PC-1 amino acid
variant (K121Q) is associated with faster progression of renal disease in patients with type 1
diabetes and albuminuria. Diabetes 2000; 49:521-4.
39. Murussi M, Coester A, Eichler P, Maia AL, Gross JL, Silveiro SP. The K121Q variant of the
human PC-1 gene is associated with the development of arterial hypertension in type 2 diabetic
patients. (Abstract) Diabetes 2002;51(Suppl 2):A160.
40. Pinizzotto M, Castillo E, Fiaux M, Temler E, Gaillard RC, Ruiz J. Paraoxonase 2 polymorphisms
are associated with nephropathy in type II diabetes. Diabetologia 2001;44:104-7.
41. Wong TY, Poon P, Szeto CC, Chan JC, Li PK. Association of plasminogen activator inhibitor-1
4G/4G genotype and type 2 diabetic nephropathy in Chinese patients. Kidney Int 2001;57:632-
8.
42. Shah VO, Scavini M, Nikolic J, Sun Y, Vai S, Griffith JK et al. Z-2 microsatellite allele is linked to
increased expression of the aldose reductase gene in diabetic nephropathy. J Clin Endocrinol
Metab 1998;83:2886-91.
43. Gall MA, Rossing P, Jensen JS, Funder J, Parving HH. Red cell Na+/Li+ countertransport in
non-insulin-dependent diabetes with diabetic nephropathy. Kidney Int 1991;39:135-40.
44. Krolewski AS. Genetics of diabetic nephropathy. Evidence for major and minor gene effects.
Kidney Int 1999;55:1582-96.
31
45. UK Prospective Diabetes Study (UKPDS 35): Association of glycaemia with macrovascular and
microvascular complications of type 2 diabetes: prospective observational study. BMJ
2000;321:405-12.
46. Alaveras AEG, Thomas SM, Sagriotis A, Viberti GC. Promoters of progression of diabetic
nephropathy: the relative roles of blood glucose and blood pressure control. Nephrol Dial
Transplant 1997;12(Suppl 2):S71-S74.
47. Nelson RG, Knowler WC, Pettitt DJ, Hanson RL, Bennett PH. Incidence and determinants of
elevated urinary albumin excretion in Pima Indians with NIDDM. Diabetes Care 1995;18:182-7.
48. UK Prospective Diabetes Study (UKPDS 36): Association of systolic blood pressure with
macrovascular and microvascular complications of type 2 diabetes: prospective observational
study. BMJ 2001;321:412-9.
49. Biesenbach G, Janko O, Zazgorink J. Similar rate of progression in the predialysis phase in type
I and type II diabetes mellitus. Nephrol Dial Transplant 1994;9:1097-102.
50. Baggio B, Budakovic A, Dalla Vestra M, Saller A, Bruseghin M, Fioretto P. Effects of cigarette
smoking on glomerular structure and function in type 2 diabetic patients. J Am Soc Nephrol
2002;13:2730-6.
51. Chuahirun T, Simoni J, Hudson C, Seipel T, Khanna A, Harrist RB, et al. Cigarette smoking
exacerbates and its cessation ameliorates renal injury in type 2 diabetes. Am J Med Sci
2004;327:57-67.
52. Appel GB, Radhakrishnan J, Avram MM, DeFronzo RA, Escobar-Jimenez F, Campos MM, et al.
Analysis of metabolic parameters as predictors of risk in RENAAL study. Diabetes Care
2003;26:1402-7.
53. Gross JL, Zelmanovitz T, Moulin CC, De Mello V, Perassolo M, Leitão C, et al. Effect of a
chicken-based diet on renal function and lipid profile in patients with type 2 diabetes: a
randomized cross-over trial. Diabetes Care 2002;25:645-51.
54. Riley MD, Dweyr T. Microalbuminuria is positively associated with usual dietary saturated fat
intake and negatively associated with usual dietary protein intake in people with insulin-
dependent diabetes mellitus. Am J Clin Nutr 1998;67:50-7.
32
55. Park JY, Kim HK, Chung YE, Kim SW, Hong SK, Lee KU. Incidence and determinants of
microalbuminuria in Koreans with type 2 diabetes. Diabetes Care 1998;21:530-4.
56. Silveiro SP, Costa LA, Beck MO, Gross JL. Urinary albumin excretion rate and glomerular
filtration rate in single-kidney type 2 diabetes mellitus patients. Diabetes Care 1998;21:1521-4.
57. Silveiro SP, Friedman R, Azevedo MJ, Canani LH, Gross JL. Five-year prospective study of
glomerular filtration rate and albumin excretion rate in normofiltering and hyperfiltering
normoalbuminuric NIDDM patients. Diabetes Care 1996;19:171
58. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G.
Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004;27:195-200.
59. Kramer HJ, Nguyen QD, Curhan G, Ilsu C. Renal insufficiency in the absence of albuminuria and
retinopathy among adults with type 2 diabetes mellitus. JAMA 2003;289:3273-7.
60. Microalbuminuria Collaborative Study Group, United Kingdom. Risk factors for development of
microalbuminuria in patients with insulin dependent diabetic patients: a cohort study. BMJ
1993;306:1235-9.
61. Krolewski AS, Laffel LM, Krolewski M, Quinn M, Warram JH. Glycosylated hemoglobin and the
risk of microalbuminuria in insulin-dependent diabetes mellitus. N Engl J Med 1995;332:1251-5.
62. Mathiesen ER, Ronn B, Storm B, Foght H, Deckert T. The natural course of microalbuminuria in
insulin-dependent diabetes: a 10-year prospective study. Diabet Med 1995;12:482-7.
63. The Diabetes Control and Complications Trial: Epidemiology of Diabetes Interventions and
Complications research group: retinopathy and nephropathy in patients with type 1 diabetes four
years after a trial of intensive therapy. N Engl J Med 2000;342:381-9.
64. The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment
of diabetes on the development and progression of long-term complications in insulin-dependent
diabetes mellitus. N Eng J Med 1993;329:977-86.
65. UK Prospective Diabetes Study Group (UKPDS 33): Intensive blood-glucose control with
sulphonylureas or insulin compared with conventional treatment and risk of complications in
patients with type 2 diabetes. Lancet 1998;352:837-53.
33
66. Shichiri M, Kishikawa H, Ohkubo Y, Wane N. Long-term results of the Kumamoto Study on
optimal diabetes control in type 2 diabetic patients. Diabetes care 2000;23 (Suppl 2):B21-B29.
67. The Diabetes Control and Complications Trial Research Group: Effect of intensive therapy on
the development and progression of diabetic nephropathy in the Diabetes Control and
Complications Trial. Kidney Int 1995;47:1703-20.
68. Microalbuminuria Collaborative Study Group, United Kingdom: Intensive therapy and
progression to clinical albuminuria in patients with insulin-dependent diabetes mellitus and
microalbuminuria. BMJ 1995;311:973-7.
69. The Writing Team for the Diabetes Control and Complication Trial/Epidemiology of Diabetes
Interventions and Complications Research Group. Effect of intensive therapy on the
microvascular complications of type 1 diabetes mellitus. JAMA 2002;287:2563-9.
70. Nyberg G, Blohme G, Norden G. Impact of metabolic control in progression of clinical diabetic
nephropathy. Diabetologia 1987;30:82-6.
71. Mulec H, Blohme G, Grande B, Bjorck S. The effect of metabolic control on rate of decline in
renal function in insulin-dependent diabetes mellitus with overt diabetic nephropathy. Nephrol
Dial Transplant 1998;13:651-5.
72. Fioretto R, Steffes MW, Sutherland DE, Goetz FC, Maurer M. Reversal of lesions of diabetic
nephropathy after pancreas transplantation. N Engl J Med 1998;339:69-75.
73. Mogensen CE, Cooper ME. Diabetic renal disease: from recent studies to improved clinical
practice. Diabet Med 2004;21:4-17.
74. UK Prospective Diabetes Study Group (UKPDS 38): Tight blood pressure control and risk of
macrovascular and microvascular complications in type 2 diabetes. BMJ 1998;317:703-13.
75. Ravid M, Brosh D, Levi Z, Bar-Dayan Y, Ravid D, Rachmani R. Use of enalapril to attenuate
decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes
mellitus. A randomized controlled trial. Ann Intern Med 1998;128:982-8.
76. Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, et al. For the Bergamo
Nephrologic Diabetes Complications Trial (BENEDICT) investigators. Preventing
microalbuminuria in type 2 diabetes. N Engl J Med 2004;351:1941-51.
34
77. Gerstein HC, Yusuf S, Mann JFE, Hoogwerf B, Zinman B, Held C, et al. Heart Outcomes
Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and
microvascular outcomes in people with diabetes mellitus: result of the HOPE study and Micro-
HOPE Substudy. Lancet 2000;355:253-9.
78. Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensin-
converting enzyme inhibition in non-insulin-dependent diabetes mellitus: a 7 year follow-up
study. Arch Intern Med 1996;156:286-9.
79. Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of
irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J
Med 2001;345:870-8.
80. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB. Renoprotective effect of the
angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.
N Engl J Med 2001;345:851-60.
81. Nilsson PM, Gudbjornsdottir S, Eliasson B, Cederholm J. Steering Committee of the Swedish
National Diabetes Register. Smoking is associated with increased HbA1c values and
microalbuminuria in patients with diabetes - data from the National Diabetes Register in Sweden.
Diabetes Metab 2004;30:261-8.
82. Hovind P, Rossing P, Tarnow L, Parving HH. Smoking and progression of diabetic nephropathy
in type 1 diabetes. Diabetes Care 2003;26:911-6.
83. Chaturvedi N, Fuller JH, Taskinen MR; on behalf of the EURODIAB PCS Group. Differing
associations of lipid and lipoprotein disturbances with the macrovascular and microvascular
complications of type 1 diabetes. Diabetes Care 2001;24:2071-7.
84. Mulec H, Svend AJ, Wiklund O, Björck S. Cholesterol: a renal risk factor in diabetic
nephropathy? Am J Kidney Dis 1993;22:196-201.
85. Fried LF, Orchard TJ, Kasiske BL. For the Lipids and Renal Disease Progression Meta-analysis
Study Group. Effect of lipid reduction on the progression of renal disease: a meta-analysis.
Kidney Int 2001;59:260-9.
35
86. Hernandez C, Chacon P, Marti R, Garcia-Pascual L, Mesa J, Simo R. Relationship of
lipoprotein(a) and its phenotypes with the albumin excretion rate in diabetic patients: a
multivariate analysis. Nephron 2000;85:27-33.
87. Heart Protection Study Collaborative Group. MRC/BHF Heart protection study of cholesterol-
lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial.
Lancet 2003;361:2005-16.
88. Möllsten AV, Dahlquist GG, Stattin EL, Rudberg S. Higher intakes of fish protein are related to a
lower risk of microalbuminuria in young Swedish type 1 diabetic patients. Diabetes Care
2001;24:805-10
89. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on
the progression of diabetic and non-diabetic renal diseases: meta-analysis. Ann Intern Med
1996;124:627-32.
90. Ros E, Nunez I, Perez-Heras A, Serra M, Gilabert R, Casals E, et al. A walnut diet improves
endothelial function in hypercholesterolemic subjects: a randomized crossover trial. Circulation
2004;109:1609-14.
91. Schmitz A, Vaeth M, Mogensen CE. Systolic blood pressure relates to the rate of progression of
microalbuminuria in NIDDM. Diabetologia 1994;37:1251-8.
92. Gilbert RE, Tsalamandris C, Bach LA, Panagiotopoulos S, O’ Brien RC, Allen TJ, et al. Long-
term glycemic control and the rate of progression of early diabetic kidney disease. Kidney Int
1993;44:855-9.
93. The Microalbuminuria Collaborative Study Group. Predictors of the development of
microalbuminuria in patients with type 1 diabetes mellitus: a seven-year prospective study.
Diabet Med 1999;16:918-25.
94. Leitão CB, Canani LH, Polson PB, Molon MP, Pinotti AF, Gross JL. Urinary albumin excretion
rate is associated with increased ambulatory blood pressure in normoalbuminuric type 2 diabetic
patients. Diabetes Care 2005; in press.
36
95. Ruggenenti P, Gambara V, Perna A, Bertani T, Remuzzi G. The nephropathy of non-insulin-
dependent diabetes: Predictors of outcome relative to diverse patterns of renal injury. J Am Soc
Nephrol 1998;9:2336-43.
96. Atkins RC, Briganti EM, Lewis JB, Hunsicker LG, Braden G, Chanpion de Crespigny PJ, et al.
Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus
and overt nephropathy. Am J Kidney Dis 2005;45:281-7.
97. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med
1998;12:1448-56.
98. Gross JL, Friedman R, Azevedo MJ, Silveiro SP, Pecis M. Effect of age and sex on glomerular
filtration rate measured by 51Cr-EDTA. Brazilian J Med Biol Res 1992;25:129-34.
99. Vora JP, Dolben J, Dean JD, Thomas D, Williams JD, Owens DR, et al. Renal hemodynamics in
newly presenting non-insulin dependent diabetes mellitus. Kidney Int 1992;41:829-35.
100. Silveiro SP, Friedman R, Gross JL. Glomerular hyperfiltration in NIDDM patients without overt
proteinuria. Diabetes Care 1993;16:115-9.
101. Chaiken RL, Eckert-Norton M, Bard M, Banerji MA, Palmisano J, Sachimechi I, et al.
Hyperfiltration in African-American patients with type 2 diabetes: cross-sectional and longitudinal
data. Diabetes Care 1998;21:2129-34.
102. Knobler H, Zornitzki T, Vered S, Oettinger M, Levy R, Caspi A, et al. Reduced glomerular
filtration rate in asymptomatic diabetic patients. Predictor of increased risk for cardiac events
independent of albuminuria. J Am Coll Cardiol 2004;44:2142- 8.
103. Tsalamandris C, Allen TJ, Gilbert RE, Sinha A, Panagiotopoulos S, Cooper ME, et al.
Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes
1994;43:649-55
104. Zelmanovitz T, Gross JL, Oliveira J, Paggi A, Tatsch M, Azevedo MJ. The receiver operating
characteristics curve in the evaluation of a random urine specimen as a screening test for
diabetic nephropathy. Diabetes Care 1997;20:516-9.
105. Feldt-Rasmussen B, Mathiesen ER. Variability of urinary albumin excretion in incipient diabetic
nephropathy. Diabetic Nephropathy 1984;3:101-3.
37
106. Mogensen CE, Vestbo E, Poulsen PL, Christiansen C, Damsgaard E, Eiskjer H, et al.
Microalbuminuria and potential confounders. A review and some observation on variability of
urinary albumin excretion. Diabetes Care 1995;18:572-81.
107. Comper DW, Osicka TM, Jerums G. High prevalence of immuno-unreactive intact albumin in
urine of diabetic patients. Am J Kidney Dis 2003;41:336-42.
108. Brinkman JW, Bakker SJL, Gansevoort RT, Hans LH, Kema IP, Gans OBR. Which method for
quantifying urinary albumin excretion gives what outcome? A comparison of
immunonephelometry with HPLC. Kidney Int 2004;66(Suppl 92):S69-S75.
109. Comper WD, Osicka TM, Clarck M, MacIsaac RJ, Jerums G. Earlier detection of
microalbuminuria in diabetic patients using a new urinary albumin assay. Kidney Int 2004;65:
1850-5.
110. Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk:
is albumin excretion rate sufficient? Diabetes 2000;49:1399-408.
111. Comper DW, Jereums G, Osicka TM. Differences in urinary albumin detected by four
immunoassays and high-performance liquid chromatography .Clin Biochem 2003;37:105-11.
112. Russo LM, Bakris GL, Comper WD. Renal handling of albumin: a critical review of basic
concepts and perspective. Am J Kidney Dis 2002;39:899-919.
113. John L, Sunder Rao PSS, Kanagasabapathy AS. Rate of progression of albuminuria in type II
diabetes. Diabetes Care 1994;17:888-90.
114. Mattock MB, Morrish NJ, Viberti G, Keen H, Fitzgerald AP, Jackson G. Prospective study of
microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992;41:736-41.
115. Mogensen CE, Damsgaard EM, Froland A, Nielsen S, de Fine Olivarius N, Schmitz A.
Microalbuminuria in non-insulin-dependent diabetes. Clinical Nephrology 1992;38:s28-s38.
116. Hillege HL, Janssen WM, Bak AA, Diercks GF, Grobbee DE, Crijns HJ, et al .
Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an
independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med
2001;249:519-26.
38
117. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen, et al. Urinary
albumin excretion predicts cardiovascular and noncardiovascular mortality in general population.
Circulation 2002;106:1777-82.
118. Klausen K, Borsch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, et al.
Very low levels of microalbuminuria are associated with increased risk of coronary heart disease
and death independently of renal function, hypertension, and diabetes. Circulation
2004;110:32-5.
119. Rossing P, Astrup AS, Smidt UM, Parving HH. Monitoring kidney function in diabetic
nephropathy. Diabetologia 1994;37:708-12.
120. Nielsen S, Rehling M, Schmitz A, Mogensen CE. Validity of rapid estimation of glomerular
filtration rate in type 2 diabetic patients with normal renal function. Nephrol Dial Transplant
1999;14:615-9.
121. Eknoyan G, Hostetter T, Bakris GL, Hebert L, Levey AS, Parving HH, et al. Proteinuria and
other markers of chronic kidney disease: a position statement of the National Kidney Foundation
(NKF) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Am J
Kidney Dis 2003;42:617-22.
122. UK Prospective Diabetes Study Group (UKPDS 39): Efficacy of atenolol and captopril in
reducing risk of macrovascular and microvascular complications in type 2 diabetes. BMJ
1998;317:713-20.
123. Gall MA, Rossing P, Skott P, Damsbo P, Vaag A, Bech K, et al. Prevalence of micro- and
macroalbuminuria, arterial hypertension, retinopathy, and large vessel disease in European type
2 (non-insulin dependent) diabetic patients. Diabetologia 1991;34:655-61.
124. Scheffel RS, Bortolanza D, Weber CS, Costa LA, Canani LH, Dos Santos KG, et al.
Prevalence of micro and macroangiopatic chronic complications and their risk factors in the care
of outpatients with type 2 diabetes mellitus. Rev Assoc Med Bras 2004;50:263-7.
125. Pinto-Sietsma SJ, Janssen WM, Hillege HL, Naris G, de Zeeuw D, de Jong PE, et al. Urinary
albumin excretion is associated with renal functional abnormalities in a nondiabetic population. J
Am Soc Nephrol 2000;11:1882-8.
39
126. Bruno G, Merletti F, Biggeri A, Bargero G, Ferrero S, Pagano G, et al. Progression to overt
nephropathy in type 2 diabetes. Diabetes Care 2003; 26:2150-5.
127. Nosadini R, Velussi M, Brocco E, Bruseghin M, Abaterusso C, Saller A, et al. Course of renal
function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes
2000;49:476-84.
128. Nielsen S, Schmitz A, Rehling M, Mogensen CE. Systolic blood pressure relates to the rate of
decline of glomerular filtration rate in type II diabetes. Diabetes Care 1993;16:1427-32.
129. Murussi M, Gross JL, Silveiro SP. Glomerular filtration rate changes in normoalbuminuric and
microalbuminuric type 2 diabetic patients and normal individuals: a 10-year follow-up. J
Diabetes Complications 2005, in press.
130. Weir MR. Microalbuminuria in type 2 diabetes: An important, overlooked cardiovascular risk
factor. J Clin Hypertens 2004;6:134-43.
131. Dinnen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-
dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med
1997;157:1413-8.
132. Allen KV, Walker JD. Microalbuminuria and mortality in long-duration type 1 diabetes.
Diabetes Care 2003;26:2389-91.
133. Wachtell K, Ibsen H, Olsen MH, Borch-Johnsen K, Lindhom LH, Mogensen CE, et al.
Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the
LIFE study. Ann Intern Med 2003;139:901-6.
134. Toto RD. Proteinuria and hypertensive nephrosclerosis in African-Americans. Kidney Int
2004;66 (Suppl 92):102-4.
135. Reverter JL, Senti M, Rubiés-Prat J, Lucas A, Salinas I, Pizarro E, et al. Relationship between
lipoprotein profile and urinary albumin excretion in type II diabetic patients with stable metabolic
control. Diabetes Care 1994;17:189-94.
136. Greaves M, Malia RG, Goodfellow K, Mattock M, Stevens LK, Stephenson JM, et al.
Fibrinogen and von Willebrand factor in IDDM: relationships to lipid vascular risk factors, blood
40
pressure, glycaemic control and urinary albumin excretion rate: the EURODIAB IDDM
Complications Study. Diabetologia 1997;40:698-705.
137. Morishita E, Asakura H, Jokaji H, Saito M, Uotani C, Kumabashiri I, et al. Hypercoagulability
and high lipoprotein (a) in patients with type II diabetes mellitus. Atherosclerosis 1996;120:7-
14.
138. Stehouwer CDA, Gall MA, Twisk JWR, Knudsen E, Emeis JJ, Parving HH. Increased urinary
albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2
diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes
2002;51:1157-65.
139. Asselbergs FW, De Bôer RA, Diercks GF, Langeveld B, Tio RA, de Jong PE, et al. Vascular
endothelial growth factor: the link between cardiovascular risk and microalbuminuria? Int J
Cardiol 2004;93:211-5.
140. Bortoloso E, Del Prete D, Dalla Vestra M, Gambaro G, Saller A, Antonucci F, et al.
Quantitative and qualitative changes in vascular endothelial growth factor gene expression in
glomeruli of patients with type 2 diabetes. Eur J Endocrinol 2004;150:799-807.
141. Bruno CM, Meli S, Marcinno M, Ierna D, Sciacca C, Neri S. Plasma endothelin-1 levels and
albumin excretion rate in normotensive, microalbuminuric type 2 diabetic patients. J Biol Regul
Homeost Agents 2002;16:114-7.
142. Festa A, D’Agostino R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Inflammation and
microalbuminuria in nondiabetic and type 2 diabetic subjects: The Insulin Resistance
Atherosclerosis Study. Kidney Int 2000;58:1703-10.
143. Ross R. Mechanisms of Disease: Atherosclerosis-An Inflammatory Disease. N Engl J Med
1999;340:115-26.
144. Pedrinelli R, Dell’Olmo G, Penno G, Marini M. Non-diabetic microalbuminuria, endothelial
dysfunction and cardiovascular disease. Vasc Med 2001;6:257-64.
145. Yokoyama H, Aoki T, Imahori M, Kuramitsu M. Subclinical atherosclerosis is increased in type
2 diabetic patients with microalbuminuria evaluated by intima-media thickness and pulse wave
velocity. Kidney Int 2004;66:448-54.
41
146. Bruno G, Merletti F, Biggeri A, Bargero G, Ferrero S, Runzo C, et al. Metabolic syndrome as a
predictor of all-cause and cardiovascular mortality in type 2 diabetes. Diabetes Care
2004;27:2689-94.
147. Costa LA, Canani LH, Lisboa HRK, Tres GS, Gross JL. Aggregation of features of the
metabolic syndrome is associated with increased prevalence of chronic complications in type 2
diabetes. Diabet Med 2004;21:252-5.
148. Rosenbaum P, Gimeno SG, Sanudo A, Franco LJ, Ferreira SR. Japanese-Brazilian Diabetes
Study Group. Independent impact of glycemia and blood pressure in albuminuria on high-risk
subjects for metabolic syndrome. Clin Nephrol 2004;61:369-76.
149. Agardh CD, Gardia Puig J, Charbonnel B, Angelkort B, Barnett AH. Greater reduction of
urinary albumin excretion in hypertensive type II diabetic patients with incipient nephropathy by
lisinopril than by nifedipine. J Hum Hypertens1996;10:185-92.
150. Schrier RW, Estácio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in
normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int
2002;61:1086-97.
151. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of
microalbuminuria in type 1 diabetes. N Engl J Med 2003;348:2285-93.
152. Gaede P, Tarnow L, Vedel P, Parving HH, Pedersen O. Remission to normoalbuminuria
during multifactorial treatment preserves kidney function in patients with type 2 diabetes and
microalbuminuria. Nephrol Dial Transplant 2004;19:2784-8.
153. Iso K, Tada H, Kuboki K, Inokuchi T. Long-term effect of epalrestat, an aldose reductase
inhibitor, on the development of incipient diabetic nephropathy in type 2 diabetic patients. J
Diabetes Complications 2001;15:241-4.
154. White WB, Duprez D, St Hillaire R, Krause S, Roniker B, Kuse-Hamilton J, et al. Effects of the
selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic
hypertension. Hypertension 2003;41:1021-6.
42
155. Marre M, Puig JG, Kokot F, Fernandez M, Jermendy G, Opie L, et al. Equivalence of
indapamide SR and enalapril on microalbuminuria reduction in hypertensive patients with type 2
diabetes: the NESTOR study. J Hypetens 2004;22:1613-22.
156. Bakris G, Viberrti G, Weston WM, Heise M, Porter LE, Freed MI. Rosiglitazone reduces
urinary albumin excretion in type II diabetes. J Hum Hypertens 2003;17:7-12.
157. Solini A, Vergnani L, Ricci F, Crepaldi G. Glycosaminoglycans delay the progression of
nephropathy in NIDDM. Diabetes Care 1997;20:819- 23.
158. Strippoli GFM, Craig M, Deeks JJ, Schena FP, Craig JC. Effects of angiotensin converting
enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in
diabetic nephropathy: systematic review. BMJ 2004;329:828-38.
159. Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease mortality
associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes
mellitus. Arch Intern Med 2000;160:1093-100.
160. Young BA, Mayanard C, Boyco EJ. Racial differences in diabetic nephropathy, cardiovascular
disease, and mortality in a national population of veterans. Diabetes Care 2003;26:1806-11.
161. Humphrey LL, Ballard DJ, Frohnert PP, Chu CP, O’ Fallon WM, Palumbo PJ. Chronic renal
failure in non-insulin dependent diabetes mellitus: a population-based study in Rochester,
Minnesota. Ann Intern Med 1989;111:788-96.
162. Rossing K, Christensen PK, Hovind P, Tarnow L, Rossing P, Parving HH. Progression of
nephropathy in type 2 diabetic patients. Kidney Int 2004; 66:1596-605.
163. Nelson RG, Pettit DJ, Carraher MJ, Baird HR, Knowler WC. Effect of proteinuria on mortality in
NIDDM. Diabetes 1988;37:1499-504.
164. Gall MA, Nielsen FS, Smidt UM, Parving HH. The course of kidney function in type 2 (non-
insulin-dependent) diabetic patients with diabetic nephropathy. Diabetologia 1993;36:1071-8.
165. Friedman R, Gross JL. Evolution of glomerular filtration rate in proteinuric NIDDM patients.
Diabetes Care 1991;14:355-9.
43
166. Naushahi MJ, Grauw WJC, Avery AJ, van Gerwen WHEM, van De Lisdonk EH, Van Weel C.
Risk factors for development of impaired renal function in type 2 diabetes mellitus patients in
primary care. Diabet Med 2004;21:1096-101.
167. Parving HH, Smidt UM, Andersen AR, Svendsen PA. Early agressive antihypertensive
treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet
1983;1:1175-9.
168. Parving HH, Smidt UM, Hommel E, Mathiesen ER, Rossing P, Nielsen F, et al. Effective
antihypertensive treatment postpones renal insufficiency in diabetic nephropathy. Am J Kidney
Disease 1993;22:188-95.
169. Brenner BM, Cooper ME, Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of
losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.
N Engl J Med 2001;345:861-9.
170. Hovind P, Rossing P, Tarnow L, Toft H, Parving J, Parving HH. Remission of nephrotic-range
albuminuria in type 1 diabetic patients. Diabete Care 2001;24:1972-7.
171. Hovind P, Tarnow L, Rossing P, Carstensen B, Parving HH. Improved survival in patients
obtaining remission of nephrotic range albuminuria in diabetic nephropathy. Kidney Int
2004;66:1180-6.
172. Thome FS, Rodrigues AT, Bruno R, Barros EJ, Goldani JC. CAPD in southern Brazil: an
epidemiological study. Adv Perit Dial 1997;13:141-5.
173. Ritz E, Rychlik I, Locatelli F, Halimi S. End-stage renal failure in type 2 diabetes: A medical
catastrophe of worldwide dimensions. Am J Kidney Dis 1999;34:795-808.
174. Xue JL, Frazier ET, Herzog CA, Collins AJ. Association of heart disease with diabetes and
hypertension in patients with ESRD. Am J Kidney Dis 2005;45:316-23.
175. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and
Treatment of High Blood Pressure. JAMA 2003;289:2560-72.
44
Tabela 1. Diagnóstico de Nefropatia Diabética
Estágios da ND
Albuminúria em
urina de 24 h com
tempo marcado
Albuminúria
em amostra
casual* de urina
Albuminúria em
amostra - proporção
albumina/creatinina
Nefropatia Incipiente:
Microalbuminúria
20 a 199 µg/min
17 a 174 mg/l
30-299 mg/g
Nefropatia Clínica:
Macroalbuminúria
200 µg/min
( 500 mg/24h **)
>174 mg/l
( 430mg/l **)
300 mg/g
Insuficiência Renal
Terminal
TFG <15 ml/min/1,73 m
2
ou diálise***
TFG = taxa de filtração glomerular.
American Diabetes Association. Diabetes Care 2004; 27 (suppl 1): s79-s83 (23)
* Zelmanovitz T et al. Diabetes Care 20:516-519, 1997 (104)
** proteinúria
. *** Levey AS et al. NKF. Ann Intern Med 139: 137-147, 2003 (24)
45
Tabela 2. Fatores de risco não-genéticos para nefropatia diabética
FATORES BEM ESTABELECIDOS
Hiperglicemia
Hipertensão arterial sistêmica
FATORES MENOS ESTABELECIDOS
Hiperfiltração glomerular ou diminuição da TFG
Fumo
Dislipidemia
Retinopatia Diabética
Elevada ingestão de carne vermelha
Excreção urinária de albumina normal-alta
TFG: taxa de filtração glomerular
46
Tabela 3. Fatores que aumentam os valores de albuminúria
Mau controle glicêmico
Infecção do trato urinário
Exercício físico rigoroso
Hipertensão arterial sistêmica não-controlada
Obesidade mórbida
Insuficiência cardíaca descompensada
Doença aguda ou febre
Hematúria
Sobrecarca protéica
Sobrecarga hídrica
Menstruação, leucorréia
Gestação
47
Normoalbuminúrico (n=36)
Controle (n=32)
Microalbuminúrico (n=14)
0,20 -
0
-0,50 -
-0,60 -
-0,70 -
-0,30 -
-0,40 -
-0,10 -
-0,20 -
0,10 -
-0,80 -
-0,16 ± 0,16
-0,13 ± 0,14
-0,39 ± 0,24
Declínio da taxa de filtração glomerular (ml/min/mês)
P = 0,0013
Es
g
io renal ao final do estudo
Figura 1.
Declínio da taxa de filtração glomerular (média ± DP) em pacientes com DM 2
persistentemente normoalbuminúricos, em indivíduos não-diabéticos (grupo controle) e em pacientes
que desenvolvem microalbuminúria após 10 anos de acompanhamento (129).
48
Figura 2. Declínio da taxa de filtração glomerular em pacientes macroalbuminúricos com DM tipo 2
(referência 164).
Tempo (meses)
Taxa de filtração glomerular (ml/min/1.73 m
2
)
49
Sobrevida Cumulativa %
Tempo de acompanhamento (meses)
54484236302418126
0
1,0
,9
,8
,7
,6
,5
,4
,3
,2
,1
Com DM
Com DM
Sem
Sem
DM
DM
Figura 3. Sobrevida de pacientes com e sem DM em estudo de 18 centros de diálise na área
metropolitana de Porto Alegre (referência 12, comunicação pessoal).
50
HIGH NORMAL LEVELS OF ALBUMINURIA ARE PREDICTORS OF
DIABETIC NEPHROPATHY IN TYPE 2 DIABETIC PATIENTS:
AN 8-YEAR FOLLOW-UP STUDY
Short running title: Diabetic nephropathy predictors in type 2 diabetic patients
Marcia Murussi, MD
1
Nicole Campagnolo
1
Maristela de Oliveira Beck, MD
1
Jorge L Gross, MD
1
Sandra P Silveiro, MD
1
1
Endocrine Division, Hospital de Clínicas de Porto Alegre,
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
This paper will be submitted to Diabetes Care for publication.
The abstract was accepted for Oral Presentation at the 65th American Diabetes Association
Annual Meeting & Scientific Sessions, San Diego, CA June 10-14, 2005.
51
Abstract
OBJECTIVE: The aim of this study was to analyze the risk factors for the development of
diabetic nephropathy (DN) in a cohort of normoalbuminuric type 2 diabetes mellitus (DM 2)
patients.
RESEARCH DESIGN AND METHODS: In this prospective study, 193 DM 2 patients
with urinary albumin excretion (UAE) <20 µg/min (immunoturbidimetry), 96 men (50%),
162 (84%) white and 31 mixed or black (16%), aged 56.5 ± 8.6 years, with diabetes duration
of 8.2 ± 6.4 years, were followed for a mean period of 8 ± 3 years. Renal function was
assessed at baseline and at the end of the follow-up.
RESULTS: Eighteen patients (9.3%) were lost to follow up and 2 were excluded due to the
lack of baseline 24-h UAE measurements (1%). Among the 173 remaining patients, 15 died.
Therefore, 158 were re-examined regarding DN: 34 developed microalbuminuria (22%) and
7 macroalbuminuria (4%). Patients who developed DN were more frequently men (61% vs.
42%, P = 0.045), and, at baseline, had a higher proportion of diabetic retinopathy (54% vs.
23%, P = 0.0001), and arterial hypertension (73% vs. 49%, P = 0.01). Baseline UAE was
significantly higher in the progressors (8.2 [2.0-19.0] vs. 4.8 [0.1-19.2] µg/min, P <0.0001),
who also had higher baseline fasting plasma glucose (198 ± 74 vs. 163 ± 55 mg/dl, P =
0.007), higher triglycerides (202 [32-646] vs. 125 [27-1292] mg/dl, P = 0.006), and lower
estimated glomerular filtration rate (GFR) levels (78±17 vs. 84±18 ml/min/1.73m
2
, P =
0.046). In a Cox proportional hazard analysis (hazard ratio [HR], 95% confidence interval
[CI]) the variables significantly related to the later development of DN were a baseline UAE
>5.1 µg/min (above the median, HR 2.85; 95% CI, 1.41-5.74; P = 0.0035), diabetic
52
retinopathy (HR 2.68; 95% CI, 1.37-5.12; P = 0.0036), fasting plasma glucose (HR 1.007;
95% CI, 1.001-1.012; P = 0.012), male sex (HR 2.89; 95% CI, 1.38-6.06; P = 0.0049), and
lower estimated GFR (HR 0.98; 95% CI, 0.96-1.00; P = 0.0514). The presence of
hypertension at baseline was excluded from the model (P = 0.16).
CONCLUSIONS: An UAE level >5.1 µg/min, even though within the normal range, is a
strong predictor of progression for DN. Male sex, diabetic retinopathy, higher glucose levels
and worse renal function are also related to the development of DN. Therefore, DM 2
patients with this profile deserve a program of intensified risk intervention.
Keywords: diabetic nephropathy, risk factors, microalbuminuria, albumin cutoff values,
type 2 diabetes mellitus
53
Approximately 31% of type 2 diabetes mellitus (DM 2) patients are affected by
diabetic nephropathy (DN) after 10 years of disease (1). According to the annual US Renal
Data System’s report, although overall rates of end stage renal disease (ESRD) due to
diabetes have leveled off in recent years, diabetes is still the leading cause of chronic kidney
disease, accounting for about 40% of all new cases starting renal replacement therapy (RRT)
(2). DN was also the most often original kidney disease among ESRD patients in Sweden
(24%) (3), and in Canada (51%) (4). In spite of the increasing number of therapeutic tools
available to prevent and delay the progression of DN, mainly better blood pressure and
glycemic control, the rates of ESRD remain nearly twice as high as the target rate of 78 per
million of healthy people population for 2010, and show no signs of decreasing. As DM 2
accounts for the majority of new patients starting RRT (2,5), and considering that World
Health Organization (WHO) estimates that the number of people with this type of diabetes
will more than double until 2030 (6), it is expected a growing burden of DN for public
health system across the world. Furthermore, the survival rate of diabetic patients requiring
RRT is tremendously shortened, mainly due to cardiovascular deaths. It was previously
demonstrated that among those patients, the 2-year survival rate is only 50% (5).
Genetic predisposition (7-9) and other risk factors have been identified in the
development of DN in DM 2 patients. Poor glycemic control, increased blood pressure,
dyslipidemia and smoking were described as risk factors in prospective analyses (10-15).
Some studies have demonstrated that high UAE levels, even within the normal range,
predict the development of DN in both type 1 (16), and type 2 diabetic patients (11,12,17-
20).
54
The aim of this study was to analyze the risk factors for DN in a cohort of
normoalbuminuric DM 2 patients, and to evaluate the cutoff value of UAE that would
predict the development of DN.
RESEARCH DESIGN AND METHODS
Subjects
Three hundred eight DM 2 patients underwent a baseline clinical and renal evaluation
in a university hospital. Among these patients, 116 already presented DN diagnosis (52
micro-, 60 macroalbuminuria and 3 kidney failure) and were not evaluated. The remaining
193 normoalbuminuric patients (UAE <20 µg/min) were re-examined after a mean period of
8 ± 3 years (range 1-16 years), and were enrolled in a prospective study to identify the main
risk factors for the development of DN (Fig. 1). From these patients, 18 (9.3%) were lost to
follow-up (14 patients could not be located and 4 refused to participate), and 2 (1%) were
excluded due to the lack of baseline 24-h UAE measurements. Their baseline data were not
different from those of the 173 re-evaluated patients in terms of male gender, age, diabetes
duration, HbA1c, systolic and diastolic blood pressures, cholesterol, triglycerides, and UAE.
Fasting plasma glucose and calculated GFR were lower in the lost patients (data not shown).
The primary endpoint of the study was the development of persistent micro- (UAE 20-
199 µg/min) or macroalbuminuria (UAE 200 µg/min) in the period between the first
evaluation and the moment the primary endpoint of the study was reached, or until the time
of the last evaluation or death.
The diagnosis of DM 2 was established according to WHO criteria (21), without
insulin use during the first 5 years after diagnosis.
Baseline evaluation
55
At baseline, DM 2 patients underwent a complete clinical interview and physical
examination. Height and weight (light clothes without shoes) were measured and body mass
index (BMI) was calculated (kg/m
2
). Blood pressure was measured twice in the sitting
position, after a 5-minute rest with a standard 12.5-cm cuff mercury sphygmomanometer
(phases I-V). Hypertension was defined as systolic blood pressure 140 mmHg and/or
diastolic blood pressure 90 mmHg, or as any value in patients using antihypertensive
drugs. The presence of diabetic retinopathy (DR) was assessed by fundus examination
performed by an ophthalmologist after mydriasis. Distal sensory neuropathy was
investigated by testing vibratory perception (tuning fork test) along with the presence of
compatible symptoms, abnormal results on Achilles tendon reflexes, and sensory perception
by a 10-g Semmes-Weinstein monofilament at the hallux of each foot. Coronary artery
disease was diagnosed on the presence of any of the following: symptoms of angina,
previous heart attack, possible infarct (WHO Cardiovascular Questionnaire) (22), presence
of resting ECG abnormalities (Minnesota Code) (23), revascularization procedures,
perfusion abnormalities (fixed or variable) upon myocardial scintigraphy. Cerebrovascular
disease was established by history of stroke, presence of compatible findings or evident
damage. Peripheral vascular disease was diagnosed by intermittent claudication (WHO
Cardiovascular Questionnaire) (22), absence of posterior tibial pulse upon clinical
examination, or presence of inferior limb amputations. Cardiovascular disease was
diagnosed if coronary artery disease, cerebrovascular disease or peripheral vascular disease
were diagnosed. Smokers were defined as those smoking any kind of smoke at the
beginning of the study, and former smokers were defined as those who had smoked for 1
year and had quit before starting the study. Both were analyzed as one group. Non-smokers
were patients who had never smoked. Patients were classified as white or non-white (mixed
or black) according to their own self-report.
56
Follow-up evaluation
At follow-up evaluation, the patients underwent the same procedures of baseline
examination. Information regarding cause of death was collected from medical records,
death certificates (recording the primary cause of death), individuals’ relatives, and from the
Health Information System. The interview and physical examination were performed at the
same time of the renal evaluation and complemented as necessary in subsequent visits or in
their medical records.
All patients gave their written informed consent to participate. The study protocol
was approved by the Ethics Committee of Hospital de Clínicas de Porto Alegre.
Methods
At baseline, UAE was measured in 24-hour collections of sterile urine (2 to 3 samples)
over a period of six months by radioimmunoassay (RIA) (DPC, Los Angeles), with an intra-
and interassay coefficient of variation (CV) of 2.8% and 2.3%, respectively. At follow-up,
UAE was measured by immunoturbidimetry (IT) (Microalb; Ames-Bayer, Tarrytown, NY,
USA) in random urine samples (24), and confirmed by two 24-hour collections of sterile
urine over a six-month period (coefficient of correlation with RIA: r = 0.99, interassay CV =
6.9%, and intra-assay CV = 3.8% for values around 20 µg/ml, and 1.9% for values around
150 µg/ml). Persistent micro- and macroalbuminuria were defined by at least two out of
three 24-h collections with UAE values of 20-199 µg/min, and 200 µg/min, respectively
(25). Administration of angiotensin-converting enzyme inhibitors was interrupted a week
before UAE measurements.
Glomerular filtration rate (GFR) was estimated by MDRD (Modification of Diet in
Renal Disease) study equation: GFR (ml/min/1.73m
2
) = 186 × (Serum Creatinine
mg/dl
)
-1.154
×
(Age
years
)
-0.203
× (0.742 if female) × (1.210 if African-American) (26).
57
Fasting plasma glucose (FPG) was measured by the glucose oxidase UV enzymatic
method. HbA1 levels were measured at baseline by ion-exchange chromatography (normal
range: 6.5-8.5 %, intra-assay CV 4.1-5.8%). At follow-up, HbA1c levels were measured by
high-performance liquid chromatography (HPLC) procedure (Merck-Hitachi L-9100
Glycated Haemoglobin Analyzer; reference range: 3.2-4.5%, inter- and intra-assay CV=
2.4% and 0.5%, respectively). Baseline HbA
1
levels (y) were converted to HbA1c levels (x)
using the formula y = 1.09x + 1.95 (27). Urea, cholesterol, and triglycerides were measured
by enzymatic methods. LDL cholesterol was calculated using the Friedewald equation.
Creatinine was measured by the Jaffé reaction.
Statistical analysis
Results are expressed as mean ± SD, median (ranges) or number of cases and
percentage. Incidence was expressed as the number of subjects who developed persistent
micro- or macroalbuminuria per 1,000 person-years at risk, and as cumulative rate. A Cox
proportional-hazard multiple regression model (backward stepwise method) was used to
examine predictors of progression to micro- or macroalbuminuria. Results are expressed as
relative risk (Hazard Ratio) and 95% Confidence Interval (CI). The model included baseline
variables that were found to be statistically significant in univariate analyses, as well as
those implicated a priori as potential risk factors (even though not significant in the
univariate analysis). Kaplan-Meier curves were employed to estimate the probability of
surviving without the development of DN or death according to the presence of a given risk
factor. A P-value <0.05 (two-sided) was considered to be statistically significant. All data
were analyzed using the Statistical Package the Social Sciences (SPSS 10.0–Professional
Statistics
TM
, SPSS Inc., Chicago, IL, USA).
RESULTS
58
Risk factors for micro- or macroalbuminuria
Among the 173 DM 2 patients, 15 (8.7%) died before renal status re-evaluation (3
from cancer, 2 from respiratory failure, 5 from cardiovascular disease, 1 from rheumatoid
arthritis, 1 from sepsis and 3 from unknown causes). Their data were not different (data not
shown) from the survivors, except for their older age (63.5 ± 6.6 vs. 56.2 ± 8.4, P = 0.001).
The data of the deceased patients were considered in the survival rate analysis.
From the 158 eligible normoalbuminuric patients followed for a mean period of 8 ± 3
years (median 8.6 years [1-16]), forty-one patients (26%) developed DN: 34 (22%)
developed microalbuminuria and 7 (4%) developed macroalbuminuria (2 of them progressed
to kidney failure). This represents an incidence density of micro- and macroalbuminuria of
31/1,000 person-years.
The baseline data of persistently normoalbuminuric patients (non-progressors) and of
those who developed micro- or macroalbuminuria (progressors) are shown in Table 1.
There was no difference regarding ethnicity. Patients who progressed were more
frequently men than non-progressors. They had higher baseline FPG, although HbA1c was
not different between groups. Baseline cholesterol and HDL levels were not different, but
serum triglycerides were higher in patients who later developed DN. The proportion of
initially hypertensive patients was higher in progressors than in non-progressors, although
systolic and diastolic blood pressure values did not differ between groups at baseline. There
were also no differences between the groups regarding the use of antihypertensive treatment
(76% vs. 74%, P = 1.00), or the use of specific drugs like β-blockers (25% vs. 22%, P =
0.79), and ACE inhibitors (28% vs. 22%, P = 0.60) in the patients who developed DN and
those who did not, respectively.
59
Regarding renal function evaluation, calculated baseline GFR values were lower
among progressors, but the proportion of patients with a GFR <60 ml/min/1.73m
2
was not
different between groups. Accordingly, serum creatinine was higher among patients who
developed DN. Baseline UAE was higher in the patients who developed DN at the end of
the study. It was observed that patients with a baseline UAE >5.1 µg/min (that is, above the
median value of the entire normoalbuminuric cohort group) progressed more frequently
(66% vs. 44%, P = 0.029) than the patients with lower UAE values. These patients had a
2.4-fold (1.15-5.06) increased risk of developing DN (Fig. 2). Furthermore, when data of the
15 deceased patients were included, this value was related to an increased risk of death (Fig.
3) (log rank P=0.027), mainly from cardiovascular disease (14 deaths out of 20 [70%] to the
UAE > 5.1 µg/min group, and 3 out of 13 (23%) to the UAE 5.1 µg/min group, P = 0.02).
There were no differences in the presence of pre-existing coronary artery disease (12
[29%] vs. 17 [15%], P = 0.058), peripheral vascular disease (14 [36%] vs. 30 [26%], P =
0.31), and distal sensory neuropathy (13 [33%] vs. 27 [23%], P = 0.29) at baseline between
the patients who developed and those who did not develop micro- or macroalbuminuria,
respectively. However, more patients who progressed presented diabetic retinopathy at the
beginning of the study (22 [54%] vs. 27 [23%], P = 0.001) (Fig. 4).
In a multivariate Cox proportional hazard analysis (hazard ratio [HR], 95% confidence
interval [CI]) the variables significantly related to the later development of DN in this model
were a baseline UAE >5.1 µg/min (above the median), diabetic retinopathy, male sex, lower
GFR, and fasting plasma glucose (Table 2). The presence of hypertension at baseline was
excluded from the model (P = 0.16).
Characteristics of micro- and macroalbuminuric patients at follow-up
At the end of the study (Table 3), there was no difference between progressors and
non-progressors concerning the presence of hypertension. However, the final systolic blood
60
pressures were higher among micro- and macroalbuminuric than in the normoalbuminuric
patients, while diastolic blood pressures were not statistically different. The number of
patients in use of antihypertensive treatment was not different between (33 [97%] vs. 64
patients [96%], P = 1.00), as well as the number in use of β-blocker (18 [53%] vs. 30 [45%],
P = 0.52) at the end of the study. On the other hand, the number of patients receiving ACE
inhibitors was significantly higher in progressors (27 [79%] vs. 27 patients [40%], P
<0.0001).
At follow-up, we observed that a higher number of patients in the micro-
macroalbuminuric group were taking insulin. There were no differences between the groups
in terms of final BMI, and current smoking (7 % vs. 16%, P = 0.24). In spite of no
difference in the final FPG values, HbA
1c
was higher in the progressors. Micro- and
macroalbuminuric patients presented lower HDL cholesterol and higher triglyceride levels at
the end of the study. Conversely, total cholesterol and LDL cholesterol were not different
between groups.
When we analyzed the evolution of other chronic complications, we observed that, at
the end of the study, progressors had a higher prevalence of diabetic retinopathy (83% vs.
43%, P< 0.0001), coronary artery disease (66% vs. 34%, P = 0.001), peripheral vascular
disease (55% vs. 36%, P = 0.04), distal sensory neuropathy (56% vs. 34%, P = 0.016), and
cardiovascular disease (76% vs. 50%, P = 0.006).
UAE increased significantly even in DM 2 patients who remained normoalbuminuric
during the follow-up (4.8 µg/min [0.1-19.2] to 5.76 µg/min [2.6-19.8], P <0.0001; n = 109
patients).
Eight out of 41 (19.5%) micro- and macroalbuminuric patients and 10 out of 117
(8.5%) normoalbuminuric patients died during the follow-up evaluation, and these
proportions were not different (P = 0.083). Death causes were cardiovascular in 5 (63%) of
61
the progressors and in 7 (70%) of the non-progressors (P = 1.00). In each group, the other
causes of death were sepsis, cancer, and unknown reason.
CONCLUSIONS
The cumulative incidence of micro- and macroalbuminuria was 26% in 8 years, similar to
that reported in other studies after comparable periods: 34% in Finland (12), and 35% in
Israel (15). Other prospective studies found cumulative incidence of 24% in a Danish
population (11), 25% in Korean patients (14), and 42% in Pima Indians (13), but the follow-
up periods were shorter (about 5 years). The UKPDS (1) found that after 10 years following
the diagnosis of diabetes, the prevalence was 31%.
The main risk factors for the development of micro- and macroalbuminuria in our
study were higher baseline UAE levels (even though within the normal range), the presence
of diabetic retinopathy, male sex, lower GFR and higher FPG at baseline.
The predictive value of high normal UAE had already been described by other authors
in type 1 (16,18) and type 2 diabetes (11-13,17-20). Gilbert et al. (18) observed that type 1
and type 2 diabetic patients at risk for DN could be identified by serial measurements of
UAE from diagnosis, even before they reached the 20 µg/min threshold of
microalbuminuria. Forsblom et al. demonstrated that the progression to micro- and
macroalbuminuria was more frequent in patients with initial UAE above the median (2.5
mg/24 h) (12). Similarly, Gall et al. described a significantly higher baseline UAE in
patients who progressed in comparison with those who remained normoalbuminuric
(geometric mean, 14 vs. 7 mg/24 h) (11). Nelson et al. found that patients who developed
DN had higher median UAE/creatinine concentrations (12.2 vs. 7.4 mg/g) (13). Nielsen et
al. confirmed these findings with UAE levels of 10.1 ± 1.1 vs. 5.3 ± 1.1 µg/min (19). We
have also previously observed that patients who progressed to DN presented higher median
62
UAE values (5.9 vs. 3.2 µg/min) (20). In the present study, when UAE was controlled for
other risk factors through multivariate analyses, there was a 2.4-fold increased risk for DN
in those patients with UAE levels of 5.1 µg/min (above the median). We have earlier
demonstrated in a 9-year follow-up study that normoalbuminuric DM 2 patients with UAE
values above 10 µg/min had a 29-fold increased chance to develop DN (20). Similarly, in
normoalbuminuric type 1 diabetic patients followed for 7 years (16), this same cutoff value
conferred a 19-fold chance to develop microalbuminuria. Additionally, in DM 2
normoalbuminuric patients, values 5 µg/min were also related to higher ambulatory blood
pressure, serum creatinine and cholesterol, and to thicker left ventricle (28), meaning a
worse cardiovascular risk profile. Besides that, it has been shown that UAE values, even
within the normal range, are related to increased incidence of cardiovascular disease and
higher mortality rates in DM 2 (29,30), and even in non-diabetic individuals (31,32). This
also applies to our DM 2 patients, who presented an increased risk of death when their UAE
was >5.1 µg/min. A plausible explanation for the damage provoked by these relatively low
levels of UAE could be the new findings that conventional immunoassays routinely used for
UAE measurement may underestimate the actual urinary albumin level (33,34), as it detects
only the immunoreactive part of the total intact UAE, composed of immunoreactive and
immuno-unreactive albumin. Indeed, Comper et al. (35) have recently observed that this
new urinary albumin assay would have detected microalbuminuria 3.9 and 2.4 years earlier
in type 1 and type 2 diabetic patients, respectively. Hence, UAE levels below the traditional
recommended value of 20 µg/min (25) could already be reflecting a disease in its very initial
stage, or signaling a generalized state of endothelial dysfunction (36,37), without, however,
specifically be expressing underlying renal damage. Therefore, high normal UAE levels
could be a remarkable risk factor for DN and death. On the other hand, UAE may not be the
only marker of DN (38,39,40). In fact, some authors have described that low GFR levels can
63
also predict renal function decline (38), and cardiac events (39) even in the absence of
albuminuria. This being so, low GFR levels may already be pointing out the presence of
renal damage (40). Accordingly, in our study, baseline GFR values were initially lower in
progressors.
As shown by others (11,13,14), diabetic retinopathy was also a strong risk factor for
DN in our patients. Retinopathy is probably a marker rather than a risk factor “per se,”
because nephropathy and retinopathy seem to share the same environmental predisposing
factors, such as hyperglycemia and arterial hypertension. Our study suggests that the onset
of retinopathy occurs earlier than that of DN, probably because the retina would be more
sensitive to these environmental risk factors or alternatively would be detected earlier.
Our data showed an increased risk for DN in males, but male sex has been considered
a risk factor only in some (11,15), not in all (13,14,20) studies.
Baseline FPG levels were higher in the patients who developed DN. In prospective
studies, higher HbA1c levels have been identified as a major risk for the development of
microalbuminuria (11,15). Through an observational analysis, UKPDS (41) has
demonstrated that any reduction in HbA1c decreases the risks for microvascular
complications.
Cholesterol has been disclosed as a risk factor for DN in some (11,13,15), but not in all
longitudinal studies (12,14). Our patients did not differ regarding baseline cholesterol levels,
although there were higher baseline triglycerides levels among those who developed micro-
and macroalbuminuria.
Arterial hypertension has been implicated as a risk factor for DN in several prospective
studies (13-15,42). Two of them analyzed blood pressure during the study period, and
observed higher levels among patients who progressed to micro- or macroalbuminuria
64
(14,15). Accordingly, we found a higher prevalence of baseline hypertension among those
patients who progressed.
In the UKPDS (1), it was found a trend for increasing risk of death with increasing DN
stage. The mortality rate in our study was not different between progressors and non-
progressors, probably because of the small number of outcomes in our cohort.
The patients who became micro- and macroalbuminuric during the observation period
more often presented other complications, such as retinopathy and cardiovascular disease.
Furthermore, they presented higher levels of triglycerides and their metabolic control was
worse. The interaction of these factors might have influenced the overall less favorable
evolution of these patients. A recent study has demonstrated that intensive multifactorial
treatment in type 2 microalbuminuric patients reduces the rate of progression of renal
disease (43).
In conclusion, our study demonstrated that over a period of 8 years, 26% of
normoalbuminuric type 2 diabetic patients developed DN. Higher UAE (even though within
the normal range), the presence of retinopathy, male sex, lower GFR, and baseline FPG
were risk factors for the development of micro- and macroalbuminuria. Therefore, these
factors are markers to be searched for. According to guidelines, the cutoff value to define
microalbuminuria is 20 µg/min (25). However, our patients presented a greater chance to
develop DN if they had a baseline UAE >5.1 µg/min. Since growing evidence from
literature has shown that patients with lower UAE already are at increased risk for DN, and
also at increased risk for cardiovascular disease and mortality, we believe that these patients
deserve a program of intensified and multifactorial risk intervention.
Acknowledgments
This study was supported by grants from Programa de Apoio a Núcleos de Excelência and
Hospital de Clínicas de Porto Alegre. MM was the recipient of a scholarship from Fundação
65
de Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). We would
like to thank Vânia Naomi Hirakata and Daniela Benzano Bugamin for the support in the
statistical analyses.
66
REFERENCES
1. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR: Development and
progression of nephropathy in type 2 diabetes: the United Kingdom Prospective
Diabetes Study (UKPDS 64). Kidney Int 63:225-232, 2003
2. US Renal Data System: Am J Kidney Dis 45:S69-S80, 2005
3. Schon S, Ekberg H, Wikstrom B, Oden A, Ahlmen J: Renal replacement therapy in
Sweden. Scand J Urol Nephrol 38:332-339, 2004
4. Look CE, Oliver MJ, Rothwell DM, Hux JE: The growing volume of diabetes-related
dialysis: a population based study. Nephrol Dial Transplant 19:3098-3103, 2004
5. Bruno RM, Gross JL: Prognostic factors in Brazilian diabetic patients starting dialysis. A
3.6-year follow-up study. J Diabetes Complications 14:266-271, 2000
6. Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes. Estimates
of the year 2000 and projections for 2030. Diabetes Care 27:1047-1053, 2004
7. Canani LH, Gerchman F, Gross JL: Familial clustering of diabetic nephropathy in
Brazilian type 2 diabetic patients. Diabetes 48:909-913, 1999
8. Fogarty DG, Hanna LS, Wantman M, Warram JH, Krolewski AS, Rich SS: Segregation
analysis of urinary albumin excretion in families with type 2 diabetes. Diabetes 49:1057-
1063, 2000
9. Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC: Familial predisposition to
renal disease in two generations of Pima Indians with type 2 diabetes mellitus.
Diabetologia 33:438-443, 1990
10. Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE, Hirschman GH,
Myers BD: Development and progression of renal disease in Pima Indians with non-
insulin-dependent diabetes mellitus. N Engl J Med 335:1636-1642, 1996
67
11. Gall M-A, Hougaard P, Borch-Johnsen K, Parving HH: Risk factors for development of
incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes
mellitus: prospective, observational study. BMJ 314:783-788, 1997
12. Forsblom CM, Groop PH, Ekstrand A, Tötterman KJ, Sane T, Saloranta C, Groop L:
Predictors of progression from normoalbuminuria to microalbuminuria in NIDDM.
Diabetes Care 21:1932-1938, 1998
13. Nelson RG, Knowler WC, Pettitt DJ, Hanson RL, Bennett PH: Incidence and
determinants of elevated urinary albumin excretion in Pima Indians with NIDDM.
Diabetes Care 18:182-187, 1995
14. Park J-Y, Kim H-K, Chung YE, Kim SW, Hong SK, Lee K-U: Incidence and
determinants of microalbuminuria in Koreans with type 2 diabetes. Diabetes Care
21:530-534, 1998
15. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R: Main risk factors for
nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood
pressure, and hyperglycemia. Arch Intern Med 158:998-1004, 1998
16. The Microalbuminuria Collaborative Study Group. Predictors of the development of
microalbuminuria in patients with Type 1 diabetes mellitus: a seven-year prospective
study. Diabet Med 16:918-925, 1999
17. Silveiro SP, Friedman R, Azevedo MJ, Canani LH, Gross JL: Five-year prospective
study of glomerular filtration rate and albumin excretion rate in normofiltering and
hyperfiltering normoalbuminuric NIDDM patients. Diabetes Care 19:171-174, 1996
18. Gilbert RE, Tsalamandris C, Bach LA, Panagiotopoulos S, O’Brien RC, Allen TJ,
Goodall I, Young V, Seeman E, Murray RML, Cooper ME, Jerums G: Long-term
glycemic control and the rate of progression of early diabetic kidney disease. Kidney Int
44:855-859, 1993
68
19. Nielsen S, Schmitz A, Rehling M, Mogensen CE: Systolic blood pressure relates to the
rate of decline of glomerular filtration rate in type II diabetes. Diabetes Care 16:1427-
1432, 1993
20. Murussi M, Baglio P, Gross JL, Silveiro SP: Risk factors for microalbuminuria and
macroalbuminuria in type 2 diabetic patients. Diabetes Care 25:1101-1103, 2002
21. World Health Organization: Definition, Diagnosis and Classification of Diabetes
Mellitus and its Complications, Part 1, Diagnosis and Classification of Diabetes
Mellitus. Geneva: WHO, 1999.
22. Rose G, Blackburn H, Gillum R, Prineas R. Cardiovascular Survey Methods. WHO
Monograph Series, 2
nd
ed. Washington DC: WHO, 123-129, 1982.
23. Beck MO, Silveiro SP, Freidman R, Clausell N, Gross JL: Asymptomatic coronary
artery disease is associated with cardiac autonomic neuropathy and diabetic nephropathy
in type 2 diabetic patients. Diabetes Care 22:1745-1747, 1999.
24. Zelmanovitz T, Gross JL, Oliveira J, Paggi A, Tatsch M, Azevedo MJ: The receiver
operating characteristics curve in the evaluation of a random urine specimen as a
screening test for diabetic nephropathy. Diabetes Care 20:516-519, 1997
25. American Diabetes Association: Nephropathy in Diabetes (Position Statement).
Diabetes Care 27 (Suppl 1):S79-S83, 2004
26. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD,
Lau J, Eknoyan G: National Kidney Foundation practice guidelines for chronic kidney
disease: evaluation, classification, and stratification. Ann Intern Med 139:137-147, 2003
27. Camargo JL, Zelmanovitz T, Paggi A, Friedman R, Gross JL: Accuracy of conversion
formulae for estimation of glycohaemoglobin. Scand J Clin Lab Invest 58:521-528, 1998
28. Leitão CB, Canani, LH, Polson PB, Molon, MP, Pinotti AF, Gross JL: Urinary albumin
excretion rate is associated with increased ambulatory blood pressure in
69
normoalbuminuric type 2 diabetic patients. Diabetes Care 2005 in press
29. Mogensen CE: Microalbuminuria predicts clinical proteinuria and early mortality in
maturity-onset diabetes. N Engl J Med 310:356-360, 1984
30. Gerstein HC, Mann JFE, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Halle JP, Young J,
Rashkow A, Joyce C, Nawaz S, Yusuf S: Albuminuria and risk of cardiovascular events,
death, and heart failure in diabetic and nondiabetic individuals. JAMA, 286:421-426,
2001
31. Hillege HL, Fidler V, Diercks GFH, van Gilst WH, de Zeeuw D, van Veldhuisen DJ,
Gans ROB, Jansen WMT, Grobbee DE, Jong PE. For the Prevention of Renal and
Vascular End Stage Disease (PREVEND) Study Group: Urinary albumin excretion
predicts cardiovascular and noncardiovascular mortality in general population.
Circulation 106:1777-1782, 2002
32. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H,
Appleyard M, Jensen JS: Very low levels of microalbuminuria are associated with
increased risk of coronary heart disease and death independently of renal function,
hypertension, and diabetes. Circulation 110:32-35, 2004
33. Comper WD, Osicka TM, Jerums G: High prevalence of immuno-unreactive intact
albumin in urine of diabetic patients. Am J Kidney Dis 41:336-342, 2003
34. Greive KA, Eppel GA, Reeve S, Smith I, Jerums G, Comper WD: Immuno-unreactive
albumin excretion increases in streptozocin diabetics rats. Am J Kidney Dis 38:144-152,
2001
35. Comper WD, Osicka TM, Clarck M, MacIsaac RJ, Jerums G: Earlier detection of
microalbuminuria in diabetic patients using a new urinary albumin assay. Kidney Int
65:1850-1855, 2004
36. Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, Parving HH: Increased
70
urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation
in type 2 diabetes: progressive, interrelated, and independently associated with risk of
death. Diabetes 51:1157-1165, 2002
37. Asselbergs FW, de Bôer RA, Diercks GF, Langeveld B, Tio RA, de Jong PE, van
Veldhuisen DJ, Van Gilst WH: Vascular endothelial growth factor: the link between
cardiovascular risk and microalbuminuria? Int J Cardiol 93:211-215, 2004
38. Tsalamandris C, Allen TJ, Gilbert RE, Sinhá A, Panagiotopoulos S, Cooper MA, Jerums
G: Progressive decline in renal function in diabetic patients with and without
albuminuria. Diabetes 43:649-655, 1994
39. Knobler H, Zornitzki T, Vered S, Oettinger M, Levy R, Caspi A, Faraggi D, Livschitz S:
Reduced glomerular filtration rate in asymptomatic diabetic patients. Predictors of
increased risk for cardiac events independent of albuminuria. J Am Coll Cardiol
44:2142-2148, 2004
40. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G:
Nonalbuminuric Renal Insufficiency in type 2 diabetes. Diabetes Care 27:195-200, 2004
41. UK Prospective Diabetes Study Group (UKPDS 35): Association of glycemia with
macrovascular and microvascular complications of type 2 diabetes: prospective
observational study. BMJ 321:405-412, 2000
42. Schmitz A, Vaeth M, Mogensen CE: Systolic blood pressure relates to the rate of
progression of albuminuria in NIDDM. Diabetologia 37:1251-1258, 1994
43. Gaede P, Vedel P, Parving HH, Pedersen O: Intensified multifactorial intervention in
patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2
randomized study. Lancet 353:617-622, 1999
71
Table 1. Baseline clinical and laboratory characteristics of DM 2 patients with and without
progression to DN
Baseline Characteristics Progressors
(n= 41)
Non-progressors
(n=117)
P
Male sex 25 (61%) 49 (42%) 0.045
Ethnicity (white/non-white) 35/6 100/17 1.00
Age (years)
57 ± 9 56 ± 8
0.49
Duration of diabetes (years)
8.3 ± 6.8 8.8 ± 6.4
0.71
Body mass index (kg/m
2
)
27.1 ± 4.4 27.0 ± 4.5
0.91
Smoking (Ex + S) 13 + 8 (51%) 15 + 38 (45%) 0.59
Type of treatment (D/OA/I) 11/23/7 34/68/15 0.79
Arterial hypertension 30 (73%) 57 (49%) 0.01
SBP (mmHg)
145 ± 19 141 ± 25
0.41
DBP (mmHg)
86 ± 11 84 ± 13
0.50
Fasting plasma glucose (mg/dl)
198 ± 74 163 ± 55
0.007
HbA1
c
(%)
7.3 ± 2.1 6.8 ± 2.0
0.13
Cholesterol (mg/dl)
219 ± 50 214 ± 45
0.60
HDL (mg/dl)
43 ± 15 48 ± 13
0.10
Triglycerides (mg/dl) 202 (32-646) 125 (27-1292) 0.006
Urinary urea (g/24h)
24.6 ± 14 23.8 ± 9.3
0.79
GFR (ml/min/1.73m
2
)
78 ± 17 84 ± 18
0.046
Serum Creatinine (mg/dl)
1.00 ± 0.16 0.90 ± 0.19
0.002
GFR <60 ml/min/1.73m
2
5 (12%) 10 (9%) 0.54
UAE (µg/min)
8.2 (2.0-19.0) 4.8 (0.1-19.2) <0.0001
Follow-up (years)
8.1 ± 3.4 8.0 ± 3.2
0.90
Mean ± SD (range), median (range), number of cases (percentage). Ex = ex-smoker, S= current smoker, D =
diet, OA= oral agents, I = insulin, SBP = systolic blood pressure, DBP = diastolic blood pressure, GFR =
glomerular filtration rate, estimated by MDRD (Modification of Diet in Renal Disease) equation, UAE =
urinary albumin excretion.
72
Table 2. Baseline risk factors for diabetic nephropathy development in 158
normoalbuminuric DM 2 patients
Independent
Variables
Relative Risk-HR 95% CI
P
UAE >5.1 µg/min
2.85 1.14-5.74 0.0035
Retinopathy 2.65 1.37-5.12 0.0036
Male sex 2.89 1.38-6.06 0.0049
GFR 0.98 0.96-1.00 0.0514
Fasting plasma glucose 1.007 1.001-1.012 0.012
Cox multiple regression analysis by backward stepwise.
The presence of hypertension at baseline was
excluded from the model (P = 0.16). UAE = urinary albumin excretion, GFR = glomerular filtration rate,
MDRD (Modification of Diet in Renal Disease equation).
73
Table 3. Final clinical and laboratory characteristics of DM 2 patients with and without
progression to DN
Final characteristics
Progressors
(n= 41)
Non-progressors
(n=117)
P*
Body mass index (kg/m
2
)
27.5 ± 4.6 27.0 ± 4.5
0.50
With insulin 26 (65%)
39 (33%)
0.006
Arterial hypertension
35 (85%)
68 (59%)
0.002
SBP (mmHg)
149 ± 23 139 ± 21
0.01
DBP (mmHg)
84 ± 11
80 ± 12
0.09
Fasting plasma glucose (mg/dl)
182 ± 69 166 ± 58
0.15
HbA1
c
(%)
7.5 ± 1.9 6.6 ± 1.6
0.004
Cholesterol (mg/dl)
211 ± 58 209 ± 40
0.84
HDL (mg/dl)
43 ± 14 49 ± 11
0.019
Triglycerides (mg/dl) 150 (45-758) 125 (33-599) 0.014
LDL (mg/dl)
127 ± 44 132 ± 33
0.56
UAE (µg/min)
57.1 (20.2-1137)
5.76 (2.6-19.8)
0.0001
Diabetic Retinopathy
34 (83%)
50 (43%)
<0.0001
Coronary artery disease
27 (66%)
40 (34%)
0.001
Mean ± SD (range), median (range), number of cases (percentage). N= never, Ex = ex-smoker, S= current
smoker, D = diet, OA= oral agents, I = insulin, SBP = systolic blood pressure, DBP = diastolic blood pressure,
UAE = urinary albumin excretion. * P values to comparisons between groups regarding final data. P values to
comparisons between baseline and final data into the same group (P <0.05).
74
Figure 1. Flow chart of normoalbuminuric DM 2 patients.
52 microalbuminuric
60 macroalbuminuric
3 kidney failure
18 lost to follow up
2 excluded
117 with persistent
normoalbuminuria
(10 dead)
34 developed
microalbuminuria
(7 dead)
7 developed
macroalbuminuria
(2 kidney failure,
1 dead)
158 re-evaluated
normoalbuminuric
15 dead
patients
173
normoalbuminuric
followed for 8 years
193 normoalbuminuric
308
DM 2 patients
75
eua24ba
nefrofic
Normo (n
Micro/Ma
0
2
4
6
8
10
12
14
16
18
20
Baseline UAE (µg/min)
Renal status at follow-up
Normo (n=117) Micro + Macro (n=41)
4.8
8.2
P < 0.0001
Median 5.1
Figure 2. Baseline urinary albumin excretion (UAE) in normoalbuminuric and in micro- plus
macroalbuminuric DM 2 patients at follow-up (to UAE >5.1 µg/min, OR 2.4 [1.15-5.06]).
76
Time (years)
181614121086420
Cumulative Survival (%)
1,0
,8
,6
,4
,2
,0
Figure 3. Kaplan-Meier estimates of survival in DM 2 patients (158 re-evaluated + 15 dead before
re-evaluation) according to UAE above the median 5.1 µg/min at baseline.
Patients with baseline
UAE 5.1 µg/min
Patients with baseline
UAE > 5.1 µg/min
Log rank, P = 0.0277
77
Time (years)
181614121086420
Proportion of DN progression (%)
1,0
,8
,6
,4
,2
0,0
Figure 4. Kaplan-Meier estimates of the development of micro- and macroalbuminuria in DM 2
patients according to the presence of diabetic retinopathy (DR) at baseline, n = 158.
With baseline DR
Without baseline DR
Log rank, P = 0.0001
78
COURSE OF MICROALBUMINURIA IN TYPE 2 DIABETIC
PATIENTS: A 6-YEAR FOLLOW-UP STUDY
Short running title: Course of Microalbuminuria in Type 2 Diabetes
Marcia Murussi, MD
1
Nicole Campagnolo
1
Ariane Coester
1
Maristela de Oliveira Beck, MD
1
Jorge L Gross, MD
1
Sandra P Silveiro, MD
1
1
Endocrine Division, Hospital de Clínicas de Porto Alegre,
Universidade Federal of Rio Grande do Sul, Porto Alegre, Brazil
This abstract was presented as a poster at the 26° Congresso Brasileiro de Endocrinologia e
Metabologia, November 6 – 10, 2004.
This paper will be submitted to Diabetes Care for publication.
79
Abstract
OBJECTIVE: The aim of this study was to analyze the clinical course of microalbuminuria
in a cohort of type 2 diabetic (DM 2) patients, and to evaluate risk factors related to diabetic
nephropathy (DN) progression and mortality.
RESEARCH DESIGN AND METHODS: In this prospective study, 52 microalbuminuric
(urinary albumin excretion [UAE] 20-199 µg/min) DM 2 patients, 31 men (60%), 43 (83%)
white and 9 (17%) mixed or black, aged 59 ± 9 years, with diabetes duration of 12 ± 7 years,
and median UAE of 48 µg/min (range 20-193), were followed for a mean period of 6 ± 3
years. They were submitted to renal evaluation by UAE (immunoturbidimetry) and
glomerular filtration rate (GFR) estimated by the four-component Modification of Diet in
Renal Disease equation, at baseline and at follow-up.
RESULTS: Six patients (11.5%) were lost to follow up. Three (5.5%) died before renal
status re-evaluation (from coronary artery disease). Among the 43 (83%) re-examined
patients, 14 (32%) progressed to macroalbuminuria (MA) (5 of them developed kidney
failure), 17 (40%) remained microalbuminuric (MI), and 12 (28%) regressed to
normoalbuminuria (NO). Multiple Cox regression analysis (Hazard Ratio [Confidence
Interval]) showed that baseline variables related to DN progression were UAE above the
median (48 µg/min, 5.16 [1.44-18.58], P = 0.012), and diabetic retinopathy (5.39 [1.24-
23.43], P = 0.025), while age (P = 0.07), and GFR (P = 0.41) were excluded from the
model. At follow-up, 12 (28%) of the patients presented GFR values <60 ml/min/1.73 m
2
(10 in MA, 2 in MI, and none in NO group [P = 0.0001]). A Cox proportional hazards
analysis disclosed that higher baseline GFR (0.96 [0.94-0.99], P = 0.005) protected against
GFR values <60 ml/min/1.73m
2
at follow-up, while UAE 48 µg/min (4.47 [0.85-23.46], P
= 0.077), and age (P = 0.307) were not significant in the model. The mortality rate tended to
be higher in the MA group (log rank, P = 0.059).
80
CONCLUSION: In microalbuminuric DM 2 patients, the progression was not the rule, as a
great proportion of patients remained microalbuminuric (40%) or regressed to
normoalbuminuria (28%). The main risk factors for progression to overt diabetic
nephropathy were higher baseline UAE levels, and the presence of diabetic retinopathy.
Higher baseline GFR values prevented the development of GFR values <60 ml/min/1.73m
2
at follow-up.
Keywords: diabetic nephropathy, microalbuminuria, clinical course
81
There are few observational studies describing the clinical course of microalbuminuria
in type 2 diabetic (DM 2) patients (1-3). Since these studies, conducted in the 90 decade,
have evaluated specific ethnic populations, they do not allow their conclusions to be applied
for different ethnic groups. Additionally, most studies describe only progression rates (4-6),
not taking into account the possibility of remission, and when considering remission rates,
are usually randomized intervention studies (7-9).
The major factors implicated as risk for progression from micro- to macroalbuminuria
are poor glycemic control, systemic hypertension, genetic factors, dyslipidemia, smoking,
and albuminuria per se (10,11). However, their relative roles are far from being certain,
because of the difficulties to appropriately dissect interactive variables.
The definition of microalbuminuria (urinary albumin excretion 20 to 199 µg/min or
30 to 299 mg/24h) (12) was established in the 80 decade based on studies in both type 1
and type 2 diabetes (5,13-15), where progression rates of these patients to macroalbuminuria
were around 80%. However, some recent studies have found lower progression figures of
20% to 50% in DM 2 patients (4,16). This picture has probably changed due to knowledge
of the benefits of intensive treatment, mainly regarding glucose and blood pressure levels
(10).
Microalbuminuric DM 2 patients are a heterogeneous population, with distinct renal
structure lesions (17), and with variable prevalence of 5% to 30% (4,18,19). In addition,
these patients present an increased risk of death, essentially from cardiovascular causes
(4,18,20). At this stage, glomerular filtration rate course is not clear, as some authors have
described a significant decline (21,22), while others have not (3).
82
As long as the incidence of kidney failure (KF) caused by diabetes mellitus is still
rising (23), and as DM 2 patients account for the majority of the diabetic patients starting
kidney replacement therapy (23,24), it is imperative to figure out the meaning and clinical
course of microalbuminuria in these patients. Furthermore, when requiring dialysis, their
survival is remarkably shortened (23,25), usually due to cardiovascular endpoints (25,26). In
Brazilian patients, the 2-year survival is only 50% (26).
The aim of this study was to describe the clinical course of microalbuminuria in a
cohort of microalbuminuric DM 2 patients, pointing out the putative risk factors for
progression to renal impairment and mortality.
RESEARCH DESIGN AND METHODS
Subjects
The population based study was a cohort of 308 DM 2 patients who underwent clinical
and renal evaluation in a tertiary referral center. Among these patients, 256 were excluded
(193 were normoalbuminuric, 60 were macroalbuminuric, and 3 were on dialysis).
Therefore, 52 patients were microalbuminuric (UAE 20-199 µg/min) at baseline, and were
enrolled in this prospective study of 6 ± 3 years (range 2-11) in order to evaluate the clinical
course of microalbuminuria, and to identify the main risk factors for progression of DN and
mortality. Their baseline characteristics are shown in Table 1.
The primary endpoints of the study were progression to persistent macroalbuminuria
(MA) (UAE > 200 µg/min) or kidney failure (KF), or remission to normoalbuminuria (NO)
(UAE <20 µg/min) in the period between the first evaluation and the moment the primary
endpoint of the study was reached, or until the time of the last evaluation if the patient
remained microalbuminuric (MI), or until death.
83
DM 2 diagnosis was established according to WHO criteria (27), without insulin use
for at least 5 years after diagnosis.
Baseline evaluation
At baseline, DM 2 patients underwent a complete clinical interview and physical
examination. Height and weight (light clothes without shoes) were measured and body mass
index (BMI) was calculated (kg/m
2
). Blood pressure was measured twice in the sitting
position, after 5-minute rest with a standard 12.5-cm cuff mercury sphygmomanometer
(phases I-V). Hypertension was defined as systolic blood pressure (SBP) 140 mmHg
and/or diastolic blood pressure (DBP) 90 mmHg, or as any value in patients using
antihypertensive drugs. The presence of diabetic retinopathy (DR) was assessed by fundus
examination performed by an ophthalmologist after mydriasis. Distal sensory neuropathy
was investigated by testing vibratory perception (tuning fork test) along with the presence of
compatible symptoms, abnormal results on Achilles tendon reflexes, and sensory perception
by a 10-g Semmes-Weinstein monofilament at the hallux on each foot. Coronary artery
disease was diagnosed on the presence of any of the following: symptoms of angina,
previous heart attack, possible infarct (WHO Cardiovascular Questionnaire) (28), presence
of resting ECG abnormalities (Minnesota code) (20), revascularization procedures,
perfusion abnormalities (fixed or variable) upon myocardial scintigraphy. Cerebrovascular
disease was established by history of stroke, presence of compatible findings or evident
damage. Peripheral vascular disease was diagnosed by intermittent claudication (WHO
Cardiovascular Questionnaire) (28), absence of posterior tibial pulse upon clinical
examination, or presence of inferior limb amputations. Cardiovascular disease was
diagnosed if coronary artery disease, cerebrovascular disease or peripheral vascular disease
were diagnosed. Smokers were defined as those smoking any kind of smoke at the
beginning of the study, and former smokers were defined as those who had smoked for 1
84
year and had quit before starting the study. Both were analyzed as one group. Non-smokers
were patients who had never smoked. Patients were classified as white or non-white (mixed
or black) according to their own self-report.
Follow-up evaluation
At follow-up evaluation, the patients underwent the same procedures of baseline
examination. Information regarding causes of death was collected from medical records,
death certificates (recording the primary cause of death), individuals’ relatives, and from the
Health Information System. The interview and physical examination were performed at the
same time of the renal evaluation and complemented as necessary in subsequent visits or in
their medical records.
All patients gave their written informed consent to participate. The study protocol
was approved by the Ethics Committee of Hospital de Clínicas de Porto Alegre.
Methods
At baseline, UAE was measured by random and 24-hour collections of sterile urine (2
to 3 samples) over a period of six months by radioimmunoassay (RIA) (DPC, Los Angeles),
with an intra and interassay coefficient of variation (CV) of 2.8% and 2.3%, respectively. At
follow-up, UAE was measured by immunoturbidimetry (IT) (Microalb; Ames-Bayer,
Tarrytown, NY, USA) in random urine samples (29), and confirmed by two 24-hour
collections of sterile urine over a six-month period (coefficient of correlation with RIA r =
0.99, interassay CV = 6.9%, and intra-assay CV = 3.8% for values around 20 µg/ml, and
1.9% for values around 150 µg/ml). Persistence of MA, MI, and NO at follow-up were
defined by at least two random urine samples with values of 173 mg/l, 17-173 mg/l, and
<17 mg/l, respectively (29), and confirmed by 24-h UAE values of <20 µg/min, 20-199
µg/min, and 200 µg/min, respectively (12). Two patients without 24-h collections had 24-h
values calculated by a transforming equation (24-h UAE [µg/min] = 51.759 + 0.297 ×
85
random UAE [mg/l]), based on a linear correlation (r = 0.55, P = 0.0001) obtained from 112
microalbuminuric DM 2 patients with random urine samples and 24-h collections performed
at the same cross-sectional evaluation (data not shown). Administration of angiotensin-
converting enzyme (ACE) inhibitors was interrupted a week before UAE measurements.
Proteinuria was evaluated by pyrogallol red colorimetric method (30).
Glomerular filtration rate (GFR) was estimated by the four-component Modification
of Diet in Renal Disease (MDRD) equation: GFR (ml/min/1.73m
2
) = 186 × (Serum
Creatinine
mg/dl
)
-1.154
× (Age
years
)
-0.203
× (0.742 if female) × (1.210 if African-American) (31).
GFR change () was calculated as final GFR - baseline GFR/number of years of follow-up.
A significant GFR decline to values <60 ml/min/1.73m
2
at follow-up
was defined according
to NKF classification for stages of chronic kidney disease [CKD]: stage 3 = moderately
decreased GFR [30-59 ml/min/1.73m
2
]; stage 4 = severely decreased GFR [15-29
ml/min/1.73m
2
]; and stage 5 = kidney failure [KF])
(31).
Fasting plasma glucose (FPG) was measured by the glucose oxidase UV enzymatic
method. HbA
1
levels were measured at baseline by ion-exchange chromatography (normal
range: 6.5-8.5 %, intra-assay CV 4.1-5.8%). At follow-up, HbA
1c
was measured by high-
performance liquid chromatography (HPLC) procedure (Merck-Hitachi L-9100 Glycated
haemoglobin Analyzer; reference range: 3.2-4.5% (inter- and intra-assay CV= 2.4% and
0.5%, respectively). Baseline HbA
1
levels by ion-exchange chromatography (y) were
converted to HbA
1c
levels by HPLC (x) using the formula y = 1.09x + 1.95 (32). Urea,
cholesterol, and triglycerides were measured by enzymatic methods. LDL cholesterol was
calculated using the Friedewald formula. Creatinine was measured by the Jaffé reaction.
Statistical analysis
Results are expressed as mean ± SD, median (range) or number of cases and
percentage. Incidence was expressed as the number of subjects who developed persistent
86
MA or NO per 1,000 person-years at risk, and as cumulative rate. One sample t test was
done to analyze if changes in GFR were statistically significant. ANOVA and Kruskal-
Wallis methods were employed to compare groups. A Cox proportional-hazard multiple
regression model (backward stepwise method) was used to examine predictors of DN
progression and GFR decline. Variables were excluded from the model if their P value was
>0.10. Results are expressed as relative risk (Hazard Ratio-HR) and 95% Confidence
Interval (CI). The model included baseline variables that were found to be statistically
significant in univariate analyses, as well as those implicated a priori as potential risk
factors (even though not significant in the Cox univariate analysis). Kaplan-Meier curves
were employed to estimate the probability of surviving without progression for DN or death
according to the presence of a given risk factor. A P-value <0.05 (two-sided) was considered
to be statistically significant. All data were analyzed using the Statistical Package the Social
Sciences (SPSS 10.0–Professional Statistics
TM
, SPSS Inc., Chicago, IL, USA).
RESULTS
Six patients were lost to follow-up (11.5%) (4 patients could not be located and 2
refused to participate). Their baseline data were not different from those of the 46 re-
valuated patients in terms of gender, age, systolic and diastolic blood pressure, cholesterol,
median triglycerides and UAE, estimated GFR, serum creatinine, diabetes duration, and
fasting plasma glucose. However, HbA1c (9.3 ± 3.1 vs. 7.4 ± 1.8 %, P = 0.028) was higher
in the lost patients, suggesting that they probably presented worse glucose control. Three
(5.5%) patients died before renal status re-evaluation (from ischaemic heart disease). Their
baseline data were not different from the survivors (data not shown). Therefore, 43 (83%) of
87
the microalbuminuric type 2 DM patients (Fig. 1) were examined regarding clinical course
of DN.
Baseline risk factors for UAE elevation
Among the 43 microalbuminuric DM 2 patients followed for a mean period of 6.3 ±
2.5 years (median 6.1 years [2-11]), 14 (32%) patients progressed to MA (5 of them
developed KF), with a cumulative incidence of progression of 52/1,000 persons-year.
Among those who did not progress, 17 (40%) remained MI, and 12 (28%) regressed to NO,
with a cumulative incidence of regression of 44/1,000 persons-year.
The baseline data of these patients are shown in Table 2. MA patients tended to be
older than the other groups. They presented lower baseline GFR and higher serum
creatinine, and proteinuria values.
Although baseline UAE levels were not statistically significant among the three
groups (Table 2, P = 0.13), MA group presented higher levels when compared to MI + NO
analyzed as one group (P = 0.043), as shown in Fig. 2. Among the 43 patients, 4 out of 21
(19%) with UAE <48 µg/min, and 10 out of 22 (45%) with UAE 48 µg/min progressed to
MA (Relative risk 3.54 [0.9-14.0], P = 0.10). When considering the P
75
level (UAE 110
µg/min, n = 11 patients), 7 (64%) progressed to MA, while 4 (36%) did not progress (3
persisted MI, and 1 regressed to NO, P = 0.022), giving a relative risk for progression of
2.91 (1.32-6.43).
A Cox multivariate analysis was performed with DN as the dependent variable (Table
3), and the baseline variables that appeared as risk factors were UAE above the median (48
µg/min) and diabetic retinopathy, while age and lower GFR values were excluded from the
model.
88
Kaplan-Meier curves confirmed the predictive value of median 24-h UAE (log rank, P
= 0.0022) (Fig. 3), and of diabetic retinopathy (DR) (log rank, P = 0.0394) (Fig 4) in the
progression to MA.
In the 37 patients with available proteinuria, their values were higher among the
progressors. Baseline values above the median (176 mg/24 h) were related to a greater
chance (6.9 fold) of progression to MA (Cox univariate analysis, P = 0.0139). A similar
value (Relative risk 6.14 [1.1-34.2]) was detected by χ
2
analysis, where progressors
presented more frequently proteinuria above 176 mg/24 h in comparison to the non-
progressors (82% [MA] vs. 42% [MI + NO groups], P = 0.036), with a sensitivity of 82% to
identify the patients with the greater chance to progress. None of the patients with baseline
proteinuria <125 mg/24 h progressed to MA (Relative risk 0.65 [0.49-0.87], P =0.036).
There were no differences regarding the presence of pre-existing hypertension in the
MA, MI and NO groups (79%, 65%, and 86%, P = 0.48), as well as in the use of
antihypertensive treatment (73%, 89%, and 90%, respectively, P = 0.49), or ACE inhibitors
(25%, 25%, and 50%, respectively, P = 0.24).
Regarding chronic complications in MA, MI and NO groups, respectively, the
proportion of diabetic retinopathy was 71%, 53%, and 33% (P = 0.15); coronary heart
disease was 14%, 12%, and 42% (P = 0.11); distal sensory neuropathy was 57%, 35%, and
42% (P = 0.47); and peripheral vascular disease was 50%, 38%, and 50% (P = 0.73).
Only two patients did not fit the diagnosis of metabolic syndrome, meaning that they
had only diabetes (mandatory factor) and microalbuminuria (one criteria), without the other
second criteria (hypertension, dyslipidemia or obesity).
Baseline risk factors for GFR decline
Regarding renal function evaluation, baseline GFR values (Table 2) were lower in MA
in comparison to the MI and NO groups (64 ± 21 vs. 83 ± 21 and 81 ± 17 ml/min/1.73m
2
,
89
respectively, P = 0.027), although the proportion of patients with baseline GFR levels <60
ml/min/1.73m
2
were not different among groups (P = 0.13). Serum creatinine was also
higher in patients who later developed overt DN (P = 0.037). Although no significant GFR
changes (ml/min/year) were observed in any of the groups (MA: -2.15 ± 4.34, P = 0.087;
MI: +0.33 ± 3.87, P = 0.73; NO: +2.11 ± 3.78, P = 0.079), those patients who developed
GFR values <60 ml/min/1.73 m
2
at follow-up (n = 12
[28%], 10 from MA and 2 from MI
groups) presented a significative lower baseline GFR values than those who did not (55 ± 17
vs. 85 ± 17 ml/min/1.73 m
2
, P <0.0001). They also had higher baseline UAE, proteinuria,
creatinine, and systolic blood pressure values. Additionally, they were older and all of them
presented hypertension. Baseline clinical and laboratory characteristics of these distinct
groups of patients are presented in Table 4.
A Cox multivariate analysis (Hazard Ratio
[Confidence interval]) identified baseline higher GFR (0.96[0.94-0.99], P = 0.005) as a
protector factor against GFR values <60 ml/min/1.73 m
2
at follow-up, while higher baseline
median UAE values 48 µg/min (4.47[0.85-23.46]), P = 0.077), and age (P = 0.307), were
not significant in the model.
Characteristics of microalbuminuric patients at follow-up
At the end of the study, there were no differences among the groups concerning the
presence of hypertension, systolic and diastolic blood pressure, the use of antihypertensive
treatment, or the number of patients receiving ACE inhibitors or β-blockers (Table 5).
The proportion of patients taking insulin was the same among MA, MI and NO groups
(64%, 65%, and 60%, respectively, P = 0.99), and there was an increased number of insulin
users at follow-up among MA (P = 0.001) and MI (P = 0.034) groups in comparison to the
baseline. There were no differences among MA, MI, and NO patients, respectively, in terms
of BMI (27.8 ± 4.1, 29.3 ± 4.2, and 28.4 ± 3.0 kg/m
2
, P = 0.53), current smoking (14 %,
90
12%, and 0%, P = 0.93), FPG values (174 ± 84, 206 ± 77, and 141 ± 60 mg/dl, P = 0.08),
HbA
1c
(7.2% ± 1.9, 6.7% ± 1.8, and 6.5% ± 2.7, P = 0.74), total cholesterol (230 ± 53, 201 ±
60, and 183 ± 46 mg/dl, P = 0.10), HDL cholesterol (50 ± 14, 44 ± 12, and 41 ± 9 mg/dl, P
= 0.16), and triglyceride levels (144 mg/dl [56-361], 122 mg/dl [63-255], 120 mg/dl [86-
417], P = 0.85). However, FPG levels were lower at follow-up in comparison to baseline
levels in the NO group (P = 0.01).
When we analyzed the evolution of other chronic complications (Table 5), we
observed that, at the end of the study, the prevalence of diabetic retinopathy, coronary artery
disease, and peripheral vascular disease were not different among groups, but NO patients
presented a higher prevalence of distal sensory neuropathy than the others.
Seven out of 14 (50%) MA, 4 out of 17 (24%) MI, and 3 out of 12 (25%) NO patients
died after the last follow-up evaluation, and these proportions were not different (P = 0.24).
Cardiovascular disease was the cause in 4 (29%), 1 (6%), and 3 (25%) patients, respectively
(P = 0.28). Kaplan-Meier survival curve demonstrated that there was no difference in the
mortality rate between progressors (MA) and non-progressors (MI + NO) (log rank
P=0.059) (Fig 5).
CONCLUSIONS
In this prospective study of 43 microalbuminuric DM 2 patients followed for 6 ± 3
years, we found that 32% progressed to macroalbuminuria (MA), 40% remained
microalbuminuric (MI), and 28% regressed to normoalbuminuria (NO). The cumulative
incidence of progression to MA was of 52/1,000 persons-year, quite similar to another
prospective Italian study, with a cumulative incidence of 53.6/1,000 persons-year (33).
Twelve (28%) patients out of 43 progressed to CKD (GFR values <60 ml/min/1.73m
2
), and
91
5 out of 43 (11.6%) progressed to KF requiring dialysis. These figures are comparable to
other studies (34,35).
Although microalbuminuria is established as risk factor for DN and death, little
attention has been paid to the rate of regression to NO without specific intervention
approach in microalbuminuric DM 2 patients (1,2). Schmitz et al followed 52
microalbuminuric patients for 6 years and found that only 9% of them regressed to NO (1).
John et al followed 61 microalbuminuric DM 2 patients for 5 years, and 15% of them
regressed to NO (2). However, these studies were conducted about 10 years ago, when
probably less intensive measures were applied to these high-risk patients. We demonstrated
a regression of 28% with a cumulative incidence of 44/1,000 persons-year. A recent
intervention study showed that 30% of DM 2 patients followed for 7.8 years reached
remission to NO during multifactorial treatment (36). Similar remission rates were achieved
in intervention trials with irbesartan (7) and enalapril (37), but, although the remission rates
with those drugs were greater, the remission rates even in the placebo group (using
antihypertensive drugs other than renin-angiotensin system blockers) could not be neglected,
as it was 21% in comparison to 34% in the 300-mg irbesartan group (P = 0.006) (7), and
15% in comparison to 24% in the enalapril group (P <0.05) (37).
The main risk factors for progression to MA in our study were baseline UAE above
the median (48 µg/min), and diabetic retinopathy (DR). Baseline UAE also influenced the
rate of progression of albuminuria in microalbuminuric DM 2 patients from India (2), and
Denmark (36), and also in Pima Indians (3). Conversely, another study could not document
the same findings, probably because of the shorter follow-up period (6). Higher UAE values,
even in the normal range, have also been documented as a risk factor for the development of
incipient diabetic nephropathy in normoalbuminuric patients (1,38), as well as higher
92
albuminuria (3) and proteinuria (39) values for worsening overt nephropathy in prospective
studies. Accordingly, higher proteinuria levels were also a risk factor for progression in our
patients.
DR was a risk factor for progression in our microalbuminuric patients, in accordance
with other prospective study (36). We have previously shown that DR and high normal UAE
were risk factors for the development of incipient diabetic nephropathy in a cohort of
normoalbuminuric DM 2 patients (38). DR was also a risk for worsening overt nephropathy
(40). Taking this information into account, DR has been claimed as a risk for DN
progression independently of DN stage.
Although ADA (12) does not emphasize the performance of GFR measurements as a
routine renal evaluation, there is growing evidence that it is necessary to evaluate GFR
(31,41). In our cohort, baseline GFR values were lower in those who progressed, and normal
baseline GFR values protected patients against GFR values <60 ml/min/1.73m
2
at follow-up.
Although these patients presented higher baseline UAE values, we could not confirm the
role of UAE as a predictor of lower GFR at follow-up as previously shown in Pima Indians
(3), and in Brazilian patients (42). A decreasing GFR has been observed in patients who
progress to MA (3,36). Even microalbuminuric (21), and also normoalbuminuric (41)
patients may already present a significant GFR decline. In our study, however, we could not
detect GFR changes in any group along the time. Most of the previous studies evaluated
GFR by a direct measurement, usually
51
Cr-EDTA (21,36,42) or iothalamate (3), while our
GFR was evaluated by estimation, with the four-component MDRD equation (31).
However, the MDRD equation has not yet been well validated in DM patients, and it may
indeed underestimate GFR decline in this group of patients. In CKD Chinese patients, it was
found that the lower the GFR measured by
99m
Tc-DTPA, the greater the overestimation by
93
MDRD equation, mainly at worse CKD stages (43). In a previous report, we have
demonstrated that GFR decline (measured by
51
Cr-EDTA method) in microalbuminuric
patients was 4.7 ml/min/year (21), similar to the findings of 3.7 ml/min/year of another
study employing the same method (36). Therefore, we conclude that in our study, MDRD
equation was not able to identify changes in GFR levels, maybe due to intrinsic limitations
of the method. This being so, the usefulness of MDRD equation in DM 2 patients remains to
be investigated.
We did not find any association between hypertension and progression to overt
nephropathy, in accordance with other studies (2,6,33). However, this finding should be
considered with caution because most of the microalbuminuric patients were hypertensive at
baseline. Additionally, although all patients were under antihypertensive treatment at the
end of the study, the regression group presented lower diastolic blood pressure and better
glucose control at follow-up in comparison to baseline values, which could have possibly
contributed to the observed regression. We could not find any differences in the proportion
of ACE inhibitors users among the groups at follow-up, in accordance with a study
conducted in type 1 diabetes, where they did not observe a relation between ACE inhibitors
and regression to NO (44). Without any question, hypertension treatment has been shown to
offer a huge benefit to diabetic patients, leading to microalbuminuria regression (7,36), or
UAE remission (8,9).
The mortality rate was slightly higher in the new onset MA group, although not
significantly, than in those who remained MI or regressed to NO, probably because of the
small number of outcomes in our cohort. As a matter of fact, UKPDS study (4) has
definitely demonstrated greater mortality rates as DN progressed to advanced stages, and
cardiovascular disease was always the leading cause of death (4,18). In our study, all deaths
94
were cardiovascular in those who regressed to NO, and their mortality rate was not different
from a population cohort of normoalbuminuric patients followed for 8 years who remained
NO for the whole period (3 out of 12 [25%] vs. 10 out of 117 [10%], P = 0.10) (45).
One possible drawback of our study is the small number of patients evaluated, and
the lack of GFR measurements by a more precise method instead of an estimated one.
In conclusion, in this observational study of microalbuminuric DM 2 patients we
found that 32% progressed to MA, 40% remained MI and another 28% regressed to NO.
The major baseline risk factors related to progression were higher levels of baseline UAE,
and diabetic retinopathy. Baseline GFR values were already lower in new onset MA
patients, and higher baseline GFR values protected against GFR values <60 ml/min/1.73m
2
at follow-up.
95
Acknowledgments
This study was supported by grants from Programa de Apoio a Núcleos de Excelência
and Hospital de Clínicas de Porto Alegre. MM was the recipient of a scholarship from
Fundação de Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES).
We would like to thank Vânia Naomi Hirakata and Daniela Benzano Bugamin for the
support in the statistical analyses.
96
REFERENCES
1. Schmitz A, Vaeth M, Mogensen CE: Systolic blood pressure relates to the rate of
progression of albuminuria in NIDDM. Diabetologia 37: 1251-1258, 1994
2. John L, Sunder Rao PSS, Kanagasabapathy AS: Rate of progression of albuminuria in
type II diabetes. Diabetes Care 17:888-890, 1994
3. Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE, Hirschman GH,
Myers BD: Development and progression of renal disease in Pima Indians with non-
insulin-dependent diabetes mellitus. N Engl J Med 335:1636-1642, 1996
4. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR: Development and
progression of nephropathy in type 2 diabetes: the United Kingdom Prospective
Diabetes Study (UKPDS 64). Kidney Int 63:225-232, 2003
5. Mogensen CE: Microalbuminuria predicts clinical proteinuria and early mortality in
maturity-onset diabetes. N Engl J Med 310:356-360, 1984
6. Smulders YM, Rakic M, Stehouwer CDA, Weijers RNM, Slaats EH, Silberbusch J:
Determinants of progression of microalbuminuria in patients with NIDDM. A
prospective study. Diabetes Care 20:999-1005, 1997
7. Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P: The
effect of irbesartan on the development of diabetic nephropathy in patients with type 2
diabetes. N Engl J Med 345:870-878, 2001
8. Agardh CD, Gardia Puig J, Charbonnel B, Angelkort B, Barnett AH: Greater reduction
of urinary albumin excretion in hypertensive type II diabetic patients with incipient
nephropathy by lisinopril than by nifedipine. J Hum Hypertens 10:185-192, 1996
97
9. Schrier RW, Estácio RO, Esler A, Mehler P: Effects of aggressive blood pressure control
in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney
Int 61:1086-1097, 2002
10. Gross JL, Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T: Diabetic
Nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164-176, 2005
11. Deferrari G, Ravera M, Berruti V: Treatment of diabetic nephropathy in its early stages.
Diabetes Metab Res Rev 19:101-114, 2003
12. American Diabetes Association. Diabetic Nephropathy: position statement. Diabetes
Care 27 (suppl 1):s79-s83, 2004
13. Viberti GC, Hill RD, Jarret RJ, Argyropoulos A, Mahmud U, Keen H:
Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes
mellitus. Lancet 1:1430-1432, 1982
14. Parving HH, Oxenboll B, Svendsen PA, Christiansen JS, Andersen AR: Early detection
of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary
albumin excretion. Acta Endocrinol (Copenh) 100: 550-555, 1982
15. Mogensen CE, Christensen CK: Predicting diabetic nephropathy in insulin-dependent
diabetes mellitus. N Engl J Med 311:89-93, 1984.
16. Caramori ML, Fioretto P, Mauer M: The need for early predictors of diabetic
nephropathy risk. Is albumin excretion rate sufficient? Diabetes 49: 1399-1408, 2000
17. Brocco E, Fioretto P, Mauer M, Saller A, Carraro A, Fricato F, Chiesura-Corona M,
Bianchi L, Baggio B, Maioli M, Abaterusso C, Velussi M, Sambataro M, Virgili F, Ossi
E, Nosardi R: Renal structure and function in non-insulin dependent diabetic patients
with microalbuminuria. Kidney Int 52 (suppl 63):s40-s44, 1997
98
18. Valmadrid CT, Klein R, Moss SE, Klein BE: The risk of cardiovascular disease
mortality associated with microalbuminuria and gross proteinuria in persons with older-
onset diabetes mellitus. Arch Intern Med 160:1093-1100, 2000
19. Scheffel RS, Bortolanza D, Weber CS, Costa LA, Canani LH, Dos Santos KG, Crispim
D,Roisenberg I,Lisboa HR, Tres GS, Tschiedel B, Gross JL: Prevalence of micro and
macroangiopatic chronic complications and their risk factors in the care of outpatients
with type 2 diabetes mellitus. Rev Assoc Med Bras 50:263-267, 2004
20. Beck MO, Silveiro SP, Friedman R, Clausell N, Gross JL: Asymptomatic coronary
artery disease is associated with cardiac autonomic neuropathy and diabetic nephropathy
in type 2 diabetic patients. Diabetes Care 22:1745-1747, 1999
21. Murussi M, Gross JL, Silveiro SP: Glomerular filtration rate changes in
normoalbuminuric and microalbuminuric type 2 diabetic patients and normal
individuals: a 10-year follow-up. J Diabetes Complications 2005, in press.
22. Nosadini R, Velussi M, Brocco E, Bruseghin M, Abaterusso C, Saller A, Dalla Vestra
M, Carraro A, Bortoloso E, Sambataro M, Barzon I, Frigato F, Muolo B, Chiesura-
Corona M, Pacini G, Baggio B, Piarulli F, Sfriso A, Fioretto P: Course of renal function
in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes
49:476-484, 2000
23. Van Dijk PC, Jager KJ, Stengel B, Gronhagen-Rska C, Feest TG, Briggs JD: Renal
replacement therapy for diabetic end-stage renal disease: data from 10 registries in
Europe (1991-2000). Kidney Int 67(4):1489-1499, 2005
24. US Renal Data System: Am J Kidney Dis 45:S69-S80, 2005
25. Chantrel P, Enache I, Bouiller M, Kolb I, Kunz K, Petitjean P, Moulin B, Hannedouche
T: Abysmal prognosis of patients with type 2 diabetes entering dialysis. Nephrol Dial
Transpl 14: 129-136, 1999
99
26. Bruno RM, Gross JL: Prognostic factors in Brazilian diabetic patients starting dialysis. A
3.6-year follow-up study. J Diabetes Complications 14: 226-271, 2000
27. World Health Organization. Definition, Diagnosis and Classification of Diabetes
Mellitus and its Complications, Part 1, Diagnosis and Classification of Diabetes
Mellitus. Geneva: WHO, 1999.
28. Rose G, Blackburn H, Gillum R, Prineas R. Cardiovascular Survey Methods. WHO
Monograph Series, 2
nd
edn. Washington DC: WHO, 123-129, 1982.
29. Zelmanovitz T, Gross JL, Oliveira J, Paggi A, Tatsch M, Azevedo MJ: The receiver
operating characteristics curve in the evaluation of a random urine specimen as a
screening test for diabetic nephropathy. Diabetes Care 20: 516-519, 1997
30. Kaplan A: Clinical Chemistry-Interpretation and Techniques. 4
th
Edition, William and
Wilkims CO, 1995.
31. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD,
Lau J, Eknoyan G: National Kidney Foundation Practice Guidelines for Chronic Kidney
Disease: evaluation, classification, and estratification. Ann Intern Med 139: 137-147,
2003.
32. Camargo JL, Zelmanovitz T, Paggi A, Friedman R, Gross JL: Accuracy of conversion
formulae for estimation of glycohaemoglobin. Scand J Clin Lab Invest 58: 521-528,
1998
33. Bruno G, Merletti F, Biggeri A, Bargero G, Ferrero S, Pagano G, Perin PC: Progression
to overt nephropathy in type 2 diabetes. Diabetes Care 26:2150-2155, 2003
34. Rossing K, Christensen PK, Hovind P, Tarnow L, Rossing P, Parving HH: Progression
of nephropathy in type 2 diabetic patients. Kidney Int 66:1596-1605, 2004
100
35. Humphrey LL, Ballard DJ, Frohnert PP, Chu CP, O’ Fallon WM, Palumbo PJ: Chronic
renal failure in non-insulin dependent diabetes mellitus: a population-based study in
Rochester, Minnesota. Ann Intern Med 111:788-796, 1989
36. Gaede P, Tarnow L, Vedel P, Parving H-H, Pedersen O: Remission to
normoalbuminuria during multifactorial treatment preserves kidney function in patients
with type 2 diabetes and microalbuminuria. Nephrol Dial Transplant 19:2784-2788,
2004
37. Chan JC, Ko GT, Leung DH, Cheung RC, Cheung MY, So WY, Swaninathan R,
Nicholls MG, Critchley JA, Cockram CS: Long-term effects of angiotensin-converting
enzyme inhibitors and metabolic control in hypertensive type 2 diabetic patients. Kidney
Int 57:590-600, 2000
38. Murussi M, Baglio P, Gross JL, Silveiro SP: Risk factors for microalbuminuria and
macroalbuminuria in type 2 diabetic patients. Diabetes Care 25:1101-1103, 2002
39. Ruggenenti P, Gambara V, Perna A, Bertani T, Remuzzi G: The nephropathy of non-
insulin dependent diabetes: Predictors of outcome relative to diverse patterns of renal
injury. J Am Soc Nephrol 9: 2336-2343, 1998
40. Parving HH, Mogensen CE, Thomas MC, Brenner BM, Cooper ME: Poor prognosis in
proteinuric type 2 diabetic patients with retinopathy: insights from the RENAAL study.
QJM 98:119-126, 2005
41. Kramer HJ, Nguyen QD, Curhan G, Ilsu C: Renal insufficiency in the absence of
albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA
289:3273-3277, 2003
42. Silveiro SP, Friedman R, Azevedo MJ, Canani LH, Gross JL: Five-year prospective
study of glomerular filtration rate and albumin excretion rate in normofiltering and
hyperfiltering normoalbuminuric NIDDM patients. Diabetes Care 19:171-174, 1996
101
43. Zuo Li, Ying-Chun M, Zhou YH, Wang M, Xu GB, Wang HY: Application of GFR-
estimating equations in Chinese patients with chronic kidney disease. Am J Kidney Dis
45:463-472, 2005
44. Perkins BA, Ficonello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS:
Regression of microalbuminuria in type 1 diabetes. N Engl J Med 348: 2285-93, 2003
45. Silveiro SP, Murussi M, Campagnolo N, Beck MO, Gross JL: High normal levels of
albuminuria are predictors of diabetic nephropathy in Brazilian type 2 diabetic patients:
an 8-year follow-up study (Abstract), ADA 65
th
Scientific Session, 2005
102
Table 1. Baseline clinical and laboratory characteristics of the 52 microalbuminuric DM 2
patients.
Clinical Characteristics Laboratory Characteristics
Male sex (%)
31 (60%)
Fasting plasma glucose (mg/dl)
191 ± 83
Ethnicity (white/mixed or black)
43/9
HbA1c (%)
7.6 ± 2.0
Age (years)
59 ± 9
Cholesterol (mg/dl)
207 ± 46
Duration of diabetes (years)
12 ± 7
HDL (mg/dl) (n=48)
46 ± 14
Body mass index (kg/m
2
)
28.6 ± 4.2
Triglycerides (mg/dl)
134 (35-423)
Smoking (N/ Ex + S )
32/10/10
Urinary urea (g/24h) (n=41)
26.1 ± 11.3
Type of treatment (D/OA/I)
7/27/18
GFR (ml/min/1.73m
2
)
78 ± 22
Arterial hypertension
37 (71%)
GFR < 60 ml/min/1.73m
2
8 (16%)
SBP (mmHg)
153 ± 25
Serum Creatinine (mg/dl)
1.04 ± 0.29
DBP (mmHg)
90 ± 15
24-h UAE (µg/min)
47.8 (20-193)
Diabetic retinopathy
30 (58%)
Random UAE (mg/l)
51 (2.5-504.3)
Coronary heart disease
12 (23%)
Proteinuria (mg/24 h)
(n=45)
176 (15-1596)
Mean ± SD (range), median (range), number of cases (percentage). N= never, Ex = ex-smoker, S= current
smoker, D = diet, OA= oral agents, I = insulin. SBP = systolic blood pressure, DBP = diastolic blood pressure,
GFR = glomerular filtration rate (estimated by MDRD equation), UAE = urinary albumin excretion.
103
Table 2. Baseline clinical and laboratory characteristics of microalbuminuric DM 2 patients
according to clinical course of DN at follow-up.
Baseline Characteristics
Progressed to
MACRO
(n= 14)
Remained
MICRO
(n=17)
Regressed to
NORMO
(n=12)
P
Male sex
7 (50%) 9 (53%) 8 (67%) 0.66
Ethnicity (white/mixed or black)
11/3 13/4 11/1 0.55
Age (years)
64 ± 6 58 ± 9 57 ± 9
0.054
Duration of diabetes (years)
13 ± 7 13 ± 8 11 ± 6
0.65
Body mass index (kg/m
2
)
28 ± 4 30 ± 4 27 ± 4
0.49
Smoking (N/ Ex + S )
9/1/4 12/2/3 8/3/1 0.93
Type of treatment (D/OA/I)
1/6/7 5/8/4 1/6/5 0.33
Arterial hypertension (%)
11 (79%) 11 (65%) 10 (86%) 0.48
SBP (mmHg)
155 ± 24 148 ± 27 160 ± 31
0.49
DBP (mmHg)
88 ± 14 88 ± 12 97 ± 22
0.22
Fasting plasma glucose (mg/dl)
177 ± 87 208 ± 102 178 ± 35
0.50
HbA1
c
(%)
7.3 ± 1.44 7.34 ± 1.77 7.23 ± 1.94
0.99
Cholesterol (mg/dl)
211 ± 45 208 ± 49 184 ± 40
0.27
HDL (mg/dl)
53 ± 16 46 ± 13 40 ± 14
0.11
Triglycerides (mg/dl)
129 (51-293) 132 (35-348) 143 (70-386) 0.81
GFR (ml/min/1.73m
2
)
64 ± 21* 83 ± 21 81 ± 17
0.027
GFR <60 ml/min/1.73m
2
5 (36%) 2 (12%) 1 (7%) 0.13
Serum creatinine (mg/dl)
1.21 ± 0.36* 0.96 ± 0.25 0.98 ± 0.19
0.037
UAE (µg/min)
104.7 (27-193) 40.5 (20-163) 42.7 (22-171) 0.12
Proteinuria (mg/24 h)
342 (144-893)* 140 (49-715) 130 (29-1596) 0.022
Follow-up (years)
5.7 ± 2.5 6.7 ± 2.6 6.5 ± 2.3
0.51
Mean ± SD (range), median (range), number of cases (percentage). N= never, Ex = ex-smoker, S= current
smoker, D = diet, OA= oral agents, I = insulin. SBP = systolic blood pressure, DBP = diastolic blood pressure,
GFR = glomerular filtration rate (estimated by MDRD equation), UAE = urinary albumin excretion. * P <0.05
to MA regarding the other 2 groups. To proteinuria: n=11, 15, and 11, respectively
.
104
Table 3: Baseline risk factors for diabetic nephropathy progression in 43 microalbuminuric
type 2 diabetic patients.
Independent
Variables
Relative Risk-HR 95% CI
P
Median UAE 48 µg/min
5.16 1.44-18.58 0.012
Retinopathy
5.39 1.24-23.43 0.025
Cox multivariate analyses, backward stepwise method. Adjusted for age (P = 0.07), and estimated GFR
(MDRD) ml/min/1.73 m
2
(P = 0.405).
105
Table 4. Baseline clinical and laboratory characteristics of DM 2 patients with and without
GFR values <60 ml/min/1.73 m
2
at follow-up.
Baseline Characteristics
GFR <60
ml/min/1.73 m
2
(n=12)
GFR 60
ml/min/1.73 m
2
(n= 31)
P
Male sex 6 (50%) 18 (58%) 0.74
Ethnicity (white/non-white) 8/4 27/4 0.19
Age (years)
64 ± 6 58 ± 9
0.037
Duration of diabetes (years)
12.8 ± 6.0 12.5 ± 7.3
0.89
Body mass index (kg/m
2
)
29.1 ± 2.5 28.6 ± 4.8
0.65
Arterial hypertension (%) 12 (100%) 20 (65%) 0.019
SBP (mmHg)
165 ± 15 149 ± 29
0.028
DBP (mmHg)
92 ± 13 90 ± 17
0.75
Fasting plasma glucose (mg/dl)
152 ± 77 204 ± 82
0.067
HbA1
c
(%)
6.8 ± 1.6 7.5 ± 1.7
0.27
Cholesterol (mg/dl)
202 ± 48 202 ± 46
0.99
HDL (mg/dl)
48 ± 16 46 ± 15
0.74
Triglycerides (mg/dl) 132 (51-293) 135 (35-386) 0.97
GFR (ml/min/1.73m
2
)
55 ± 17 85 ± 17
0.0001
Serum Creatinine (mg/dl)
1.36 ± 0.30 0.92 ± 0.18
0.0001
UAE (µg/min)
121.4 (30-193) 42.7 (20-170) 0.001
Median UAE (48 µg/min)
10 (83%) 12 (39%) 0.016
Proteinuria (mg/24 h)
(n=27 vs. 10)
441 (140-893) 144 (29-1596) 0.001
Mean ± SD (range), median (range), number of cases (percentage). SBP = systolic blood pressure, DBP =
diastolic blood pressure, GFR = glomerular filtration rate (estimated by MDRD equation), UAE = urinary
albumin excretion.
106
Table 5: Final characteristics of DM 2 patients according to DN evolution in 6 years.
Final Characteristics
Progressed to
Macro
(n= 14)
Remained
Micro
(n=17)
Regressed to
Normo
(n=12)
P *
Arterial hypertension (%)
12 (86%) 14 (82%)
11 (92%) 0.775
SBP (mmHg)
154 ± 20 151 ± 21 152 ± 19
0.883
DBP (mmHg)
83 ± 7 86 ± 12
85 ± 15
0.689
With antihypertensive treatment
100 % 100 % 100 % 1.00
ACE inhibitor
7 (58%) 11(79%) 9 (82%) 0.375
β-blocker
4 (33%) 6 (43%) 6 (55%) 0.591
GFR (ml/min/1.73m
2
)
56 ± 24
86 ± 21 88 ± 11
0.0001
GFR <60 ml/min/1.73m
2
10 (71%)
2 (12%) 0 (0%) 0.0001
UAE (µg/min)
1104 (250-3056)
77.6 (28-191) 6.4 (3.6-15.0) 0.0001
Proteinuria (mg/24 h)
2083 (158-13000)
304 (107-564) 158 (75-455) 0.0001
Diabetic Retinopathy
12 (86%) 14 (82%) 9 (82%) 0.957
Coronary artery disease
10 (71%) 8 (47%) 9 (75%) 0.222
Distal sensory neuropathy
9 (64%)
8 (47%)
11 (92%)
0.046
Peripheral vascular disease
11 (79%) 6 (34%) 8 (67%) 0.061
Mean ± SD (range), median (range), number of cases (percentage). SBP = systolic blood pressure, DBP =
diastolic blood pressure, ACE = angiotensin-converting enzyme, GFR = glomerular filtration rate, estimated
by MDRD equation, UAE = urinary albumin excretion. To NO, MI and MA, respectively: UAE n = 12, 17,
and 13; to proteinuria n = 8, 13, and 11; and to peripheral vascular disease n = 12, 16, and 14. * P values to
comparisons between groups regarding to final data. † P values to comparisons between baseline and final
data into the same group < 0.05. ‡ Macro vs. Normo and Micro, P = 0.001. ¶ Normo vs. Micro and Macro, P
= 0.001
107
Figure 1. Flow chart of the microalbuminuric DM 2 patients.
52 microalbuminuric
at baseline
6 lost to follow-up
43 re-evaluated
(6 ± 3 years of follow-up)
12
normoalbuminuric
(3 dead)
17
microalbuminuric
(4 dead)
14 macroalbuminuric
(5 kidney failure)
(7 dead)
3 dead
(coronary artery
disease)
108
NORMO + MICRO (n = 29) MACRO (n = 14)
0
100
200
Baseline 24 h UAE (µg/min)
Renal status at follow-up
P =0.043
42.7 (20-171)
104.7 (27-193)
Figure 2. Baseline UAE (µg/min) values according to follow-up renal status: progressor group
(MA, n=14) vs. non-progressor group (MI + NO, n = 29). Outliers are indicated in yellow circles.
109
Time (years)
121086420
Proportion of DN progression (%)
1,0
,8
,6
,4
,2
0,0
Figure 3. Kaplan-Meier estimates of DN progression according to baseline median UAE (48
µg/min), n = 43.
Log rank,
P
= 0.0022
Baseline UAE
48
µ
g/min
Baseline UAE
<
48
µ
g/min
110
Time (years)
121086420
Proportion of DN progression (%)
1,0
,8
,6
,4
,2
0,0
Figure 4. Kaplan-Meier estimates of DN progression according to the presence of diabetic
retinopathy (DR) at baseline, n=43.
Log rank,
P
= 0.0394
With baseline DR
Without baseline DR
111
Time (years)
121086420
Cumulative Survival (%)
1,0
,8
,6
,4
,2
0,0
Figure 5. Kaplan-Meier estimates of cumulative survival regarding DN status at follow-up (n=43).
Non-progressors (NO + MI)
Progressors (MA)
Log rank,
P
= 0.059
112
COMENTÁRIOS FINAIS
A nefropatia diabética (ND) é considerada uma entidade médica relevante face ao
prognóstico desfavorável que acarreta, especialmente em relação ao aumento do risco
cardiovascular. No presente trabalho, observou-se que níveis mais elevados de excreção
urinária de albumina (EUA), embora dentro da faixa convencional de normalidade, foram
identificados como fator de risco marcante para a progressão e para a instalação da doença,
tanto nos pacientes com microalbuminúria, como naqueles com normoalbuminúria,
respectivamente, caracterizando um
continuum de risco conforme aumentam os valores da
EUA. Além disso, esses níveis mais elevados de EUA também aumentaram o risco de
mortalidade.
Portanto, novos pontos de corte nos valores de albuminúria que definem risco de
progressão renal deverão ser instituídos, substituindo os valores atuais de consenso da
Associação Americana de Diabetes. Assim, a fase de microalbuminúria, definida
tradicionalmente pela presença de valores de EUA de 20-200
µg/min e considerada como
fase preditiva de progressão renal e de risco cardiovascular, deverá ser redefinida com
adoção de valores mais baixos permitindo a identificação mais precoce dos casos de risco.
Por outro lado, demonstramos também, em concordância com dados da literatura,
que não apenas os valores de albuminúria seriam indicativos do risco de progressão da
nefropatia, como o seriam também a ocorrência de taxas de filtração glomerular (TFG)
relativamente mais baixas, indicando possivelmente um subtipo ou uma apresentação
alternativa do quadro de ND. Portanto, é reforçada a indicação formal de pesquisar a
presença de ND tanto através da medida da EUA, como também através da avaliação da
TFG, cuja análise é atualmente recomendada através de equação sugerida pela
National
Kidney Foundation, disponível online.
113
Adicionalmente, também demonstramos que cerca de 30% dos pacientes
microalbuminúricos podem apresentar regressão para normoalbuminúria, sendo essa cifra
semelhante à encontrada nos ensaios clínicos que avaliaram especificamente o efeito de
drogas antiproteinúricas. Dessa forma, nossos achados reforçam a hipótese de que a
presença de microalbuminúria vem sendo considerada não como fase em si do curso da
nefropatia, mas sim como um fator dentro do contexto da síndrome metabólica. Esse
conjunto de achados, incluindo a alteração renal mais a dislipidemia e a hipertensão arterial,
compartilhariam um
background comum, de predisposição genética, com conseqüentes
alterações metabólicas, decorrentes de resistência insulínica.
O entendimento completo dos mecanismos de instalação e do curso da nefropatia
diabética são caminho para a instituição de medidas mais eficazes de forma cada vez mais
precoce.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo