Download PDF
ads:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE BIOCIÊNCIAS
PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA
CARACTERIZAÇÃO DE UMA ZONA HÍBRIDA ENTRE DOIS FELÍDEOS
NEOTROPICAIS UTILIZANDO MÚLTIPLOS LOCOS NUCLEARES
Alexsandra Schneider
Orientador: Dr. Eduardo Eizirik
DISSERTAÇÃO DE MESTRADO
PORTO ALEGRE – RS – BRASIL
2009
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
"A compaixão para com os animais é das mais nobres virtudes da natureza humana."
Charles Darwin
Dedico aos meus pais
ads:
AGRADECIMENTOS
Muitas pessoas contribuíram para a realização deste trabalho. Agradeço a todas, mas
especialmente
Ao meu orientador Eduardo Eizirik, pela oportunidade e confiança depositada em meu
trabalho, pelo acompanhamento, estímulo e pelo grande aprendizado, além da compreensão,
apoio e amizade.
À Tatiane C. Trigo, co-orientadora e amiga, por toda paciência, pelos ensinamentos e
acompanhamento durante várias etapas do trabalho, me auxiliando a entender essa área o
complicada que é a hibridação, contribuindo imensamente para a realização deste projeto.
A todos os meus colegas do Genoma, em especial, Taiana, Manoel, Fê Pedone,
Cristine, Mirian, Ana Lúcia, Flávia, Marcelo, Talita, Anelise, Lucas, Ricardo e Thomaz pelo
companheirismo e por tornarem o laboratório um ambiente tão agradável e descontraído para
trabalhar. Obrigada pela atenção e ajuda prestada sempre que necessário e, acima de tudo,
pela amizade.
À Cladi, pela sua paciência e disponibilidade em sempre ajudar qualquer que fosse a
dúvida, facilitando nosso trabalho.
Ao Manoel, amigo e colega, pela paciência ao me ensinar as regras básicas de
funcionamento do Genoma e pela ajuda sempre que solicitado.
Ao Ricardo, Nelson e Alice pela atenção e ajuda ao solucionar os problemas no uso do
PHASE e de outros programas computacionais.
A todos os colaboradores e instituições que contribuíram com o projeto através do
envio de amostras.
Aos meus pais Anor e Gladis, a base do que sou hoje. Obrigada por todo amor,
dedicação e confiança prestados durante toda minha vida e por darem oportunidades para que
eu pudesse crescer como pessoa e como profissional. Ao meu irmão Cassius, pelo carinho e
acolhimento em Porto Alegre, pela atenção, compreensão e ajuda na resolução de problemas
do dia a dia e à Lisiane, sempre muito prestativa me dando força com palavras de carinho e
incentivo.
À CAPES pela bolsa de estudo concedida no último ano de mestrado.
E, finalmente, aos felinos selvagens, seres tão fofos e fascinantes que despertaram meu
interesse e minha vontade de contribuir de alguma forma para a preservação deles.
V
SUMÁRIO
RESUMO............................................................................................................................ VI
ABSTRACT....................................................................................................................... VII
APRESENTAÇÃO ...........................................................................................................VIII
ARTIGO: Análise evolutiva de uma zona híbrida utilizando sequências de genes nucleares ...1
Resumo ..............................................................................................................................2
Introdução ..........................................................................................................................3
Materiais e Métodos ...........................................................................................................6
Resultados........................................................................................................................11
Discussão .........................................................................................................................22
Conclusão.........................................................................................................................25
Tabelas.............................................................................................................................27
Legenda das Figuras ............................................................................................................ 47
Figuras ................................................................................................................................. 48
Referências Bibliográficas .................................................................................................. 53
Apêndice ..........................................................................................................................57
VI
RESUMO
A hibridação natural entre espécies selvagens é atualmente reconhecida como um processo
bastante comum, que pode apresentar relevância significativa na trajetória evolutiva das
espécies envolvidas. Este processo pode consistir de eventos esporádicos entre espécies
simpátricas, ou da formação de zonas híbridas estreitas entre táxons com distribuição
parapátrica, ou até mesmo de um intenso processo de miscigenação entre as populações
parentais (Harrison 1993). Leopardus tigrinus e L. geoffroyi são duas espécies de pequenos
felinos proximamente relacionados, com distribuições basicamente alopátricas na Região
Neotropical. No Estado do Rio Grande do Sul (RS), as duas espécies apresentam uma zona de
contato geográfico onde foi verificada a existência de um complexo e extenso padrão de
hibridação. Este estudo tem como objetivo caracterizar novos marcadores nucleares a serem
utilizados na investigação genética desta zona híbrida a fim de quantificar o processo de
hibridação e ampliar os conhecimentos existentes sobre a magnitude e direcionalidade deste
fenômeno. Para a realização deste trabalho foram utilizadas sequências de cinco locos
localizados no cromossomo X e dois locos autossômicos, além de onze locos de
microssatélites, em uma amostra total de 68 indivíduos, incluindo prováveis puros e híbridos.
Através da construção de redes de haplótipos e de análises Bayesianas de alocação
populacional dos indivíduos, foi possível identificar 48 híbridos, a maioria deles com
procedência do RS. No entanto, a amplitude geográfica do gradiente genético entre as duas
espécies parece indicar uma extensão da zona híbrida para além do estado do RS. Os
resultados corroboram estudos recentes documentando a existência de um processo atual de
hibridação entre estas espécies, e indicam a ocorrência de um padrão de introgressão
genômica bidirecional e provavelmente assimétrico.
VII
ABSTRACT
Characterization of a hybrid zone between two Neotropical cats utilizing multiple nuclear loci
Natural hybridization among wild species is currently recognized as a sufficiently common
process that it can present significant relevance in the evolutionary trajectory of the involved
species. This process can be characterized by the occurrence of sporadic events between
sympatric species, by the formation of narrow hybrid zones among taxa with parapatric
distribution, or even by an extensive process of admixture between parental populations
(Harrison 1993). Leopardus tigrinus and L. geoffroyi are two closely related species of small
felids with essentially allopatric distributions in Neotropical Region. In the State of Rio
Grande do Sul (RS), in southern Brazil, the two species present a geographic contact zone
where we have previously identified the existence of a complex and extensive pattern of
hybridization. To better understand the dynamics of this process, it is critical to combine the
use of multiple approaches, including the assessment of different types of molecular markers,
whose different sensitivity to demographic processes may illuminate the forces shaping this
hybrid zone. The objective of this study was to develop new sequence-based nuclear markers
that are informative for the investigation of this hybrid zone, aiming to characterize the
ongoing admixture and to expand the knowledge on the magnitude and directionality of this
process. Our final data set includes DNA sequences of seven different segments (five of them
located on the X chromosome, and two on autosomes), which were analyzed along with 11
microsatellite loci in a sample of 68 individuals of both pure and hybrid origin. Through the
use of haplotype networks and Bayesian admixture analyses it was possible to identify 48
hybrids, most of them originating from RS state. Nevertheless, the geographic breadth of the
genetic gradient between the two species appears to indicate that the hybrid zone extends
beyond RS state. Our results corroborate recent studies that reported the existence of ongoing
hybridization between these species, and suggest a pattern of bidirectional and likely
asymmetric genomic introgression.
VIII
APRESENTAÇÃO
O presente trabalho, intitulado “Caracterização de uma zona híbrida entre dois felídeos
Neotropicais utilizando múltiplos locos nucleares”, foi desenvolvido como parte dos
requisitos necessários para obtenção do título de Mestre junto ao Programa de Pós-Graduação
em Zoologia da Pontifícia Universidade Católica do Rio Grande do Sul.
O propósito deste trabalho foi aprofundar a caracterização genética de uma zona
híbrida entre Leopardus tigrinus e Leopardus geoffroyi no Estado do Rio Grande do Sul, com
o uso de diferentes tipos de marcadores moleculares (sequências de segmentos do
cromossomo X ligados entre si, bem como sequências autossômicas) relacionando os
resultados obtidos com informações disponíveis sobre estas espécies, aprimorando a
compreensão da dinâmica evolutiva deste processo de hibridação a fim de contribuir para a
elaboração de estratégias adequadas de manejo e conservação das mesmas.
A dissertação é apresentada no formato de um artigo científico a ser submetido ao
periódico Molecular Biology and Evolution.
IX
Análise evolutiva de uma zona híbrida utilizando
sequências de genes nucleares
Alexsandra Schneider, Tatiane Campos Trigo e Eduardo Eizirik
A ser adaptado e traduzido para a língua inglesa e posteriormente submetido ao periódico
¨Molecular Biology and Evolution¨
Análise evolutiva de uma zona híbrida utilizando
sequências de genes nucleares
Alexsandra Schneider
1
, Tatiane Campos Trigo
2
e Eduardo Eizirik
1,3
1
Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio
Grande do Sul (PUCRS), Porto Alegre, Brasil
2
Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto
Alegre, Brasil
3
Instituto Pró-Carnívoros, Brasil
Título resumido: Uso de genes nucleares para estudar uma zona híbrida
Endereço para correspondência:
Dr. Eduardo Eizirik
Faculdade de Biociências, PUCRS
Av. Ipiranga 6681, CEP 90619-900 Porto Alegre, RS, Brasil
Telefone: 55 (51) 3320.3500 ramal 4727
Fax: 55 (51) 3320.3612
Email:
eduardo.eizirik@pucrs.br
Palavras-chave: hibridação, introgressão, marcadores ligados, genes nucleares,
Leopardus tigrinus, Leopardus geoffroyi
Resumo
A identificação de indivíduos híbridos é frequentemente um assunto de grande importância
para a elaboração de estratégias adequadas de manejo e conservação, mas pode ser dificultada
quando as espécies hibridizantes são proximamente relacionadas e não possuem marcadores
moleculares diagnósticos. Métodos para inferir proporções de miscigenação geralmente
utilizam sequências do DNA mitocondrial e locos o ligados. Porém, os desequilíbrios de
ligação e de Hardy-Weinberg entre marcadores independentes declina rapidamente com o
tempo de miscigenação e os sinais de mistura podem ser perdidos em poucas gerações,
subestimando o grau da hibridação e introgressão. Nós estudamos a eficácia do uso
combinado de marcadores nucleares ligados (localizado em uma região de baixa
recombinação do cromossomo X) e não ligados em melhorar a detectabilidade de indivíduos
híbridos, quantificar o processo de hibridação e caracterizar sua direcionalidade e simetria. A
variabilidade de cinco locos localizados no cromossomo X, dois autossômicos e onze locos de
microssatélites foi caracterizada em três espécies de felinos neotropicais, Leopardus tigrinus,
L. geoffroyi e L. colocolo. Foram identificados ao menos 48 indivíduos, a maioria deles com
procedência do Rio Grande do Sul (RS) onde a zona de contato geográfico entre Leopardus
tigrinus e L. geoffroyi foi previamente detectada, apresentando sinais de introgressão
genômica interespecífica. No entanto, a amplitude geográfica do gradiente genético entre as
duas espécies parece indicar uma extensão da zona híbrida para além do Estado do RS. Os
dados corroboram estudos recentes documentando a existência de eventos atuais de
hibridação e de um padrão de introgressão genética bidirecional provavelmente assimétrica.
Introdução
A hibridação natural entre espécies é atualmente considerada um processo evolutivo
com uma relevância significativa para a adaptação e especiação de organismos (Arnold 1992,
Harrison 1993, Allendorf et al. 2001, Barton 2001). Este processo pode caracterizar-se pela
ocorrência de eventos esporádicos entre espécies simpátricas, pela formação de zonas híbridas
estreitas entre táxons com distribuição parapátrica, ou amesmo por um intenso processo de
miscigenação entre as populações parentais (Harrison 1993). Basicamente, dois cenários são
sugeridos para explicar a origem de zonas híbridas. O primeiro sugere a formação dessas entre
populações que divergiram em simpatria ou parapatria pela seleção ambiental diferenciada,
enquanto que o segundo indica as zonas híbridas como resultado de um contato secundário
entre populações que se diferenciaram em alopatria e que se encontram devido à expansão
demográfica causada em resposta a mudanças climáticas ou de habitat (Barton and Hewitt
1985, Harrison 1993).
Várias zonas híbridas têm sido recentemente registradas em vertebrados, desde casos
nos quais poucos indivíduos híbridos foram detectados (Schwartz et al. 2004) a zonas
intensamente introgredidas levando à formação de um “enxame híbrido” (hybrid swarm
com predominância de formas genéticas recombinantes) (Nolte et al. 2006), este sugerido
como possível responsável pela formação de novas espécies (Roy et al. 1994, Reich et al.
1999). Tentativas para identificar e caracterizar padrões de introgressão em diferentes xons
animais constitui um importante componente da investigação da história evolutiva de espécies
hibridizantes.
Grande parte dos estudos atuais sobre hibridação tem envolvido principalmente a
análise de sequências do DNA mitocondrial (mtDNA) e locos de microssatélites nucleares
não ligados (Randi et al. 2001, Frankham et al. 2002, Lancaster et al. 2006, Gay et al. 2007,
Trigo et al. 2008). Desta forma há, no momento, crescente interesse na incorporação adicional
de sequências de genes nucleares, tanto autossômicos quanto localizados nos cromossomos
sexuais, pois a análise de múltiplos locos de diferentes formas de herança é extremamente
necessária para que possa ser realizada uma inferência abrangente sobre processos complexos
atuando sobre o genoma, como os decorrentes de eventos de hibridação e introgressão (Eizirik
et al. 2006).
Nesse sentido, introns nucleares podem ser eficientes marcadores espécie-específicos
para estudos de hibridação, especialmente para espécies próximas (Pacheco et al. 2002),
devido à sua taxa de substituição relativamente rápida (levando a um maior nível de variação)
quando comparada à de exons, bem como seu estado diplóide e herança biparental. Boa parte
da variação presente em segmentos nucleares se apresenta sob a forma de SNPs (single
nucleotide polymorphisms - polimorfismos de nucleotídeo único), os quais têm sido um alvo
crescente de estudos evolutivos em diversos organismos (Congdon et al. 2000, Shi et al.
2001, Hare et al. 2002). O uso de SNPs como marcadores em estudos populacionais ainda é
recente, porém demonstra sua utilidade para inferir eventos demográficos, tais como
expansão populacional e miscigenação (Brumfield et al. 2003). Diferente dos microssatélites,
os SNPs têm taxas de mutação mais lentas, o que reduz a incidência de homoplasia e permite
com maior facilidade a identificação de monofilia recíproca entre espécies e alelos
diagnósticos de cada uma delas (Slatkin 1995; Culver et al. 2001; Hare 2001). A vantagem
dos locos de microssatélites em estudos de hibridação reside no fato de que esses marcadores
genéticos biparentais apresentam-se altamente polimórficos (Schlötterer 1998), sendo
variáveis o suficiente para permitir a identificação inequívoca de todos os espécimes
amostrados e a realização de análises estatísticas de associação dos indivíduos às suas
populações de origem (Hansen et al. 2000). Porém, esses marcadores geralmente estão
sujeitos à ocorrência de homoplasia, que pode dificultar a identificação de alelos diagnósticos
de cada uma das populações. Assim, a associação desses dois diferentes tipos de marcadores é
interessante para o estudo de aspectos complexos das relações evolutivas entre espécies.
Uma limitação usualmente compartilhada por SNPs e microssatélites é a dificuldade de
distinguir casos de alelos compartilhados por introgressão daqueles decorrentes de um
polimorfismo ancestral, que precede o evento de especiação entre os táxons envolvidos no
processo de hibridação. Esta questão é fundamental para que se possa avaliar de forma
detalhada os eventos subjacentes à hibridação, incluindo uma avaliação da magnitude e
antiguidade do processo. Se por um lado os SNPs reduzem o problema da homoplasia como
uma fonte de ambiguidade, eles podem estar ainda mais propensos do que os microssatélites a
sofrerem com este problema da persistência de polimorfismos ancestrais, devido justamente
às suas taxas mais lentas de substituição. Uma forma de potencialmente resolver este
problema é a utilização de múltiplos segmentos nucleares ligados, incorporando vários SNPs
em haplótipos integrados, que podem conter uma quantidade e qualidade de informação
suficientes para distinguir compartilhamentos ancestrais de outros que sejam secundários.
Desta forma, o uso de locos ligados ao longo do cromossomo permite distinguir entre
introgressão e retenção de polimorfismo ancestral. Esta estratégia se aplica também a locos
ligados de microssatélites, bem como a haplótipos conjuntos dos dois tipos de marcadores.
Estudos recentes sugerem que marcadores ligados entre si, em conjunto com análises
estatísticas sofisticadas que modelam a dinâmica genômica da miscigenação podem
significativamente aumentar a detecção de indivíduos híbridos, quantificar o processo de
hibridação, e caracterizar sua simetria e direcionalidade (Lecis et al. 2006, Verardi et al.
2006). Em populações humanas, esta metodologia tem sido utilizada para estimar o
desequilíbrio de ligação e proporções de miscigenação (Seldin et al. 2004); no entanto, seu
uso em outras espécies é ainda incipiente. Isto porque, na maior parte dos casos, o
conhecimento sobre o genoma de espécies não-modelo é ainda extremamente precário,
impedindo que estes marcadores sejam desenvolvidos de forma eficiente, a fim de que
possam ser aplicados em populações naturais. Os primeiros exemplos de uso destas
abordagens em carnívoros foram publicados recentemente (focando em gatos-selvagens-
europeus [Felis silvestris - Lecis et al. 2006] e lobos cinza da Europa [Canis lupus; Verardi et
al. 2006]), valendo-se de marcadores disponibilizados por estudos genômicos do gato
doméstico e do cão doméstico, respectivamente.
A identificação de híbridos pode ser dificultada quando as espécies hibridizantes
apresentam uma relação evolutiva próxima e o possuem marcadores genéticos claramente
diagnósticos. Porém, a combinação de diferentes marcadores moleculares (ligados e não
ligados) com diferentes propriedades mutacionais e demográficas (p.ex. microssatélites,
sequências de autossomos e de cromossomos sexuais) possibilita dissecar as diferentes
variáveis que afetam os padrões genéticos resultantes deste fenômeno.
A evidência de hibridação entre duas espécies de pequenos felídeos neotropicais,
Leopardus tigrinus e Leopardus geoffroyi, foi documentada pela análise de mtDNA,
microssatélites e introns do cromossomo X e Y (Trigo et al. 2008, Trigo et al., em
preparação). Os dados moleculares confirmaram a origem híbrida de indivíduos provenientes
da região central do estado do Rio Grande do Sul, no sul do Brasil, onde Eizirik et al. (2006)
previamente registraram o contato geográfico entre as espécies (fig. 1) e a existência de
indivíduos morfologicamente ambíguos (porte de L. geoffroyi ou de L. tigrinus com padrões
intermediários na formação das pintas características de cada espécie). Diversas combinações
genéticas dos diferentes marcadores foram encontradas em ambas as espécies, sugerindo a
existência de uma intensa hibridação atual ou recente, que resulta em uma introgressão
bidirecional e parcialmente assimétrica. Da mesma maneira, análises de distribuição,
associação com habitats e nicho trófico no Estado sugerem a existência de uma segregação
ecológica entre estes dois felídeos nesta região. Segundo este mesmo estudo molecular, a
ocorrência de hibridação foi também documentada entre L. tigrinus e um terceiro felídeo
neotropical proximamente relacionado, L. colocolo. A hibridação, neste caso, parece restrita
às regiões do centro e nordeste do Brasil, onde não registros da ocorrência de L. geoffroyi.
A formação dessas zonas bridas pode ter sido propiciada por uma expansão demográfica
das populações de L. tigrinus que teria levado ao contato secundário com L. geoffroyi e L.
colocolo e favorecido, assim, a ocorrência dos cruzamentos interespecíficos. Os dados
indicam que a hibridação de L. tigrinus com L. colocolo parece ser antiga e esporádica, com
poucos indivíduos identificados como híbridos, e revelando um padrão de introgressão de
mtDNA basicamente unidirecional de L. colocolo para L. tigrinus.
Neste contexto, o presente trabalho envolve um conjunto de marcadores composto de
sequências nucleares localizadas no cromossomo X e em autossomos, que junto a dados de
microssatélites foram utilizados na investigação dos padrões de hibridação e introgressão
entre as espécies L. geoffroyi e L. tigrinus. Análises específicas foram realizadas para estes
marcadores com os seguintes objetivos: (1) estimar as proporções individuais de
miscigenação e determinar a probabilidade de que cada um dos genótipos multilocos (e
haplótipos inferidos) pertençam exclusivamente à sua espécie de origem (no caso de nenhuma
mistura), ou a ambas as populações parentais (no caso de mistura); (2) identificar eventos de
recombinação e inferir a origem de cada haplótipo cromossômico, reconstruindo sua evolução
ao longo do processo de hibridação; (3) comparar as proporções de miscigenação individual
com inferências anteriores (Trigo et al. 2008) e verificar se os marcadores nucleares baseados
em sequências corroboram análises prévias; (4) realizar inferências sobre a magnitude,
direcionalidade e simetria deste fenômeno no que tange às espécies envolvidas.
Materiais e Métodos
Amostragem
As amostras de L. tigrinus e L. geoffroyi utilizadas neste estudo foram primeiramente
analisadas por Trigo et al. (2008) e Trigo et al. (em preparação). A partir destes estudos, que
identificaram indivíduos como sendo de origem pura ou híbrida através da avaliação
combinada de marcadores moleculares (microssatélites, mtDNA e introns dos cromossomos
X e Y) e características morfológicas, realizou-se uma seleção de amostras a serem
empregadas nestas análises. Foram selecionados 36 espécimes morfologicamente associados a
L. tigrinus, sendo 16 considerados como possivelmente puros e então representantes da
população pura de L. tigrinus, e 20 indivíduos com evidências de uma origem brida com
base nos marcadores moleculares previamente analisados. Para a população
morfologicamente associada a L. geoffroyi, foram selecionadas 32 amostras, sendo 14 de
origem presumivelmente pura e 18 de origem híbrida. Todos os indivíduos híbridos
selecionados foram procedentes da zona de contato geográfico entre as espécies, localizada no
Rio Grande do Sul, enquanto que os indivíduos puros foram provenientes de áreas próximas
ao contato (no estado do RS) ou de áreas mais distantes (fora do estado do RS). Além das
amostras de L. geoffroyi e L. tigrinus, seis amostras de L. colocolo foram também incluídas
para fins de comparação (tabela 1).
As amostras utilizadas provieram de tecido sanguíneo e muscular, obtidas a partir de
animais mantidos em cativeiro de procedência geográfica conhecida, animais encontrados
mortos em estradas (vítimas de atropelamentos), animais capturados em campo por diversos
colaboradores e outros capturados por fazendeiros. A extração de DNA genômico destas
amostras foi realizada através do protocolo padrão de fenol/clorofórmio (Sambrook et al.
1989).
Marcadores nucleares
Uma vez que espécies evolutivamente próximas podem compartilhar haplótipos
devido à ancestralidade comum ou através da introgressão gênica resultante de hibridação,
foram selecionados marcadores que se encontram demonstravelmente ligados entre si, pois
estes permitem analisar um maior número de sítios polimórficos em um mesmo bloco
haplotípico, permitindo testar a hipótese de que os compartilhamentos decorrem da
hibridação. Como um estudo de caso desta abordagem, foram selecionados segmentos
fisicamente próximos entre si, e contidos em uma região do cromossomo X que apresenta
baixas taxas de recombinação no gato doméstico (Schmidt-Kuntzel et al., no prelo). A fim de
identificar SNPs potencialmente informativos para este estudo, os seguintes segmentos foram
testados: 1) exons 3 e 4 do gene ATPase, Cu++ transporting alpha polypeptide (ATP7A),
utilizando os primers descritos por Eizirik et al. (2001) para o exon 4, e os seguintes primers
para o exon 3: ATP7A-F3 (5’–AAAAATGCAACTATTATTTATGACCCTA–3’) e ATP7A-
R3 (5’-TAATTCGCTGAACACCTTGC-3’); 2) intron 16 do gene Bruton
agammaglobulinemia tyrosine kinase (BTK), com primers descritos por Lyons et al. (1997); e
3) intron 5 do Proteolipid Protein 1 (PLP1) usando os primers PLP1-I5-F1 (5’-
CTGTCCATTTGCAAAACAGC-3’) e PLP1-I5-R1 (5’-ACAGGTGGAAGGTCATTTGG-
3’). O segundo intron do gene PLP1 (PLP1-I2) foi amplificado e sequenciado em um estudo
anterior (Trigo et al., em preparação) utilizando os primers descritos por Murphy et al.
(1999), e foi selecionado para integrar os dados deste estudo tendo em vista seus altos níveis
de variação e sua localização na mesma região do cromossomo X. Como comparação com os
padrões observados nestes locos (presumivelmente ligados entre si), foi investigado também o
intron 3 do gene Biglycan (BGN), localizado em uma região mais distante do cromossomo X,
empregando primers descritos por Lyons et al. (1997).
A localização física (em Mb) para cada um dos marcadores do cromossomo X foi
baseada no mapa genômico do gato doméstico (Garfield browser; Pontius and O'Brien 2007;
http://lgd.abcc.ncifcrf.gov/cgi-bin/gbrowse/cat) (fig. 2), sendo que neste estudo assumimos
que as mesmas características se aplicam às espécies neotropicais em questão. Tal premissa
encontra apoio na sabida conservação cariotípica observada na família Felidae (Wurster-Hill
and Centerwall 1982), na qual se verifica poucos rearranjos cromossômicos, e no padrão de
conservação observado de forma mais geral no cromossomo X de mamíferos (Murphy et al.
1999).
Além dos segmentos localizados no cromossomo X, fragmentos dos seguintes genes
autossômicos foram também testados: 1) precursor 1 of cholinergic receptor nicotinic alpha
polypeptide (CHRNA1) usando primers descritos por Lyons et al. (1997); 2) Silver (SILV),
com primers descritos por Johnson et al. (2006); 3) Cytochrome P450 1A (CYP1A) com
primers descritos por Lindblad-Toh et al. (2005) e 4) Feline sarcoma protooncogene (FES)
usando primers descritos por Venta et al. (1996).
Para identificar os sítios variáveis nesses segmentos dentro ou entre as populações de
L. geoffroyi e L. tigrinus, inicialmente foram amplificados e sequenciados de cinco a dez
indivíduos para cada uma das espécies. Visto que as duas espécies têm uma relação evolutiva
relativamente próxima e que introns são segmentos de baixa variabilidade, era esperado
encontrar pouca ou nenhuma variação. Assim, focamos nossos esforços somente nos
segmentos apresentando algum nível de variação nesta amostragem inicial (exon 3 do ATP7A,
BTK, BGN, e introns 2 e 5 do gene PLP1, totalizando ca. 3000 pb no cromossomo X; e
CHRNA1 e SILV, totalizando aproximadamente 800 pb de sequências autossômicas). Além
dos marcadores de sequência, 11 locos de microssatélites genotipados previamente por nosso
grupo de pesquisa (Trigo et al. 2008, Trigo et al., em preparação) foram incluídos no presente
estudo para permitir a comparação dos resultados obtidos com os diferentes tipos de
marcadores.
Todos os segmentos nucleares foram amplificados por PCR (Polymerase Chain
Reaction; Palumbi 1996) utilizando primers descritos ou desenhados ao longo deste estudo.
Neste último caso, um primer reverso interno (5’-TTCAGGCTCTGAGCTGTCAG-3’) foi
desenhado para o sequenciamento do intron 5 do gene PLP1 utilizando o programa Primer3
(Rozen and Skaletsky 2000;
http://frodo.wi.mit.edu). As reações de PCR foram realizadas em
um volume final de 20µL contendo tampão de PCR 1X, 2.0 2.5 mM de MgCl
2
, 0.2 mM de
dNTPs, 0.5 U de Taq Platinum (Invitrogen), 0.2 µM de cada primer e 10-50 ng de DNA. As
condições de amplificação para os segmentos ATP7A, BTK, PLP1-I2, CHRNA1 e SILV foram
as mesmas, e as dos segmentos PLP1-I5 e BGN diferiram daquelas pelas temperaturas de
anelamento e pelo número de ciclos de touchdown (tabela 2). A adição de Betaína (1M) na
reação de PCR foi utilizada para eliminar bandas espúrias nos segmentos ATP7A, PLP1-I5 e
BGN, resultando em uma maior eficiência e especificidade da reação.
Os produtos de PCR obtidos foram verificados através de eletroforese em gel de
agarose 1%, corado com GelRed 10.000X em DMSO (Biotium, Inc.) e visualizado em
transiluminador de luz ultravioleta. Depois de quantificados por comparação com o marcador
de peso molecular Low DNA Mass Ladder (Invitrogen) foi realizada a purificação
enzimática dos produtos de PCR usando as enzimas Exonuclease I (EXO I) e Shrimp Alkaline
Phosphatase (SAP). Os produtos de PCR purificados foram sequenciados com o DYEnamic
ET Dye Terminator Sequencing Kit (Amersham Biosciences), e lidos com sequenciador
automático MegaBACE 1000 (Amersham Biosciences). As sequências geradas foram
analisadas com os programas Phred, Phrap, Consed na plataforma Linux (Gordon et al.
1998). As sequências consenso foram alinhadas utilizando o algoritmo CLUSTALW
(Thompson et al. 1994) executado no programa MEGA 4.0 (Tamura et al. 2007) e o
alinhamento de cada um dos segmentos foi verificado e editado manualmente quando
necessário.
Análise das sequências de DNA
A primeira fase da análise das sequências de DNA obtidas envolveu a identificação de
sítios heterozigóticos e a definição das fases gaméticas. Os sítios heterozigóticos nos
segmentos nucleares foram identificados quando dois diferentes nucleotídeos estavam
presentes na mesma posição nos eletroferogramas de ambas as fitas (forward e reverse) com o
pico mais fraco alcançando no mínimo 25% do pico mais forte. Para os segmentos ligados ao
X, quando dois ou mais sítios heterozigóticos foram identificados em sequências de fêmeas, a
fase gamética foi determinada usando o programa PHASE 2.1 (Stephens et al. 2001). No caso
dos segmentos autossômicos, a fase gamética foi estimada tanto para fêmeas quanto para
machos, devido seu estado diplóide em ambos os sexos. Para todos os segmentos, a análise foi
10
realizada para dados bialélicos, com exceção do segmento CHRNA1 que se mostrou
extremamente variável apresentando sítios multialélicos.
Os haplótipos definidos com o programa PHASE foram então utilizados para
múltiplas análises. Primeiramente, foram calculadas medidas de diversidade genética
(diversidade nucleotídica e haplotípica) com o programa DnaSP 4.20.2 (Rozas et al. 2003)
para cada um dos segmentos nucleares nas três espécies amostradas (tabela 3).
Posteriormente, foi realizada a construção de redes de haplótipos estimadas através do método
median-joining (Bandelt et al. 1999) com o auxílio do programa NETWORK 4.5.0.0
(www.fluxus-engineering.com). Foram construídas redes de haplótipos para cada um dos
segmentos separadamente e outra rede de haplótipos com os segmentos do cromossomo X
concatenados, tendo em vista a ligação entre os locos. Os haplótipos dos locos ligados ao X
foram também estimados com o programa ARLEQUIN 2.1 (Schneider et al. 2000) e, em
seguida, foi construída uma planilha no Excel para análise visual do compartilhamento dos
haplótipos entre os indivíduos.
O método Bayesiano implementado no programa STRUCTURE 2.2 (Pritchard et al.
2000) foi utilizado para associar os indivíduos à sua população fonte e testar sua
ancestralidade em outra população. O método assume Equilíbrio de Hardy-Weinberg (EHW)
para cada loco e Equilíbrio de Ligação (EL) entre os locos dentro de cada população, sendo
que a existência de desvios do equilíbrio leva a população a ser dividida em subpopulações, às
quais os indivíduos são alocados. Considerando as observações de Trigo et al. (em
preparação) da provável ocorrência de uma população geneticamente diferenciada de L.
tigrinus na região centro-nordeste brasileiro (CNE), foi assumido que a amostra total
apresenta quatro populações (K = 4; L. tigrinus do sul e sudeste (SSE), L. tigrinus CNE, L.
geoffroyi e L. colocolo) e cada um dos indivíduos foi associado probabilisticamente a uma
dessas populações ou simultaneamente a mais de uma população caso seus haplótipos
indicassem miscigenação. Três diferentes análises foram realizadas a fim de comparar a
eficiência dos diferentes marcadores em identificar híbridos: primeiro utilizando somente os
dados de sequências dos segmentos do cromossomo X e autossomos; segundo, somente dados
dos 11 locos de microssatélites não ligados, e, por último, o conjunto total de marcadores
(sequências do X, sequências de autossomos e microssatélites). Em cada um dos casos, as
análises foram realizadas usando o modelo de ligação, exceto no segundo caso (modelo de
miscigenação ¨Admixture Model¨), modelo de frequências alélicas correlacionadas (Falush et
al. 2003), e a opção de nenhuma informação prévia de fenótipo, além de uma Cadeia de
11
Markov Monte Carlo (MCMC) de 500.000 iterações realizadas após um período de burn-in
de 200.000 iterações.
Finalmente, o programa LAMARC (Kuhner 2006) foi utilizado para estimar
parâmetros populacionais como theta (ө) e taxas de migração e recombinação. Tais
parâmetros foram calculados independente e simultaneamente para todos os locos nucleares
analisados em nível de sequência, assumindo tamanhos de amostras diferentes para cada
segmento e ajustando o tamanho populacional efetivo para cada região genômica (ligada ao X
e autossômicos). O número de migrantes por geração foi calculado a partir do parâmetro “M”
multiplicado pelo valor médio de ө da população recipiente. Foram realizadas oito análises no
programa LAMARC, das quais quatro incluíram três populações (L. tigrinus, L. geoffroyi e L.
colocolo) e as demais consideraram quatro populações (L. tigrinus SSE, L. tigrinus CNE, L.
geoffroyi e L. colocolo). Ambas as corridas utilizaram o método Bayesiano, incluindo quatro
replicatas, cada uma com uma cadeia final de 1.600.000 passos com um intervalo entre as
amostras de 80 passos resultando em 40.000 amostras, das quais as primeiras 4.000 foram
descartadas como burn-in. No segundo conjunto de análises (considerando quatro
populações) as buscas foram iniciadas com valor inicial de ө baseado na fórmula de
Watterson (1975).
Resultados
Diversidade nas sequências nucleares
Os sete segmentos nucleares analisados apresentaram níveis de variabilidade
relativamente baixos. As diversidades haplotípica e nucleotídica foram maiores no segmento
do gene BGN, estando relacionadas ao seu maior número de haplótipos e de sítios
polimórficos. Os segmentos apresentando menor variabilidade foram o segundo intron do
gene PLP1 e o segmento SILV (tabela 3).
Caracterização dos haplótipos nucleares e inferências de eventos de introgressão
ATP7A
Foram sequenciados 385 pares de base (pb) do terceiro exon do gene ATP7A a partir
de 30 L. geoffroyi [8 fêmeas (F) e 22 machos (M)], 35 L. tigrinus (11F e 24M) e 6 L. colocolo
(1F e 5M) compreendendo quatro haplótipos definidos por três sítios polimórficos (tabela 3).
Foram amostradas três fêmeas heterozigotas (2 L. tigrinus [bLti 59, 79]; 1 L. geoffroyi
12
[bLge10]). Dentre os haplótipos, três deles (H1, H2, H3) apresentaram compartilhamento,
sendo o primeiro destes compartilhado pelas três espécies, possivelmente representando um
haplótipo ancestral neste grupo. Os outros dois haplótipos foram compartilhados entre L.
tigrinus e L. geoffroyi, resultando em oito indivíduos (oito cromossomos) de L. geoffroyi
apresentando haplótipos mais frequentes em L. tigrinus, sendo todos eles previamente
identificados (com base em outros marcadores moleculares) como híbridos provenientes do
estado do RS. Todos os L. tigrinus da região centro e nordeste do Brasil (CNE) apresentaram
um mesmo haplótipo (H4) distinto daqueles presentes nas demais amostras (fig. 3A, tabela 4).
BTK
A rede de haplótipos do segmento BTK (baseada em um alinhamento de 599 pb)
incluiu 30 L. geoffroyi (7F e 23M), 36 L. tigrinus (11F e 25M) e 6 L. colocolo (1F e 5M)
representando um total de 91 cromossomos distribuídos entre seis haplótipos (fig. 3B, tabela
4). Somente uma fêmea heterozigota foi identificada. Desses haplótipos, dois (H5, H6) foram
exclusivos de L. colocolo, um (H3) exclusivo de dois indivíduos de L. tigrinus puros
provenientes da região sudeste do Brasil, um (H4) exclusivo dos indivíduos de L. tigrinus
amostrados na região CNE e outros dois haplótipos (H1 e H2) compartilhados por L. tigrinus
e L. geoffroyi. Neste último caso, alguns indivíduos de L. tigrinus apresentaram o haplótipo
H1 (mais frequente em L. geoffroyi) enquanto alguns indivíduos de L. geoffroyi apresentaram
o haplótipo H2 (mais frequente em L. tigrinus). Interessantemente, todos estes indivíduos que
apresentaram haplótipos atípicos no âmbito de seu grupo fenotípico foram provenientes do
estado do RS e apresentaram indícios de hibridação em trabalhos anteriores (Trigo et al.
2008; Trigo et al., em preparação). Esta evidência sugere que o compartilhamento observado
possivelmente esteja associado à ocorrência de introgressão em ambas as direções.
Intron 2 do PLP1
Sessenta e sete indivíduos (31 L. geoffroyi [8F e 23M], 33 L. tigrinus [11F e 22M] e 3
L. colocolo [1F e 2M], em um total de 87 cromossomos) foram sequenciados para os 808 pb
do segundo intron do gene PLP1. A maioria das sequencias amostradas para este gene são
provenientes de um estudo prévio (Trigo et al., em preparação) e foram reanalisadas aqui em
conjunto com os demais segmentos (ver tabela 1). Foram amostradas quatro fêmeas
heterozigotas para esse segmento (3 L. tigrinus [bLti 09,59,79]; 1 L. geoffroyi [bLge 62]). Na
rede de haplótipos (fig. 3C; ver também tabela 4) podem ser visualizados os oito haplótipos
13
definidos para este segmento por nove tios polimórficos. Deste total, três haplótipos (H6,
H7, H8) foram encontrados exclusivamente em L. colocolo com ao menos três passos
mutacionais do haplótipo encontrado predominantemente em L. geoffroyi (H1), confirmando
a divergência mais antiga dessa espécie. Um haplótipo (H4) foi encontrado em espécimes de
L. geoffroyi do sul do Brasil e da Bolívia e três haplótipos (H1, H2, H3) apresentaram
compartilhamento por L. tigrinus e L. geoffroyi. Neste caso, o haplótipo H1, mais frequente
em L. geoffroyi, foi também detectado em indivíduos de L. tigrinus, assim como os haplótipos
H2 e H3, mais frequentes em espécimes de L. tigrinus provenientes do sul e sudeste
brasileiros (SSE), foram também registrados em indivíduos de L. geoffroyi. Estes indivíduos,
com haplótipos aparentemente não originais de seu grupo fenotípico, são os mesmos
detectados no padrão de compartilhamento nas análises dos genes ATP7A e BTK. Como
verificado nos outros marcadores, este padrão sugere que o compartilhamento observado
possa estar associado à ocorrência de introgressão gerada por um fluxo nico bidirecional e
assimétrico, com maiores proporções de haplótipos introgredidos de L. tigrinus em L.
geoffroyi do que o oposto. Novamente, como observado nos segmentos descritos
anteriormente, todos os indivíduos de L. tigrinus provenientes do CNE demonstraram ser
geneticamente diferenciados apresentando um haplótipo (H5) distinto e sem
compartilhamento.
Intron 5 do PLP1
Foram sequenciados 590 pb do quinto intron do gene PLP1 para 31 L. geoffroyi (8F e
23M), 35 L. tigrinus (11F e 24M) e 6 L. colocolo (1F e 5M) totalizando 92 cromossomos
sendo que nenhuma fêmea heterozigota foi identificada. A rede de haplótipos construída (fig.
3D) foi semelhante às demais, com cinco haplótipos definidos por oito sítios polimórficos,
sendo os haplótipos pertencentes a L. colocolo (H4, H5) os mais divergentes. O
compartilhamento de haplótipos por diferentes espécies foi verificado entre as populações de
L. geoffroyi e L. tigrinus do sul e sudeste brasileiro (H1, H2). Corroborando as evidências
anteriores, os mesmos indivíduos identificados pelos marcadores dos genes ATP7A, BTK e
PLP1 I2 como contendo haplótipos atípicos para o seu grupo fenotípico, foram também
identificados por este segmento com o mesmo padrão, com exceção de uma fêmea (bLti 79),
que neste caso não apresentou haplótipo ligado a L. geoffroyi como nos casos anteriores.
Considerando-se que este compartilhamento possa estar relacionado à existência de
introgressão, novamente, o presente marcador reforça a possibilidade da bidirecionalidade e
14
assimetria do fluxo gênico. E, finalmente, como demonstrado nos marcadores acima, temos a
população de L. tigrinus da região CNE apresentando um haplótipo exclusivo (H3).
BGN
Sessenta e sete indivíduos (27 L. geoffroyi [8F e 19M], 34 L. tigrinus [11F e 23M] e 6
L. colocolo [1F e 5M]), representando 87 cromossomos foram sequenciados para os 595 pb de
um segmento do gene BGN, o qual se mostrou altamente polimórfico, determinando 15
haplótipos através de 12 sítios variáveis (fig. 3E). A partir da análise do network, dois
haplótipos foram relacionados a L. colocolo (H14 e H15), cinco a L. tigrinus (H2, H8, H11,
H12 e H13) e oito a L. geoffroyi (H1, H3, H4, H5, H6, H7, H9 e H10). Ao contrário do
observado até então, a população de L. tigrinus das regiões CNE não apresentou um haplótipo
exclusivo, sendo o haplótipo (H11) registrado nesta população, também encontrado em três
cromossomos de L. tigrinus considerados previamente como híbridos. Além do
compartilhamento de haplótipo por indivíduos de L. tigrinus do SSE e CNE, quatro outros
haplótipos foram compartilhados por L. tigrinus e L. geoffroyi. No primeiro caso, os dois
haplótipos mais frequentes, aparentemente associados a L. geoffroyi (H3, H4), foram também
registrados em seis cromossomos, correspondentes a indivíduos considerados bridos, com
exceção de apenas uma amostra considerada previamente como pura no RS (bLti 46). No
segundo caso, os haplótipos H2 e H8, aparentemente associados a L. tigrinus, foram também
registrados em indivíduos de L. geoffroyi, sendo estes, em sua maioria, considerados
previamente como bridos, exceto por um indivíduo do RS previamente considerado como
puro (bLge 41, ver tabela 4).
Segmentos do cromossomo X concatenados
Análises adicionais foram realizadas a partir da concatenação dos cinco segmentos do
cromossomo X, o que pode ser justificado a priori tendo em vista a ligação gênica entre os
mesmos. Análises posteriores deste conjunto (ver abaixo) visaram a testar a hipótese de que
realmente consistem de um mesmo bloco haplotípico, ou se devem ser subdivididos em
regiões distintas dentro das quais o haja evidência de recombinação. O segmento total
resultou em 2977 pb analisados em 26 L. geoffroyi (7F e 19M), 32 L. tigrinus (11F e 21M) e 3
L. colocolo (1F e 2M), representando 80 cromossomos distribuídos em 29 haplótipos
definidos através de 37 sítios polimórficos. Foram removidos da análise todos os tios com
informação faltante ou ambígua (fig. 3F). Uma avaliação detalhada do network revelou L.
15
colocolo como o grupo mais divergente com ao menos 13 passos mutacionais separando-o
das outras duas espécies, sendo congruente com estudos filogenéticos atuais (Johnson et al.
2006). Embora pareçam existir dois grupos em nível de espécie, referentes a L. geoffroyi e L.
tigrinus, estes não puderam ser definidos claramente, pois não uma separação bem nítida
entre eles, visto que a maioria dos ramos apresenta apenas um passo mutacional. Além disso,
as relações entre alguns haplótipos permaneceram ambíguas pela formação de reticulações,
que são sugestivas da ocorrência de eventos de recombinação nesses sítios, o que é
corroborado por análises de taxas de recombinação descritas a seguir. Quatro haplótipos (H2,
H3, H6, H7) foram compartilhados entre as duas espécies, e ao menos outros três aparentam
ter sido alvo de uma “troca” (H4, H12, H21 - isso porque não se sabe ao certo se H17 e H23
pertencem originalmente a L. tigrinus ou L. geoffroyi, ou se eram realmente compartilhados
por ancestralidade entre ambos, pois estão posicionados em uma região intermediária do que
supostamente seria a delimitação entre os clados), isto é, foram amostrados na espécie que
não corresponde ao seu agrupamento fenotípico original.
Os indivíduos morfologicamente identificados como L. geoffroyi que estavam
inseridos no “clado de L. tigrinus eram os mesmos que apresentaram evidência de
introgressão nos marcadores quando analisados separadamente, ou seja, híbridos com
procedência do RS. Do mesmo modo como demonstrado nos locos individuais, esta rede de
haplótipos corrobora as evidências de um fluxo gênico bidirecional. E, finalmente, a
inferência de que a população de L. tigrinus da região CNE seja geneticamente distinta foi,
novamente, confirmada pela presença de um único haplótipo exclusivo nesta região (H24).
Uma observação interessante que emerge a partir da concatenação dos dados é a maior
proximidade do haplótipo encontrado na região CNE a haplótipos relacionados ao grupo L.
geoffroyi do que a L. tigrinus. Apesar de a rede indicar uma maior proximidade do haplótipo
H24 a um haplótipo encontrado em um indivíduo morfologicamente classificado como L.
tigrinus (bLti68; H21), evidências anteriores em todos marcadores analisados
independentemente demonstram sempre a presença de haplótipos aparentemente ligados a L.
geoffroyi neste indivíduo. Interessantemente, estes dados reforçam a interpretação de uma
história de hibridação entre L. tigrinus e L. geoffroyi associada à evidência de uma população
de L. tigrinus geneticamente distinta na região CNE do Brasil.
16
SILV
Este segmento autossômico com 326 pb foi sequenciado em 32 L. geoffroyi (8F e
24M), 36 L. tigrinus (11F e 25M) e 6 L. colocolo (1F e 5M) correspondendo a 148
cromossomos. Destes indivíduos, 17 eram heterozigotos. Devido às baixas taxas de
diversidade nucleotídica e haplotípica (tabela 3), a rede de haplótipos (fig. 3G) apresentou
somente três haplótipos definidos por dois sítios polimórficos. Um haplótipo foi encontrado
somente em indivíduos de L. colocolo, enquanto que os outros dois foram compartilhados
entre L. tigrinus e L. geoffroyi. O primeiro haplótipo (H1) foi verificado predominantemente
em L. geoffroyi, sendo também encontrado em sete cromossomos de indivíduos
morfologicamente L. tigrinus considerados (com base em outros marcadores) como híbridos e
em dois cromossomos considerados como puros. Por outro lado, o segundo haplótipo (H2) foi
registrado predominantemente em indivíduos de L. tigrinus, incluindo tanto a população do
sul e sudeste brasileiro, quanto do CNE. No entanto, este haplótipo foi também detectado em
indivíduos morfologicamente L. geoffroyi, sendo a maioria previamente identificada como
sendo de origem híbrida.
CHRNA1
Setenta e quatro indivíduos, (32 L. geoffroyi [8F e 24M], 36 L. tigrinus [11F e 25M] e
6 L. colocolo [1F e 5M]), que correspondem a 148 cromossomos, foram sequenciados para os
344 pb deste gene autossômico. A presença de várias reticulações confundiu as relações entre
os haplótipos (fig. 3H), provavelmente devido à ocorrência de sítios multialélicos, altas taxas
de mutação e recombinação (como demonstrado a seguir, ver tabela 6) sendo impossível
delimitar haplótipos pertencentes a uma determinada espécie. No entanto, a ocorrência de
haplótipos exclusivos para L. colocolo (H11, H12, H13) foi verificada para este segmento,
assim como para a maioria dos marcadores analisados neste trabalho, com exceção do
ATP7A. Para o CHRNA1, assim como para o SILV, foi identificado o compartilhamento de
haplótipos pelas duas populações de L. tigrinus (SSE e CNE) assim como pelas espécies L.
tigrinus e L. geoffroyi. O compartilhamento observado entre estas últimas parece estar
associado a um fluxo gênico secundário entre estas espécies, como já foi evidenciado nos
demais segmentos.
17
Origem de cada haplótipo cromossômico e eventos de recombinação
Através da análise realizada com o programa ARLEQUIN para os locos ligados ao X
foram definidos 34 haplótipos (um número menor de haplótipos é mostrado na tabela 3,
porque a análise do NETWORK não considera sítios com informação faltante; ver fig. 4,
tabela 5), os quais foram distribuídos entre quatro populações (L. tigrinus SSE, L. tigrinus
CNE, L. geoffroyi e L. colocolo). Para esta análise só foram incluídos os indivíduos que foram
sequenciados para os cinco segmentos nucleares, totalizando 80 cromossomos (26 L.
geoffroyi [7F e 19M], 32 L. tigrinus [11F e 21M] e 3 L. colocolo [1F e 2M]). Uma análise
detalhada (ver tabela 5) revelou alguns indivíduos ‘trocados’ entre os prováveis clados
formados, ou seja, dentro do clado de L. tigrinus foram encontrados oito indivíduos de L.
geoffroyi (bLge 02,04,05,08,10,13,32,42), os quais eram essencialmente os mesmos que
haviam apresentado evidências de haplótipos introgredidos nas análises independentes dos
segmentos contidos neste bloco. Por outro lado, apenas dois representantes de L. tigrinus
(bLti 68,79) ficaram inseridos no clado correspondente a L. geoffroyi, exatamente os mesmos
indivíduos com evidências de introgressão pela análise independente dos segmentos. Isto
corrobora resultados de trabalhos anteriores (Trigo et al. 2008, Trigo et al., em preparação)
indicando uma introgressão bidirecional e assimétrica entre L. tigrinus e L. geoffroyi. Além
disso, a população de L. tigrinus amostrada na região CNE constituiu uma população distinta,
apresentando um haplótipo único e exclusivo (H29).
Através da análise da Figura 4 se identificou ao menos quatro possíveis eventos de
recombinação ao longo do cromossomo X, os quais foram inferidos com o programa DnaSP.
A maior incidência destes eventos ocorreu na porção final do segmento, mais precisamente no
marcador BGN, que está situado numa região de alta recombinação do cromossomo X do gato
doméstico (Schmidt-Kuntzel et al., no prelo). Além disso, as análises realizadas com o
programa LAMARC confirmaram ser este o segmento com as maiores taxas de recombinação
(tabela 6). Por outro lado, como esperado, as taxas de recombinação nos demais locos foram
extremamente baixas, praticamente nulas, exceto para o segmento autossômico CHRNA1, que
apresentou um valor ligeiramente maior.
Análises de miscigenação
Para estimar a contribuição genética das espécies parentais aos genótipos multilocos e
haplótipos inferidos de cada indivíduo, ou seja, estimar as proporções individuais de
miscigenação, os dados de sequência e de microssatélites foram analisados conjuntamente
18
utilizando o método Bayesiano implementado no programa STRUCTURE. A primeira análise
envolveu todas as amostras de L. tigrinus (n=36), L. geoffroyi (n=32) e L. colocolo (n=6)
utilizando os marcadores de sequência ligados ao X e autossômicos e o modelo de locos
ligados (Falush et al. 2003). Assumindo K = 4, devido às evidências de uma população de L.
tigrinus do CNE geneticamente distinta, observamos que cada espécie foi associada
predominantemente a um dos quatro clusters, apresentando valores de associação
relativamente altos. Enquanto a população de L. colocolo foi atribuída ao cluster 2 com uma
proporção de alocação maior do que 0.90 (Q2 = 0.980), as populações de L. tigrinus SSE e L.
geoffroyi foram designadas aos clusters 3 e 4 com proporções de Q3 = 0.890 e Q4 = 0.708,
respectivamente. Além do cluster 4, a população de L. geoffroyi foi também associada ao
cluster 3 (L. tigrinus SSE) com uma proporção relativamente alta de Q3 = 0.256, porém, a
população de L. tigrinus SSE foi apenas levemente associada ao cluster 4 (L. geoffroyi) com
Q4 = 0.061. Finalmente, todos os espécimes de L. tigrinus da região CNE foram associados
ao cluster 1 (Q1 = 0.973), referente à sua população de origem, sugerindo que esses
indivíduos realmente são geneticamente distintos dos animais das regiões SSE, como havia
sido observado nas redes de haplótipos.
Na análise em nível de indivíduo, dezenove exemplares de L. geoffroyi foram
atribuídos ao cluster 4 (grupo de L. geoffroyi) com q4 ≥ 0.90 (tabela 7). Desses, seis (bLge 01,
31, 33, 35, 74, 90) eram previamente considerados como sendo bridos (com base em outros
marcadores); no entanto, esses segmentos nucleares os identificaram como indivíduos puros.
Dentre os indivíduos morfologicamente identificados como L. geoffroyi, cinco (bLge 02, 04,
10, 13, 42) cujas análises de network indicaram introgressão genética apresentaram altos
valores de associação ao grupo de L. tigrinus SSE com proporção de q3 > 0.90 indicando uma
ancestralidade nesta população. Além destes, dois (bLge 05, 08) apresentaram ainda valores
altos de q na população de L. tigrinus SSE, no entanto, menores que 0.90 (q3 = 0.897 e 0.858)
e seis foram associados com valores intermediários ao grupo de L. geoffroyi (q4 entre 0.235 e
0.893). Assumindo um valor q de 0.90 como o limite aceitável para distinguir indivíduos
puros de híbridos, como tem sido proposto em estudos similares de hibridação (Flamand et al.
2003, Lancaster et al. 2006, Vähä and Primmer 2006) podemos considerar, segundo os
marcadores utilizados, um total de 13 L. geoffroyi híbridos em nossa amostra, todos
procedentes do estado do RS.
Avaliando as associações de L. tigrinus SSE, foram observados 24 indivíduos com
valor de q3 ≥ 0.90 (tabela 7), sendo que 10 deles haviam sido identificados previamente como
híbridos. Dos indivíduos com q < 0.90, quatro (bLti 46, 80, 106, 121) apresentaram
19
proporções consideravelmente altas de associação ao grupo de L. tigrinus (com q3 variando
de 0.898 a 0.835) e dois indivíduos (bLti 68, 79) apresentaram maior associação ao cluster 4
(L. geoffroyi), que correspondem a indivíduos que indicaram apresentar introgressão em
análises anteriores. De acordo com esses resultados, foi possível identificar cerca de 30.6%
(19/62) da amostra total de L. geoffroyi e L. tigrinus como híbridos entre essas duas espécies.
A análise seguinte foi realizada com os 11 locos de microssatélites não ligados já
analisados previamente por Trigo et al. (em preparação), a fim de comparar os valores de
associação obtidos para estes marcadores com os valores obtidos para os marcadores descritos
no presente trabalho e assim, avaliar o poder de cada conjunto de marcadores em identificar
indivíduos híbridos independentemente. Como resultado desta primeira análise utilizando K =
4, pudemos verificar que os locos de microssatélite foram muito menos eficientes do que os
demais marcadores analisados aqui na associação dos indivíduos, onde nenhuma das amostras
foi fortemente associada a nenhum dos quatro clusters inferidos, com exceção da população
de L. colocolo que apresentou um valor médio de Q4 = 0.900. Segundo Pritchard et al. 2007,
se uma população é muito divergente das demais, a associação dos indivíduos pode ser
imprecisa e a análise pode ser melhorada removendo aquela população. Dessa forma, todos os
indivíduos de L. colocolo e L. tigrinus CNE foram excluídos e cada espécie foi associada a
um cluster com proporções relativamente altas (L. geoffroyi Q1 = 0.745 e L. tigrinus SSE Q2
= 0.753). Com K = 2 e utilizando o modelo de locos não ligados, 16 indivíduos de L. geoffroyi
apresentaram q1 ≥ 0.90, tendo 13 destes apresentado também valores > 0.90 na análise
anterior com os segmentos do cromossomo X e autossomos e o modelo de locos ligados
(tabela 7). Dentre os indivíduos com probabilidade < 0.90, 87.5% (14/16) eram provenientes
do estado do RS.
Em relação às associações de L. tigrinus SSE, foram observados 13 indivíduos com q2
0.90 e 17 com q2 < 0.90, sendo que, neste último caso, um deles (o híbrido bLti 121) foi
altamente associado ao grupo de L. geoffroyi (q1 = 0.909). Do total de indivíduos
morfologicamente L. tigrinus e associados a esta população com valores < 0.90, apenas três
(bLti 87, 89, 96) corresponderam a indivíduos procedentes dos estados de São Paulo, Paraná e
Espírito Santo, respectivamente, enquanto o restante (14/17; 82.3%) foram provenientes do
estado do RS.
Comparando-se as duas diferentes análises realizadas com o programa STRUCTURE
com diferentes conjuntos de marcadores moleculares, podemos verificar vários casos de
congruência na detecção de híbridos (ver tabela 7). A maioria dos indivíduos identificados
através dos marcadores de sequência foi também identificada por meio da análise utilizando
20
os locos de microssatélites, no entanto, estes últimos detectaram um número levemente maior
de híbridos.
O próximo passo das análises foi investigar se a combinação dos diferentes
marcadores moleculares tornaria a análise mais robusta, aumentando a detecção de prováveis
híbridos. Sendo assim, os marcadores de sequência foram combinados aos microssatélites
envolvendo todos os indivíduos (n = 74) em uma análise no programa STRUCTURE com o
modelo de locos ligados. Nesta análise, as três espécies foram predominantemente associadas
a um dos quatro clusters, com proporções consideravelmente altas [L. geoffroyi: cluster 1 (Q1
= 0.612), L. colocolo: cluster 3 (Q3 = 0.938), L. tigrinus SSE: cluster 4 (Q4 = 0.775)] e L.
tigrinus CNE: cluster 2 (Q2 = 0.862). Além do cluster 1, L. geoffroyi foi associado ao cluster
4 (L. tigrinus SSE) com uma proporção de Q4 = 0.255, enquanto a população de L. tigrinus
SSE também foi associada ao cluster 1, com Q1 = 0.120. Dentre as 32 amostras de L.
geoffroyi, somente cinco apresentaram q1 0.90 (tabela 8) das quais três eram provenientes
de áreas distantes do estado do RS. Dezoito indivíduos com q < 0.90 para qualquer grupo
apresentaram valores de q intermediários entre os clusters 1 (L. geoffroyi) e 4 (L. tigrinus
SSE), sendo 17 de origem gaúcha, e outros sete L. geoffroyi revelaram associação com os L.
tigrinus do CNE. Curiosamente, um indivíduo (bLge 52) da Argentina teve parte do seu
genoma associado à população de L. colocolo. Dos 30 L. tigrinus do SSE, nove foram
associados ao cluster 4 (L. tigrinus SSE) com q4 ≥ 0.90, e 21 apresentaram valores < 0.90 de
associação à sua população fonte. Destes, apesar dos valores menores que 0.90, dez
apresentaram ainda altas probabilidades de pertencer ao cluster de L. tigrinus SSE com q
variando de 0.899 a 0.805 e quatro apresentaram o segundo maior valor de associação à
população de L. tigrinus do CNE. Do total de indivíduos morfologicamente L. tigrinus com
associação menor que 0.90 a qualquer grupo, cerca de 81% (17/21) eram procedentes do
estado do RS. Considerando-se as duas outras populações remanescentes, todos os indivíduos
de L. colocolo foram associados ao cluster 3 com q3 0.90 e, dentre os L. tigrinus CNE, três
mostraram q2 0.90 de associação à sua população fonte e os três restantes apresentaram
valores < 0.9, mas sem alta associação com qualquer outro cluster.
Embora L. tigrinus e L. geoffroyi sejam consideradas duas espécies distintas, foi
detectado um alto nível de miscigenação entre elas, com cerca de 77.4% (48/62) dos
indivíduos apresentando uma origem brida. Em sua maioria a origem geográfica destas
amostras foi concordante com a área de contato entre as duas espécies. Além disso, a
combinação dos diferentes tipos de marcadores moleculares utilizados parece aumentar a
21
capacidade de detecção de híbridos, pois alguns indivíduos apresentaram evidência de
hibridação apenas na análise conjunta dos dados.
Taxas de migração
Estimativas da taxa de migração entre populações e entre locos foram calculadas com
o programa LAMARC para os locos ligados ao X e autossomos. As médias entre as múltiplas
análises Bayesianas foram usadas para gerar as estimativas finais. Uma primeira análise foi
realizada para as três espécies revelando um padrão de fluxo gênico bidirecional e assimétrico
entre L. tigrinus e L. geoffroyi em todos os marcadores quando analisados
independentemente; entretanto, as taxas de migração para o conjunto total de marcadores
demonstraram uma tendência à simetria entre as espécies. Visto que os L. tigrinus do CNE
foram identificados como sendo geneticamente distintos, uma segunda análise foi realizada
incluindo estes animais como uma quarta população (L. tigrinus SSE, L. tigrinus CNE, L.
geoffroyi e L. colocolo) a fim de verificar se esta subdivisão afetaria os resultados das análises
de fluxo gênico, especialmente no que tange à simetria do processo de introgressão no sul do
Brasil. Os resultados foram semelhantes ao primeiro conjunto de análises no que se refere ao
fluxo gênico entre L. tigrinus e L. geoffroyi, e permitiram algumas inferências adicionais.
Portanto, são apresentados aqui sob a forma de tabela somente os resultados da segunda série,
que inclui as quatro populações distintas. As maiores taxas de migração foram detectadas
entre L. tigrinus SSE e L. geoffroyi revelando um fluxo gênico assimétrico entre as espécies
para vários dos marcadores quando analisados individualmente. Observou-se também
considerável heterogeneidade nas estimativas de fluxo nico entre os marcadores, sendo
consistentemente maior para o segmento CHRNA1 (tabela 9). A direção da introgressão de L.
tigrinus para L. geoffroyi foi inferida na maioria dos marcadores como visualizado nas
análises de network, com exceção do BTK e BGN que mostraram maiores valores de
introgressão na direção oposta e do intron 5 do PLP1 que revelou valores simétricos. Apesar
desta tendência observada em algumas análises, um fluxo gênico essencialmente simétrico foi
indicado pela aplicação combinada dos marcadores (ver tabela 9 coluna ¨ALL¨). A estimativa
mínima (de 0,19 migrantes por geração) foi constatada no quinto intron do PLP1 e os
intervalos de confiança, bastante amplos, se sobrepuseram entre os segmentos. Para os demais
pares de populações, as taxas de migração foram baixas a nulas, sugerindo que a ocorrência
de fluxo gênico detectada por estes marcadores está restrita ao par L. tigrinus SSE e L.
geoffroyi, em consenso com resultados prévios (Trigo et al., em preparação). Uma observação
22
adicional e interessante foi que o fluxo gênico entre as populações SSE e CNE de L. tigrinus
foi também extremamente baixo, sugerindo que a conectividade genética entre estes conjuntos
de indivíduos seja também essencialmente nula.
Discussão
Padrões de hibridação e introgressão entre L. tigrinus e L. geoffroyi
Este estudo apresenta uma das primeiras utilizações de múltiplos locos nucleares
ligados ao cromossomo X, associados a microssatélites e introns autossômicos para investigar
eventos de hibridação na natureza. A combinação desses marcadores (com diferentes
propriedades mutacionais e demográficas) auxiliou na caracterização dos complexos padrões
de hibridação e de introgressão entre L. tigrinus e L. geoffroyi na sua região de contato
geográfico no Estado do Rio Grande do Sul.
Uma limitação da utilização desses marcadores nucleares é a dificuldade de se inferir
se o compartilhamento de haplótipos é ancestral ou devido à hibridação. Apesar de os SNPs
reduzirem o problema da homoplasia geralmente verificado em microssatélites, os haplótipos
inferidos incorporando vários SNPs apresentaram pouquíssimas diferenças entre si, o que
dificulta inferir se são realmente haplótipos espécie-específicos.
Apesar da dificuldade em se estabelecer a ancestralidade dos haplótipos de forma
definitiva, a estrutura dos netoworks sugere que o compartilhamento de sequências entre L.
tigrinus e L. geoffroyi em grande parte dos marcadores analisados está principalmente
associado a um fluxo gênico secundário, ou seja, posterior ao evento de divergência entre as
espécies. Em um cenário onde duas espécies que divergiram isoladamente acabem entrando
em contato secundário e, posteriormente, consigam estabelecer cruzamentos interespecíficos
(como se acredita atualmente ser o caso de L. tigrinus e L. geoffroyi), a ocorrência de
compartilhamento apenas, ou predominantemente, nas áreas próximas ao contato seria
esperada. Por outro lado, um compartilhamento por ancestralidade seria esperado ao longo de
toda a distribuição das espécies em questão. Dessa maneira, o compartilhamento detectado
aqui, predominantemente, registrado nas populações de ambas as espécies provenientes da
região de contato no estado do RS constitui uma forte evidência do resultado de eventos de
hibridação e introgressão entre estas espécies.
Considerando esta hipótese como a mais plausível, a introgressão de segmentos
genômicos foi detectada em ambas as espécies para todos os marcadores, confirmando a
bidirecionalidade do fluxo gênico entre elas. Além disso, as taxas de introgressão foram
23
consideravelmente maiores de L. tigrinus para L. geoffroyi do que na direção oposta,
sugerindo uma assimetria na magnitude da introgressão, o que pode ser verificado pelo maior
número de indivíduos fenotipicamente identificados como L. geoffroyi mostrando alguma
evidência de hibridação com L. tigrinus do que o inverso (fig. 3 A-H e tabelas 4 e 5). Porém,
as estimativas das taxas de migração realizadas com o programa LAMARC não indicaram
exatamente o mesmo padrão. Enquanto uma assimetria foi demonstrada para a maioria das
regiões genômicas separadamente, com exceção do intron 5 do gene PLP1, um fluxo gênico
bastante simétrico foi sugerido pela análise conjunta dos marcadores. Este resultado foi
bastante inesperado, uma vez que a análise foi realizada basicamente com marcadores ligados
entre si, com exceção dos dois locos autossômicos. Considerando que marcadores
proximamente ligados representam uma única unidade cromossômica, as pressões de seleção
atuam nesta região como um todo (Zhang and Hewitt 2003). Assim, esperar-se-ia que os
padrões de introgressão observados individualmente para cada um dos locos fossem
semelhantes aos locos quando conjuntamente analisados, o que não foi o caso. Um padrão
similar pode ser observado em estudos prévios (Trigo et al., em preparação) baseado no
segundo intron do PLP1, o mesmo aqui utilizado. Ao comparar-se a proporção de indivíduos
com introgressão de haplótipos através de análises de network com as estimativas das taxas de
migração inferidas com o programa LAMARC (ver tabela 1 em Apêndice), a mesma
discrepância é observada, ou seja, a rede de haplótipos claramente revela uma assimetria no
fluxo gênico entre as espécies, ao passo que valores próximos da simetria o demonstrados
através da análise do LAMARC. Ao mesmo tempo, observa-se que os intervalos de
credibilidade obtidos foram extremamente amplos, de forma que não é possível inferir de
forma conclusiva com relação ao padrão de simetria deste processo empregando estes dados e
esta abordagem probabilística. Análises adicionais empregando o programa LAMARC, em
que diferentes parâmetros da busca sejam variados, e possivelmente requerendo uma
quantidade maior de dados, serão necessárias para caracterizar de forma mais definitiva a
simetria do fluxo gênico nesta zona híbrida.
Quanto à identificação de indivíduos híbridos pelos marcadores analisados, tivemos
todos os possíveis híbridos apresentando introgressão de haplótipos para locos ligados
corroborados pela análise combinada de marcadores com valores de “q” intermediários ou
com maior associação ao cluster não representativo da sua população. Porém, esta última
análise detectou um número notavelmente maior, confirmando o maior poder de múltiplos
locos ligados e não-ligados em estimar níveis de miscigenação individual principalmente no
caso de eventos mais antigos. Esta abordagem é dificultada em estudos de hibridação
24
utilizando apenas marcadores não-ligados, pois se espera que o desequilíbrio de ligação entre
estes decline rapidamente, levando os sinais de miscigenação a desaparecer em poucas
gerações (Falush et al. 2003). Em populações intensamente hibridizantes de gatos selvagens e
domésticos na Hungria, por exemplo, um conjunto de 27 locos ligados e não-ligados
demonstrou uma maior eficiência na identificação de híbridos quando comparada às análises
realizadas somente com locos ligados (Lecis et al. 2006).
Considerando a evidência combinada de marcadores, 48 indivíduos puderam ser
identificados como possíveis híbridos entre L. tigrinus e L. geoffroyi (assumindo q = 0.9 como
limite), dos quais 38 eram provenientes do Estado do RS. Todos os indivíduos assumidos
previamente como sendo híbridos e selecionados como tal para inclusão neste estudo (ver
tabela 1) compreendem os mesmos híbridos detectados nesta análise, com exceção de apenas
dois L. geoffroyi (bLge31 e bLge33; ver tabela 7 e 8) confirmando a origem híbrida destes
indivíduos identificada paralelamente por outros marcadores moleculares (Trigo et al., em
preparação). No entanto, a indicação de que esses dois indivíduos apresentam uma origem
pura não deve ser descartada, uma vez que segmentos do mtDNA e introns do cromossomo X
e Y utilizados naquele estudo revelaram igualmente uma origem pura, sendo a ancestralidade
híbrida inferida somente através dos locos de microssatélites (ver tabela 2 em Apêndice).
Segundo simulações, existe uma probabilidade de erro nas associações dos microssatélites, o
que poderia justificar esta identificação equívoca. Além disso, alguns indivíduos
supostamente puros procedentes do RS como também de procedência mais distante foram
identificados como híbridos através dos locos nucleares fornecendo a evidência de que a
hibridação entre L. tigrinus e L. geoffroyi parece ser realmente intensa e pode não estar restrita
ao RS como previamente se deduzia. É possível que nenhuma ou reduzida força seletiva
esteja atuando sobre esta zona híbrida promovendo sua expansão para além da estreita faixa
na região central do RS. Porém, a inclusão de novos marcadores e uma amostragem mais
representativa das duas espécies e da distribuição mais ao sul de L. geoffroyi poderá auxiliar
em futuras análises para a elucidação da existência ou não de pressões seletivas.
Finalmente, nenhuma evidência clara de hibridação entre L. geoffroyi e L. colocolo foi
documentada. Embora um único caso (bLge52) tenha apresentado associação parcial e
simultânea a L. geoffroyi e L. colocolo de acordo com a análise conjunta de marcadores com o
programa STRUCTURE (ver tabela 8), esta observação parece não apresentar muito suporte
para a indicação de um possível evento de hibridação entre estas. Das três espécies analisadas
neste estudo, L. colocolo é a mais basal, divergindo aproximadamente 2.4 Ma a partir do
ancestral comum com L. tigrinus e L. geoffroyi (Johnson et al. 2006). Essa observação é
25
corroborada pelos locos nucleares ligados ao X; possivelmente, L. geoffroyi e L. colocolo
desenvolveram mecanismos de isolamento reprodutivo totalmente efetivos no sentido de
evitar a hibridação, dado este amplo tempo de divergência quando comparado a L. tigrinus e
L. geoffroyi, separadas cerca de 1 Ma (Johnson et al. 2006). Assim, este caso isolado
provavelmente represente um artefato da análise dos microssatélites, visto que na análise dos
marcadores ligados ao X e autossomos (tabela 7), este indivíduo apresentou alta associação (q
≥ 0.9) à sua respectiva população.
Padrões genéticos de L. tigrinus da região centro-nordeste do Brasil
O padrão detectado para os L. tigrinus provenientes da região central e nordeste do
Brasil é muito interessante. As análises revelam que esses indivíduos representam,
aparentemente, uma população geneticamente diferenciada dentro de nossa amostragem total,
com haplótipos exclusivos para os espécimes desta região. A análise dos locos ligados ao
cromossomo X (fig. 3F) demonstrou que estes indivíduos, apesar de morfologicamente serem
mais relacionados a L. tigrinus, apresentam uma maior proximidade com L. geoffroyi do que
com os próprios L. tigrinus da região SSE. Esta descoberta tem suporte em resultados prévios
(Trigo et al., em preparação) que demonstram, através de análises de diferenciação entre
populações usando os índices de Fst e Rst com dados de microssatélites, que um menor valor
de diferenciação genética foi constatado entre L. geoffroyi e L. tigrinus do CNE do que entre
as duas subpopulações de L. tigrinus (CNE vs SSE; ver tabela 3 em Apêndice). Outra
evidência dessa proximidade pode ser verificada em sete indivíduos de L. geoffroyi
apresentando valores intermediários de associação com a população de L. tigrinus do CNE na
análise realizada com o programa STRUCTURE (ver tabela 8). Assim, nossos dados
corroboram a existência de uma população geneticamente distinta de L tigrinus na região
CNE. No entanto, ressalta-se a necessidade da condução de estudos mais detalhados com
múltiplos marcadores moleculares e com uma amostra mais representativa de ambas as
espécies, principalmente para fins de comparação das populações de L. tigrinus CNE com L.
geoffroyi e populações de L. tigrinus do sul e sudeste brasileiros, a fim de se avaliar mais
precisamente a magnitude e significado do isolamento desta população.
Conclusão
Os introns de genes autossômicos e do cromossomo X têm sido ainda pouco utilizados
em estudos de hibridação, mas apresentam-se como importantes candidatos para futuros
26
projetos, como demonstram nossos resultados. A análise com múltiplos locos nucleares com
suas diferentes características permitiu uma melhor compreensão de aspectos complexos das
relações evolutivas entre espécies e contribuiu significativamente na identificação de bridos
e dos padrões de introgressão entre esses dois felídeos Neotropicais, podendo ser úteis
também em estudos similares de outros carnívoros.
Sugere-se, baseado no conjunto de marcadores aqui estudados, que o processo de
hibridação entre L. tigrinus e L. geoffroyi é recente ou, mais provavelmente, atual. Os altos
níveis de hibridação/introgressão detectados, com cerca de 78% da população total amostrada
apresentando uma origem híbrida, sugerem ser esta uma das mais extensas zonas híbridas
detectadas até o momento em carnívoros (Gotelli et al. 1994, Vilà and Wayne 1999,
Beaumont et al. 2001, Randi et al. 2001, Lecis et al. 2006, Verardi et al. 2006). Desta forma,
é fundamental que se dê continuidade ao estudo genético deste fenômeno, a fim de que se
possa compreender de forma mais completa a origem histórica e as implicações evolutivas
deste processo.
Agradecimentos
Agradecemos a todas as instituições listadas na Tabela 1, que forneceram as amostras
biológicas usadas neste estudo; a Paulo Bomfim Chaves e William J. Murphy por fornecerem
alguns dos primers empregados nas análises; e ao Fundo Nacional do Meio Ambiente
(FNMA), CAPES e CNPq pelo suporte financeiro provido a este projeto.
27
Tabela 1. Lista dos indivíduos analisados no presente estudo. As identificações de puro e
híbrido utilizadas são de Trigo et al. (em preparação) com base na análise conjunta de locos
de microssatélite, mtDNA e introns do cromossomo X e Y.
Procedência geográfica
Amostra Sexo
Estado/País Município
Instituição/coletor
L. geoffroyi
bLge 28 M RS – Brasil Camaquã Animal atropelado
bLge 36 F RS – Brasil Taim Animal atropelado
bLge 37 F RS – Brasil São Lourenço do Sul Animal atropelado
bLge 41 M RS – Brasil Itaqui FZB-RS
bLge 71 F RS – Brasil Pelotas Animal atropelado
bLge 09 F Argentina - Zôo Cordoba
bLge 52 M Argentina Prov. Catamarca Zôo Cordoba
bLge 20 M Uruguai - Museo de Cienc. Nat. Montevideo
bLge 62 F Bolívia - Zôo de Santa Cruz
bLge 64 M Bolívia Dept. Santa Cruz Zôo de Santa Cruz
bLge 82 M Bolívia - -
bLge 85 M Bolívia - -
bLge 86 M Bolívia - -
PUROS
bLge 87 M Bolívia - -
bLge 01 M RS - Brasil Santa Cruz do Sul Zôo Sapucaia do Sul
bLge 02 M RS - Brasil Cachoeira do Sul Zôo Cachoeira do Sul
bLge 04 M RS - Brasil Cachoeira do Sul Zôo Cachoeira do Sul
bLge 05 M RS - Brasil Cachoeira do Sul Zôo Cachoeira do Sul
bLge 08 M RS - Brasil Cachoeira do Sul Animal atropelado
bLge 10 F RS - Brasil Cachoeira do Sul Animal atropelado
bLge 11 M RS - Brasil Cachoeira do Sul Animal atropelado
bLge 13 M RS - Brasil Eldorado do Sul Animal atropelado
bLge 31 M RS - Brasil Quaraí Zôo Sapucaia do Sul
bLge 32 M RS - Brasil Pântano Grande Capturado por fazendeiros
bLge 33 M RS - Brasil Rosário do Sul/Alegrete
Animal atropelado
bLge 35 M RS - Brasil Taim Animal atropelado
bLge 38 F RS - Brasil Santa Maria/São Sepé Animal atropelado
bLge 42 M RS - Brasil Barra do Ribeiro Animal atropelado
bLge 46 M RS - Brasil Canela Zôo Sapucaia do Sul
bLge 74 F RS - Brasil Pinheiro Machado Animal atropelado
bLge 76 M RS - Brasil Arroio Grande Morto por fazendeiros
HÍBRIDOS
bLge 90 M RS - Brasil São Gabriel Animal atropelado
L. tigrinus
bLti 46 M RS - Brasil Garibaldi Zôo Particular M. Forestier
bLti 94 M RS - Brasil Ibarama Abatido por caçadores
bLti 106 M RS - Brasil Santa Cruz do Sul Criadouro Morro Reuter
bLti 124 M RS - Brasil Arroio do Meio Animal atropelado
bLti 132 M RS - Brasil Rolante Animal atropelado
bLti 56 M São Paulo - Brasil Piracicaba Zôo de Piracicaba
bLti 59 F São Paulo - Brasil Mogi Guaçú Zôo de São Bernardo do Campo
bLti 61 M São Paulo - Brasil São Carlos Associação Mata Ciliar
bLti 62 M São Paulo - Brasil Campinas Associação Mata Ciliar
bLti 71 M São Paulo - Brasil Sorocaba Zôo de Sorocaba
bLti 75 F São Paulo - Brasil - Zôo de Bauru
bLti 76 M São Paulo - Brasil Pedreira Zôo de Pedreira
PUROS
bLti 87 M São Paulo - Brasil Mogi Mirim Associação Mata Ciliar
28
bLti 89 M Paraná - Brasil Pato Branco Zôo de Cascavel
bLti 96 M Goiás - Brasil Água Boa Animal atropelado
bLti 97 M Espírito Santo - Brasil Domingos Martins Associação Pró-Carnívoros
bLti 01 F RS - Brasil Triunfo Animal atropelado
bLti 09 F RS - Brasil Cachoeira do Sul Zôo Sapucaia do Sul
bLti 49 F RS - Brasil Guaíba Animal atropelado
bLti 68 M RS - Brasil Montenegro Animal atropelado
bLti 79 F RS - Brasil Eldorado do Sul Animal atropelado
bLti 80 M RS - Brasil Glorinha Animal atropelado
bLti 98 F RS - Brasil Restinga Seca Animal atropelado
bLti 102 F RS - Brasil Erechim Zôo Sapucaia do Sul
bLti 108 M RS - Brasil Santa Maria Criadouro Morro Reuter
bLti 113 M RS - Brasil Getúlio Vargas Capturado por fazendeiros
bLti 119 M RS - Brasil Cachoeira do Sul Zôo Cachoeira do Sul
bLti 120 M RS - Brasil Cachoeira do Sul Zôo Cachoeira do Sul
bLti 121 M RS - Brasil Triunfo Zôo Sapucaia do Sul
bLti 135 F RS - Brasil Estância Velha Zôo Sapucaia do Sul
bLti 85 M Goiás - Brasil Goiânia Zôo de Goiânia
bLti 107 F Piauí - Brasil - Criadouro Morro Reuter
bLti 118 F Piauí - Brasil - Associação Pró-Carnívoros
bLti 130 M Piauí - Brasil - Animal atropelado
bLti 152 M Piauí - Brasil - Associação Pró-Carnívoros
HÍBRIDOS
bLti 151 M Ceará - Brasil - Associação Pró-Carnívoros
L. colocolo
Lco 07 M Argentina - NCI-USA
Lco 09 F Uruguai - NCI-USA
Lco 13 M Goiás - Brasil - NCI-USA
bLco 303* M Goiás - Brasil Parque das Emas Leandro Silveira/Anah Jácomo
bLco 310* M Goiás - Brasil Parque das Emas Leandro Silveira/Anah Jácomo
PUROS
bLco 317* M Goiás - Brasil Parque das Emas Leandro Silveira/Anah Jácomo
O asterisco (*) indica as amostras não incluídas em estudos prévios.
29
Tabela 2. Condições de amplificação de PCR para cada um dos segmentos utilizados no estudo.
Segmento Desnat. Inicial
Desnat. Anelamento Extensão Nº ciclos
Extensão
Final
ATP7A, BTK,
PLP1 I2, 94º por 3' 94º por 45'' 60º - 50º por 45'' 72º por 1'30'' 10
SILV, CHRNA1 94º por 45'' 50º por 45'' 72º por 1'30'' 30 72º por 15'
94º por 3' 94º por 45'' 60º - 55º por 45'' 72º por 2' 5
PLP1 I5
94º por 45'' 55º por 45'' 72º por 2' 35 72º por 15'
94º por 3' 94º por 45'' 65º - 55º por 45'' 72º por 1'30'' 10
BGN
94º por 45'' 55º por 45'' 72º por 1'30'' 30 72º por 15'
30
Tabela 3. Diversidade gênica (haplotípica) e nucleotídica estimada para cada um dos segmentos nucleares analisados nas amostras das três
espécies Leopardus tigrinus,L. geoffroyi e L. colocolo.
Segmento N* N
o
Hap N° Sítios
Polimórficos
Divers. Gênica Divers. Nucleotídica
ATP7A 91 4 3 0.00238 0.620
BTK 91 6 5 0.00214 0.653
PLP1 I2 87 8 9 0.00189 0.749
PLP1 I5 92 5 8 0.00356 0.631
BGN 87 15 12 0.00694 0.811
X concatenado 80 29 37 0.00300 0.921
CHRNA1 148 13 9 0.00430 0.712
SILV 148 3 2 0.00206 0.554
N*: Número de cromossomos analisados em cada segmento nuclear para as três espécies.
31
Tabela 4. Cromossomos encontrados em cada um dos haplótipos analisados com o programa NETWORK para cada segmento nuclear
caracterizado, com sua respectiva origem geográfica. Os indivíduos heterozigóticos foram sublinhados e os indivíduos híbridos estão em negrito.
Origem
Haplótipos Cromossomos
geográfica
ATP7A
H1 bLge28, bLge36, bLge37, bLge41, bLge71, bLge 01, bLge11, bLge31, bLge33, bLge35, bLge38, bLge74, bLge76,
bLge90, bLti68, bLti79
RS
bLge09, bLge20, bLge52, bLge62, bLge64, bLge85, bLge86, bLge87 ARG/BOL/URU
Lco07, Lco09, Lco13, bLco303, bLco310, bLco317 GO/ARG/URU
H2
bLti 01, bLti09, bLti49, bLti79, bLti80, bLti98, bLti102, bLti108, bLti113, bLti120, bLti121, bLti135,
bLti46, bLti94, bLti106, bLti124, bLti132, bLge 02, bLge04, bLge05, bLge08, bLge10, bLge13, bLge32, bLge42
RS
bLti56, bLti59, bLti62, bLti71, bLti75, bLti76, bLti87, bLti89, bLti97 SP/PR/ES/
H3
bLge10
RS
bLti59, bLti61, bLti96 SP/GO
H4
bLti85, bLti107, bLti118, bLti130, bLti151, bLti152 GO/CE/PI
BTK
H1
bLge 01, bLge11, bLge31, bLge33, bLge35, bLge38, bLge46, bLge74, bLge76, bLge90, bLge28, bLge36, bLge37,
bLge41, bLge71, bLti68, bLti79
RS
bLge09, bLge20, bLge52, bLge64, bLge85, bLge86, bLge87 ARG/BOL/URU
H2
bLti01, bLti09,bLti49, bLti79, bLti80, bLti98, bLti102, bLti108, bLti113, bLti119, bLti120, bLti121, bLti135
bLti46, bLti94, bLti106, bLti124, bLti132, bLge02, bLge04, bLge05, bLge08, bLge10, bLge13, bLge32, bLge42
RS
bLti56, bLti59, bLti62, bLti71, bLti75, bLti76, bLti87, bLti89, bLti96 SP/PR/GO
H3
bLti61, bLti97 SP/ES
H4
bLti85, bLti107, bLti118, bLti130, bLti151, bLti152 GO/CE/PI
H5
Lco07, Lco13, bLco303, bLco310, bLco317 GO/ARG
H6
Lco09 URU
32
PLP1 I2
H1
bLge01, bLge11, bLge31, bLge33, bLge35, bLge38, bLge74, bLge76, bLge90, bLge36, bLge37, bLge41, bLge71
bLti 68, bLti79
RS
bLge09, bLge20, bLge52, bLge62, bLge64, bLge85, bLge86, bLge87 ARG/BOL/URU
H2
bLti01, bLti09, bLti49, bLti80, bLti98, bLti102, bLti108, bLti113, bLti120, bLti 46, bLti94, bLti106, bLti124, bLti132
bLge02, bLge04, bLge05, bLge08, bLge13, bLge32, bLge42
RS
bLti59, bLti71, bLti76 SP
H3
bLti09, bLti79, bLti121, bLti135, bLge10
RS
bLti56, bLti59, bLti61, bLti62, bLti75, bLti87, bLti89, bLti96, bLti97 SP/PR/ES/GO
H4
bLge28, bLge46 RS
bLge62 BOL
H5
bLti85, bLti107, bLti118, bLti130 GO/PI
H6
Lco07 ARG
H7
Lco09 URU
H8
Lco13 GO
PLP1 I5
H1
bLge01, bLge11, bLge31, bLge33, bLge35, bLge38, bLge46, bLge74, bLge76, bLge90, bLge28, bLge36, bLge37,
bLge41, bLge71, bLti68
RS
bLge09, bLge20, bLge52, bLge62, bLge64, bLge85, bLge86, bLge87
ARG/BOL/URU
H2
bLti01, bLti09, bLti49, bLti79, bLti80, bLti98, bLti102, bLti108, bLti113, bLti120, bLti121, bLti135, bLti46, bLti94,
bLti106, bLti124, bLti132, bLge02, bLge04, bLge05, bLge08, bLge10, bLge13, bLge32, bLge42
RS
bLti56, bLti59, bLti61, bLti62, bLti71, bLti75, bLti76, bLti87, bLti89, bLti96, bLti97
SP/PR/ES/GO
H3
bLti85, bLti107, bLti118, bLti130, bLti151, bLti152
GO/CE/PI
H4
Lco07
ARG
H5
Lco09, Lco13, bLco303, bLco310, bLco317
URU/GO
33
BGN
H1
bLge01
RS
H2
bLti01, bLti98, bLti102, bLti108, bLti120, bLti135, bLti94, bLti106, bLti124, bLti132, bLge02, bLge08, bLge10,
bLge13, bLge41
RS
bLti56, bLti59, bLti61, bLti62, bLti71, bLti75, bLti87, bLti89, bLti96
SP/PR/GO
H3
bLge04, bLge11, bLge32, bLge35, bLge74, bLge76, bLge28, bLge37, bLti46, bLti09, bLti49, bLti79
RS
H4
bLge05, bLge31, bLge38, bLge36, bLti121
RS
bLge09, bLge20, bLge52, bLge62
ARG/BOL/URU
H5
bLge33, bLge71
RS
H6
bLge42
RS
H7
bLge71
RS
H8
bLge74, bLti09
RS
H9
bLge85
BOL
H10
bLge87
BOL
H11
bLti85, bLti107, bLti118, bLti130, bLti151, bLti152, bLti49, bLti68, bLti113
RS/GO/CE/PI
H12
bLti76
SP
H13
bLti97
ES
H14
Lco07, Lco09, Lco13, bLco303, bLco310 GO/ARG/URU
H15
bLco317
GO
X concatenado
H1
bLge01
RS
H2
bLti 01, bLti98, bLti102, bLti108, bLti120, bLti94, bLti106, bLti124, bLti132, bLge02, bLge08, bLge13 RS
bLti59, bLti71 SP
H3
bLge04, bLge32, bLti46, bLti49 RS
H4
bLge05
RS
H5
bLge09, bLge20, bLge36, bLge52, bLge31, bLge38 RS/ARG/URU
H6
bLge10, bLti135
RS
34
bLti56, bLti62, bLti75, bLti87, bLti89 SP/PR
H7
bLge10, bLti59, bLti96 RS/SP/GO
H8
bLge11, bLge35, bLge37, bLge74, bLge76 RS
H9
bLge28 RS
H10
bLge33, bLge71 RS
H11
bLge41 RS
H12
bLge42
RS
H13
bLge71 RS
H14
bLge74
RS
H15
bLge85 BOL
H16
bLge87 BOL
H17
bLti09, bLti79
RS
H18
bLti09
RS
H19
bLti49, bLti113
RS
H20
bLti61 SP
H21
bLti68
RS
H22
bLti76 SP
H23
bLti79
RS
H24
bLti85, bLti107, bLti118, bLti130 GO/PI
H25
bLti97 ES
H26
bLti121
RS
H27
Lco07 ARG
H28
Lco09 URU
H29
Lco13 GO
SILV
H1
bLge01, bLge02, bLge04, bLge05, bLge10, bLge31, bLge32, bLge33, bLge35, bLge42, bLge46, bLge74, bLge90
bLge 28, bLge36, bLge37, bLge41, bLge71, bLti09, bLti49, bLti68, bLti79, bLti120, bLti121, bLti106
RS
35
bLge09, bLge20, bLge52, bLge62, bLge64, bLge82, bLge85, bLge86, bLge87, bLti76
SP/ARG/URU/BOL
H2
bLti01, bLti09, bLti49, bLti68, bLti80, bLti98, bLti102, bLti108, bLti113, bLti119, bLti120, bLti121, bLti135,
bLti46, bLti94, bLti106, bLti124, bLti132, bLge02, bLge04, bLge05, bLge08, bLge10, bLge11, bLge13, bLge38,
bLge42, bLge46, bLge76, bLge28, bLge36, bLge37, bLge41
RS
bLti56, bLti59, bLti61, bLti62, bLti71, bLti75, bLti76, bLti87, bLti89, bLti96, bLti97
SP/PR/ES/GO
bLti85, bLti107, bLti118, bLti130, bLti151, bLti152
GO/CE/PI
H3
Lco07, Lco09, Lco13, bLco303, bLco310, bLco317 GO/ARG/URU
CHRNA1
H1
bLge01, bLge05, bLge08, bLge11, bLge13, bLge42, bLge46, bLge90, bLge36, bLge37, bLge41, bLge71, bLti01,
bLti09, bLti46, bLti49, bLti68, bLti79, bLti80, bLti94, bLti106, bLti119, bLti124, bLti132
RS
bLge52, bLge64, bLge82
ARG/BOL
bLti61, bLti62, bLti75, bLti76, bLti96
SP/GO
bLti85, bLti107, bLti118, bLti130, bLti151, bLti152
GO/CE/PI
H2
bLge02, bLge04, bLge10, bLge11, bLge13, bLge28, bLge31, bLge32, bLge33, bLge35, bLge37, bLge38, bLge41
bLge42, bLge74, bLge76, bLti01, bLti09, bLti49, bLti98, bLti102, bLti108, bLti113, bLti119, bLti120, bLti121,
bLti124, bLti132, bLti135
RS
bLge09, bLge20, bLge52, bLge62, bLge64, bLge82, bLge85, bLge86, bLge87
ARG/BOL/URU
bLti56, bLti59, bLti62, bLti71, bLti76, bLti89, bLti97
SP/PR/ES
H3
bLge04
RS
H4
bLge05, bLge10, bLti94
RS
bLti61, bLti87, bLti96
SP/GO
H5
bLge28
RS
H6
bLge32, bLge38, bLge74, bLge76, bLti98, bLti108, bLti135
RS
bLge87, bLti89, bLti97
BOL/PR/ES
H7
bLge35
RS
H8
bLge85, bLti71
BOL/SP
H9
bLti59, bLti113
SP/RS
36
H10
bLti79
RS
H11
Lco07, Lco09, Lco13, bLco303, bLco310, bLco317 GO/ARG/URU
H12
Lco09
URU
H13
Lco13, bLco303
GO
37
Tabela 5. Lista dos indivíduos com seu respectivo haplótipo de locos ligados ao cromossomo X. A
distribuição geográfica de cada um dos haplótipos também é indicada. Os indivíduos e haplótipos
aparentemente não originais ao seu grupo fenotípico estão destacados em negrito.
Haplótipo Indivíduos
Origem
geográfica
Clado Leopardus tigrinus SSE
H2
bLge02, bLge13, bLti 59, 94, 98, 102, 106, 120, 124, 132 RS/SP
H3
bLge04, bLti46, 49 RS
H4 bLge05
RS
H5 bLge08
RS
H7 bLge10
RS
H8 bLge10
RS
H13 bLge42
RS
H18 bLti01, 108 RS
H19 bLti09, 79 RS
H20 bLti 09 RS
H21 bLti49, 113 RS
H22 bLti56, 62, 75, 87, 89, 135 RS/PR/SP
H23 bLti59, 96 SP/GO
H24 bLti61 SP
H26 bLti71 SP
H27 bLti76 SP
H30 bLti97 ES
H31 bLti121 RS
Clado Leopardus geoffroyi
H1 bLge01 RS
H6 bLge09, 20, 31, 36, 38, 52 RS/ARG/URU
H9 bLge11, 35, 37, 74, 76 RS
H10 bLge28 RS
H11 bLge33, 71 RS
H12 bLge41 RS
H14 bLge71 RS
H15 bLge74 RS
H16 bLge85 BOL
H17 bLge87 BOL
H25 bLti68
RS
H28 bLti79
RS
Clado L. tigrinus CNE
H29 bLti85, 107, 118, 130 GO/CE/PI
Clado Leopardus colocolo
H32 Lco07 ARG
H33 Lco09 URU
H34 Lco13 GO
38
Tabela 6. Taxas de recombinação estimadas para cada um dos locos nucleares utilizando o programa
LAMARC. Os intervalos de credibilidade de 95% estão mostrados entre parênteses e o loco com a maior
taxa está indicado em negrito.
Loco R (taxa de recombinação)
ATP7A 0.00007 (0.00001 - 1.7871)
BTK 0.00266 (0.00001 - 1.3878)
PLP1 I2 0.00006 - 0.00001 - 1.5474)
PLP1 I5 0.00025 (0.00001 - 1.15406)
BGN
2.9154 (0.00004 - 8.67042)
SILV 0.00008 (0.00001 - 4.34621)
CHRNA1 0.76765 (0.00003 - 2.96980)
ALL 0.710578 (0.00003 - 1.44622)
39
Tabela 7. Proporção de associação dos haplótipos e/ou genótipos de cada indivíduo aos clusters inferidos pela análise Bayesiana do programa
STRUCTURE. Estão demonstrados aqui os valores obtidos para cada uma das seguintes análises: 1) conjunto total de marcadores do tipo
sequência ligados ao X e autossômicos e 2) conjunto total de locos de microssatélite avaliados previamente por Trigo et al. (em preparação).
Cada coluna contém o valor de “q” para cada indivíduo em cada cluster populacional com seu respectivo intervalo de credibilidade entre
parênteses. O asterisco (*) indica os indivíduos híbridos inferidos através de estudos anteriores. Indivíduos com probabilidades < 0.90 de
pertencerem a sua espécie são mostrados em negrito.
Marcadores ligados ao X e Autossômicos Microssatélites
ID L. geoffroyi L. tigrinus SSE
L. colocolo
L. tigrinus CNE L. geoffroyi
L. tigrinus SSE
bLge 01*
bLge 02*
bLge 04*
bLge 05*
bLge 08*
bLge 09
bLge 10*
bLge 11*
bLge 13*
bLge 20
bLge 28
bLge 31*
bLge 32*
bLge 33*
bLge 35*
bLge 36
bLge 37
bLge 38*
bLge 41
bLge 42*
bLge 46*
bLge 52
bLge 62
bLge 64
bLge 71
bLge 74*
bLge 76*
0.950 (0.684,1.000)
0.050 (0.000,0.392)
0.065 (0.000,0.492)
0.078 (0.000,0.493)
0.013 (0.000,0.066)
0.980 (0.883,1.000)
0.015 (0.000,0.093)
0.733 (0.137,1.000)
0.014 (0.000,0.073)
0.973 (0.842,1.000)
0.928 (0.580,1.000)
0.973 (0.842,1.000)
0.235 (0.000,0.894)
0.974 (0.843,1.000)
0.965 (0.788,1.000)
0.921 (0.544,1.000)
0.952 (0.710,1.000)
0.893 (0.438,1.000)
0.708 (0.150,1.000)
0.051 (0.000,0.401)
0.828 (0.261,1.000)
0.968 (0.806,1.000)
0.980 (0.884,1.000)
0.967 (0.801,1.000)
0.968 (0.803,1.000)
0.976 (0.855,1.000)
0.769 (0.125,1.000)
0.013 (0.000,0.072)
0.933 (0.566,1.000)
0.903 (0.435,1.000)
0.897 (0.460,1.000)
0.858 (0.199,1.000)
0.008 (0.000,0.041)
0.972 (0.832,1.000)
0.131 (0.000,0.780)
0.950 (0.689,1.000)
0.012 (0.000,0.065)
0.035 (0.000,0.254)
0.012 (0.000,0.063)
0.751 (0.093,1.000)
0.012 (0.000,0.064)
0.012 (0.000,0.062)
0.020 (0.000,0.129)
0.021 (0.000,0.139)
0.072 (0.000,0.509)
0.257 (0.000,0.828)
0.920 (0.510,1.000)
0.039 (0.000,0.297)
0.013 (0.000,0.066)
0.008 (0.000,0.042)
0.013 (0.000,0.069)
0.009 (0.000,0.046)
0.012 (0.000,0.066)
0.182 (0.000,0.850)
0.009 (0.000,0.045)
0.007 (0.000,0.038)
0.019 (0.000,0.128)
0.008 (0.000,0.041)
0.007 (0.000,0.037)
0.006 (0.000,0.029)
0.006 (0.000,0.029)
0.008 (0.000,0.041)
0.007 (0.000,0.037)
0.007 (0.000,0.038)
0.016 (0.000,0.097)
0.007 (0.000,0.039)
0.008 (0.000,0.038)
0.007 (0.000,0.035)
0.015 (0.000,0.090)
0.006 (0.000,0.031)
0.006 (0.000,0.031)
0.007 (0.000,0.034)
0.008 (0.000,0.039)
0.009 (0.000,0.049)
0.008 (0.000,0.042)
0.007 (0.000,0.037)
0.006 (0.000,0.029)
0.007 (0.000,0.039)
0.007 (0.000,0.036)
0.007 (0.000,0.034)
0.008 (0.000,0.043)
0.028 (0.000,0.209)
0.009 (0.000,0.048)
0.012 (0.000,0.064)
0.017 (0.000,0.101)
0.122 (0.000,0.777)
0.006 (0.000,0.028)
0.007 (0.000,0.032)
0.128 (0.000,0.682)
0.029 (0.000,0.202)
0.007 (0.000,0.035)
0.021 (0.000,0.149)
0.007 (0.000,0.036)
0.007 (0.000,0.035)
0.007 (0.000,0.036)
0.008 (0.000,0.041)
0.053 (0.000,0.389)
0.021 (0.000,0.148)
0.028 (0.000,0.212)
0.027 (0.000,0.199)
0.020 (0.000,0.129)
0.125 (0.000,0.679)
0.012 (0.000,0.070)
0.006 (0.000,0.028)
0.012 (0.000,0.071)
0.016 (0.000,0.109)
0.006 (0.000,0.029)
0.040 (0.000,0.309)
0.963 (0.800,1.000)
0.920 (0.582,1.000)
0.887 (0.466,1.000)
0.841 (0.290,1.000)
0.361 (0.000,1.000)
0.975 (0.864,1.000)
0.956 (0.762,1.000)
0.378 (0.000,1.000)
0.281 (0.000,1.000)
0.964 (0.804,1.000)
0.526 (0.000,1.000)
0.958 (0.774,1.000)
0.439 (0.000,1.000)
0.971 (0.844,1.000)
0.917 (0.593,1.000)
0.944 (0.701,1.000)
0.857 (0.131,1.000)
0.424 (0.000,1.000)
0.967 (0.820,1.000)
0.478 (0.000,1.000)
0.207 (0.000,0.944)
0.959 (0.786,1.000)
0.972 (0.847,1.000)
0.894 (0.476,1.000)
0.956 (0.766,1.000)
0.277 (0.000,1.000)
0.263 (0.000,0.997)
0.037 (0.000,0.200)
0.080 (0.000,0.418)
0.113 (0.000,0.534)
0.159 (0.000,0.710)
0.639 (0.000,1.000)
0.025 (0.000,0.136)
0.044 (0.000,0.238)
0.622 (0.000,1.000)
0.719 (0.000,1.000)
0.036 (0.000,0.196)
0.474 (0.000,1.000)
0.042 (0.000,0.226)
0.561 (0.000,1.000)
0.029 (0.000,0.156)
0.083 (0.000,0.407)
0.056 (0.000,0.299)
0.143 (0.000,0.869)
0.576 (0.000,1.000)
0.033 (0.000,0.180)
0.522 (0.000,1.000)
0.793 (0.056,1.000)
0.041 (0.000,0.214)
0.028 (0.000,0.153)
0.106 (0.000,0.524)
0.044 (0.000,0.234)
0.723 (0.000,1.000)
0.737 (0.003,1.000)
40
bLge 82
bLge 85
bLge 86
bLge 87
bLge 90*
0.912 (0.373,1.000)
0.940 (0.638,1.000)
0.973 (0.841,1.000)
0.968 (0.808,1.000)
0.951 (0.693,1.000)
0.059 (0.000,0.504)
0.033 (0.000,0.238)
0.013 (0.000,0.064)
0.015 (0.000,0.082)
0.014 (0.000,0.076)
0.010 (0.000,0.052)
0.019 (0.000,0.123)
0.007 (0.000,0.037)
0.009 (0.000,0.049)
0.007 (0.000,0.037)
0.019 (0.000,0.122)
0.009 (0.000,0.046)
0.007 (0.000,0.036)
0.007 (0.000,0.037)
0.027 (0.000,0.202)
0.973 (0.856,1.000)
0.956 (0.763,1.000)
0.963 (0.800,1.000)
0.890 (0.508,1.000)
0.512 (0.000,1.000)
0.027 (0.000,0.144)
0.044 (0.000,0.237)
0.037 (0.000,0.200)
0.110 (0.000,0.492)
0.488 (0.000,1.000)
bLti 01*
bLti 09*
bLti 46
bLti 49*
bLti 56
bLti 59
bLti 61
bLti 62
bLti 68*
bLti 71
bLti 75
bLti 76
bLti 79*
bLti 80*
bLti 87
bLti 89
bLti 94
bLti 96
bLti 97
bLti 98*
bLti 102*
bLti 106
bLti 108*
bLti 113*
bLti 119*
bLti 120*
bLti 121*
bLti 124
bLti 132
bLti 135*
0.009 (0.000,0.046)
0.054 (0.000,0.395)
0.015 (0.000,0.079)
0.025 (0.000,0.182)
0.015 (0.000,0.076)
0.008 (0.000,0.039)
0.010 (0.000,0.052)
0.014 (0.000,0.074)
0.550 (0.117,1.000)
0.062 (0.000,0.422)
0.009 (0.000,0.044)
0.051 (0.000,0.399)
0.597 (0.164,0.943)
0.013 (0.000,0.071)
0.008 (0.000,0.039)
0.014 (0.000,0.075)
0.010 (0.000,0.051)
0.010 (0.000,0.049)
0.016 (0.000,0.084)
0.009 (0.000,0.048)
0.009 (0.000,0.048)
0.043 (0.000,0.320)
0.015 (0.000,0.078)
0.011 (0.000,0.056)
0.017 (0.000,0.092)
0.050 (0.000,0.393)
0.149 (0.000,0.751)
0.014 (0.000,0.074)
0.014 (0.000,0.075)
0.009 (0.000,0.046)
0.969 (0.815,1.000)
0.927 (0.563,1.000)
0.858 (0.206,1.000)
0.928 (0.604,1.000)
0.966 (0.793,1.000)
0.977 (0.861,1.000)
0.953 (0.709,1.000)
0.950 (0.685,1.000)
0.023 (0.000,0.142)
0.902 (0.489,1.000)
0.944 (0.630,1.000)
0.919 (0.504,1.000)
0.384 (0.047,0.819)
0.847 (0.181,1.000)
0.973 (0.841,1.000)
0.966 (0.798,1.000)
0.954 (0.713,1.000)
0.954 (0.716,1.000)
0.962 (0.772,1.000)
0.977 (0.860,1.000)
0.977 (0.862,1.000)
0.898 (0.405,1.000)
0.966 (0.795,1.000)
0.930 (0.600,1.000)
0.938 (0.612,1.000)
0.933 (0.567,1.000)
0.835 (0.231,1.000)
0.950 (0.692,1.000)
0.950 (0.689,1.000)
0.977 (0.862,1.000)
0.006 (0.000,0.028)
0.007 (0.000,0.035)
0.007 (0.000,0.039)
0.006 (0.000,0.030)
0.007 (0.000,0.037)
0.006 (0.000,0.031)
0.008 (0.000,0.039)
0.007 (0.000,0.037)
0.007 (0.000,0.038)
0.018 (0.000,0.118)
0.006 (0.000,0.029)
0.009 (0.000,0.049)
0.010 (0.000,0.054)
0.007 (0.000,0.040)
0.007 (0.000,0.036)
0.007 (0.000,0.037)
0.007 (0.000,0.037)
0.007 (0.000,0.038)
0.009 (0.000,0.049)
0.006 (0.000,0.028)
0.006 (0.000,0.028)
0.008 (0.000,0.039)
0.007 (0.000,0.037)
0.008 (0.000,0.042)
0.008 (0.000,0.041)
0.008 (0.000,0.038)
0.007 (0.000,0.037)
0.007 (0.000,0.036)
0.007 (0.000,0.036)
0.006 (0.000,0.028)
0.016 (0.000,0.095)
0.012 (0.000,0.069)
0.120 (0.000,0.771)
0.041 (0.000,0.286)
0.012 (0.000,0.066)
0.009 (0.000,0.049)
0.029 (0.000,0.203)
0.029 (0.000,0.204)
0.420 (0.000,0.867)
0.018 (0.000,0.106)
0.042 (0.000,0.329)
0.020 (0.000,0.133)
0.009 (0.000,0.049)
0.132 (0.000,0.801)
0.012 (0.000,0.064)
0.012 (0.000,0.066)
0.029 (0.000,0.209)
0.029 (0.000,0.198)
0.013 (0.000,0.072)
0.008 (0.000,0.043)
0.008 (0.000,0.042)
0.051 (0.000,0.403)
0.012 (0.000,0.066)
0.051 (0.000,0.351)
0.037 (0.000,0.279)
0.009 (0.000,0.049)
0.009 (0.000,0.045)
0.028 (0.000,0.200)
0.029 (0.000,0.200)
0.008 (0.000,0.043)
0.194 (0.000,0.791)
0.527 (0.000,1.000)
0.171 (0.000,0.693)
0.896 (0.496,1.000)
0.036 (0.000,0.194)
0.055 (0.000,0.285)
0.078 (0.000,0.400)
0.047 (0.000,0.248)
0.123 (0.000,0.651)
0.058 (0.000,0.302)
0.036 (0.000,0.195)
0.038 (0.000,0.204)
0.605 (0.000,1.000)
0.191 (0.000,0.849)
0.167 (0.000,0.792)
0.106 (0.000,0.470)
0.064 (0.000,0.332)
0.129 (0.000,0.563)
0.083 (0.000,0.416)
0.562 (0.000,1.000)
0.072 (0.000,0.375)
0.050 (0.000,0.268)
0.422 (0.000,1.000)
0.039 (0.000,0.211)
0.471 (0.000,1.000)
0.046 (0.000,0.246)
0.909 (0.557,1.000)
0.171 (0.000,0.764)
0.363 (0.000,1.000)
0.698 (0.005,1.000)
0.806 (0.209,1.000)
0.473 (0.000,1.000)
0.829 (0.307,1.000)
0.104 (0.000,0.504)
0.964 (0.806,1.000)
0.945 (0.715,1.000)
0.922 (0.600,1.000)
0.953 (0.752,1.000)
0.877 (0.349,1.000)
0.942 (0.698,1.000)
0.964 (0.805,1.000)
0.962 (0.796,1.000)
0.395 (0.000,1.000)
0.809 (0.151,1.000)
0.833 (0.208,1.000)
0.894 (0.530,1.000)
0.936 (0.668,1.000)
0.871 (0.437,1.000)
0.917 (0.584,1.000)
0.438 (0.000,1.000)
0.928 (0.625,1.000)
0.950 (0.732,1.000)
0.578 (0.000,1.000)
0.961 (0.789,1.000)
0.529 (0.000,1.000)
0.954 (0.754,1.000)
0.091 (0.000,0.443)
0.829 (0.236,1.000)
0.637 (0.000,1.000)
0.302 (0.000,0.995)
bLti 85
bLti 107
bLti 118
bLti 130
0.009 (0.000,0.045)
0.007 (0.000,0.033)
0.007 (0.000,0.033)
0.009 (0.000,0.046)
0.013 (0.000,0.069)
0.009 (0.000,0.045)
0.008 (0.000,0.041)
0.013 (0.000,0.071)
0.007 (0.000,0.036)
0.006 (0.000,0.027)
0.006 (0.000,0.027)
0.007 (0.000,0.035)
0.971 (0.824,1.000)
0.979 (0.876,1.000)
0.979 (0.878,1.000)
0.971 (0.826,1.000)
-
-
-
-
-
-
-
-
41
bLti 151
bLti 152
Lco 07
Lco 09
Lco 13
bLco 303
bLco 310
bLco 317
0.009 (0.000,0.046)
0.009 (0.000,0.043)
0.007 (0.000,0.036)
0.006 (0.000,0.030)
0.007 (0.000,0.036)
0.007 (0.000,0.037)
0.007 (0.000,0.036)
0.007 (0.000,0.036)
0.013 (0.000,0.070)
0.013 (0.000,0.071)
0.007 (0.000,0.034)
0.006 (0.000,0.027)
0.007 (0.000,0.035)
0.007 (0.000,0.037)
0.007 (0.000,0.035)
0.007 (0.000,0.034)
0.007 (0.000,0.037)
0.007 (0.000,0.035)
0.979 (0.876,1.000)
0.983 (0.900,1.000)
0.979 (0.877,1.000)
0.979 (0.872,1.000)
0.979 (0.875,1.000)
0.979 (0.877,1.000)
0.970 (0.823,1.000)
0.971 (0.829,1.000)
0.007 (0.000,0.036)
0.006 (0.000,0.027)
0.007 (0.000,0.035)
0.007 (0.000,0.036)
0.007 (0.000,0.034)
0.007 (0.000,0.036)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
42
Marcadores ligados ao X, Autossômicos e Microssatélites
ID L. geoffroyi L. tigrinus SSE
L. colocolo
L. tigrinus CNE
bLge 01*
bLge 02*
bLge 04*
bLge 05*
bLge 08*
bLge 09
bLge 10*
bLge 11*
bLge 13*
bLge 20
bLge 28
bLge 31*
bLge 32*
bLge 33*
bLge 35*
bLge 36
bLge 37
bLge 38*
bLge 41
bLge 42*
bLge 46*
bLge 52
bLge 62
bLge 64
bLge 71
bLge 74*
bLge 76*
bLge 82
bLge 85
0.773 (0.433,1.000)
0.485 (0.161,0.792)
0.472 (0.154,0.753)
0.282 (0.000,0.579)
0.171 (0.000,0.473)
0.960 (0.841,1.000)
0.492 (0.203,0.762)
0.363 (0.097,0.651)
0.032 (0.000,0.176)
0.932 (0.765,1.000)
0.576 (0.218,0.943)
0.923 (0.714,1.000)
0.454 (0.177,0.725)
0.956 (0.827,1.000)
0.811 (0.545,0.997)
0.624 (0.308,0.965)
0.773 (0.398,1.000)
0.455 (0.193,0.736)
0.832 (0.588,0.999)
0.367 (0.040,0.664)
0.255 (0.050,0.521)
0.688 (0.289,0.996)
0.894 (0.671,1.000)
0.746 (0.431,0.997)
0.787 (0.470,0.999)
0.440 (0.182,0.722)
0.308 (0.065,0.604)
0.839 (0.531,1.000)
0.786 (0.477,0.999)
0.015 (0.000,0.083)
0.477 (0.169,0.797)
0.410 (0.144,0.696)
0.659 (0.352,0.974)
0.662 (0.349,0.958)
0.010 (0.000,0.057)
0.457 (0.193,0.746)
0.551 (0.252,0.836)
0.486 (0.196,0.790)
0.033 (0.000,0.165)
0.157 (0.000,0.523)
0.019 (0.000,0.109)
0.473 (0.206,0.752)
0.017 (0.000,0.095)
0.155 (0.000,0.412)
0.036 (0.000,0.201)
0.162 (0.000,0.536)
0.423 (0.128,0.691)
0.118 (0.000,0.363)
0.599 (0.303,0.911)
0.527 (0.073,0.873)
0.055 (0.000,0.256)
0.015 (0.000,0.084)
0.047 (0.000,0.239)
0.032 (0.000,0.178)
0.390 (0.009,0.704)
0.411 (0.002,0.754)
0.015 (0.000,0.086)
0.083 (0.000,0.334)
0.011 (0.000,0.060)
0.015 (0.000,0.084)
0.054 (0.000,0.306)
0.019 (0.000,0.108)
0.039 (0.000,0.201)
0.013 (0.000,0.074)
0.014 (0.000,0.080)
0.023 (0.000,0.132)
0.009 (0.000,0.052)
0.018 (0.000,0.101)
0.056 (0.000,0.287)
0.046 (0.000,0.233)
0.032 (0.000,0.170)
0.010 (0.000,0.059)
0.021 (0.000,0.116)
0.045 (0.000,0.200)
0.015 (0.000,0.083)
0.052 (0.000,0.228)
0.017 (0.000,0.094)
0.011 (0.000,0.060)
0.010 (0.000,0.059)
0.219 (0.000,0.629)
0.056 (0.000,0.258)
0.017 (0.000,0.095)
0.059 (0.000,0.258)
0.019 (0.000,0.107)
0.034 (0.000,0.182)
0.024 (0.000,0.138)
0.079 (0.000,0.349)
0.202 (0.000,0.540)
0.022 (0.000,0.123)
0.064 (0.000,0.298)
0.039 (0.000,0.215)
0.128 (0.000,0.463)
0.017 (0.000,0.094)
0.037 (0.000,0.198)
0.062 (0.000,0.296)
0.473 (0.172,0.758)
0.016 (0.000,0.092)
0.212 (0.000,0.567)
0.012 (0.000,0.071)
0.040 (0.000,0.206)
0.016 (0.000,0.093)
0.014 (0.000,0.080)
0.294 (0.000,0.621)
0.051 (0.000,0.266)
0.070 (0.000,0.317)
0.033 (0.000,0.181)
0.024 (0.000,0.138)
0.207 (0.000,0.640)
0.038 (0.000,0.191)
0.035 (0.000,0.180)
0.190 (0.000,0.518)
0.122 (0.000,0.420)
0.151 (0.000,0.456)
0.247 (0.000,0.611)
0.122 (0.000,0.419)
0.052 (0.000,0.245)
Tabela 8. Proporção de associação dos haplótipos e genótipos de cada indivíduo aos
clusters
inferidos para o conjunto total de marcadores
moleculares através da análise Bayesiana do programa STRUCTURE utilizando o modelo de locos ligados. Cada coluna contém o valor de
¨q¨ para cada indivíduo em cada cluster populacional com seu respectivo intervalo de credibilidade entre parênteses. O asterisco (*) indica
os indivíduos híbridos inferidos através de estudos anteriores. Indivíduos com probabilidades < 0.90 de pertencerem a sua espécie são
mostrados em negrito.
43
bLge 86
bLge 87
bLge 90*
0.940 (0.768,1.000)
0.677 (0.405,0.940)
0.491 (0.195,0.833)
0.015 (0.000,0.083)
0.263 (0.004,0.523)
0.391 (0.012,0.715)
0.025 (0.000,0.138)
0.026 (0.000,0.144)
0.012 (0.000,0.069)
0.021 (0.000,0.115)
0.034 (0.000,0.189)
0.106 (0.000,0.436)
bLti 01*
bLti 09*
bLti 46
bLti 49*
bLti 56
bLti 59
bLti 61
bLti 62
bLti 68*
bLti 71
bLti 75
bLti 76
bLti 79*
bLti 80*
bLti 87
bLti 89
bLti 94
bLti 96
bLti 97
bLti 98*
bLti 102*
bLti 106
bLti 108*
bLti 113*
bLti 119*
bLti 120*
bLti 121*
bLti 124
bLti 132
bLti 135*
0.126 (0.000,0.390)
0.271 (0.000,0.578)
0.018 (0.000,0.103)
0.443 (0.123,0.734)
0.010 (0.000,0.057)
0.014 (0.000,0.077)
0.018 (0.000,0.105)
0.037 (0.000,0.170)
0.131 (0.004,0.333)
0.039 (0.000,0.204)
0.012 (0.000,0.071)
0.022 (0.000,0.119)
0.590 (0.348,0.815)
0.025 (0.000,0.138)
0.025 (0.000,0.136)
0.035 (0.000,0.181)
0.019 (0.000,0.107)
0.031 (0.000,0.153)
0.044 (0.000,0.217)
0.259 (0.000,0.557)
0.017 (0.000,0.098)
0.031 (0.000,0.161)
0.058 (0.000,0.265)
0.015 (0.000,0.081)
0.243 (0.000,0.550)
0.063 (0.000,0.282)
0.668 (0.401,0.892)
0.025 (0.000,0.140)
0.074 (0.000,0.329)
0.244 (0.000,0.514)
0.805 (0.519,0.999)
0.651 (0.362,0.954)
0.944 (0.781,1.000)
0.430 (0.165,0.721)
0.964 (0.853,1.000)
0.945 (0.790,1.000)
0.940 (0.771,1.000)
0.923 (0.741,1.000)
0.295 (0.000,0.774)
0.917 (0.709,1.000)
0.884 (0.662,1.000)
0.885 (0.655,1.000)
0.380 (0.158,0.623)
0.615 (0.274,0.980)
0.936 (0.764,1.000)
0.899 (0.683,1.000)
0.914 (0.682,1.000)
0.910 (0.709,1.000)
0.869 (0.634,1.000)
0.659 (0.363,0.962)
0.886 (0.635,1.000)
0.862 (0.555,1.000)
0.891 (0.652,1.000)
0.755 (0.482,0.996)
0.672 (0.356,0.972)
0.768 (0.449,0.998)
0.250 (0.052,0.501)
0.876 (0.601,1.000)
0.814 (0.487,1.000)
0.718 (0.444,0.985)
0.010 (0.000,0.057)
0.044 (0.000,0.205)
0.018 (0.000,0.101)
0.010 (0.000,0.058)
0.016 (0.000,0.089)
0.029 (0.000,0.156)
0.014 (0.000,0.076)
0.019 (0.000,0.107)
0.012 (0.000,0.069)
0.022 (0.000,0.122)
0.022 (0.000,0.118)
0.073 (0.000,0.293)
0.013 (0.000,0.076)
0.038 (0.000,0.177)
0.022 (0.000,0.125)
0.049 (0.000,0.227)
0.015 (0.000,0.085)
0.028 (0.000,0.155)
0.056 (0.000,0.245)
0.012 (0.000,0.068)
0.015 (0.000,0.084)
0.013 (0.000,0.072)
0.029 (0.000,0.161)
0.016 (0.000,0.089)
0.045 (0.000,0.209)
0.012 (0.000,0.068)
0.036 (0.000,0.172)
0.017 (0.000,0.096)
0.026 (0.000,0.144)
0.011 (0.000,0.063)
0.059 (0.000,0.292)
0.034 (0.000,0.187)
0.020 (0.000,0.114)
0.117 (0.000,0.452)
0.010 (0.000,0.058)
0.013 (0.000,0.071)
0.028 (0.000,0.153)
0.022 (0.000,0.123)
0.562 (0.041,0.920)
0.022 (0.000,0.127)
0.082 (0.000,0.293)
0.020 (0.000,0.110)
0.017 (0.000,0.093)
0.322 (0.000,0.677)
0.017 (0.000,0.094)
0.017 (0.000,0.097)
0.052 (0.000,0.265)
0.031 (0.000,0.168)
0.031 (0.000,0.171)
0.070 (0.000,0.313)
0.082 (0.000,0.327)
0.095 (0.000,0.389)
0.021 (0.000,0.123)
0.215 (0.000,0.492)
0.040 (0.000,0.218)
0.157 (0.000,0.474)
0.046 (0.000,0.228)
0.082 (0.000,0.346)
0.086 (0.000,0.380)
0.027 (0.000,0.152)
bLti 85
bLti 107
bLti 118
bLti 130
bLti 151
bLti 152
0.026 (0.000,0.144)
0.032 (0.000,0.167)
0.024 (0.000,0.130)
0.190 (0.000,0.473)
0.069 (0.000,0.303)
0.141 (0.000,0.425)
0.017 (0.000,0.095)
0.026 (0.000,0.144)
0.019 (0.000,0.107)
0.078 (0.000,0.361)
0.046 (0.000,0.231)
0.024 (0.000,0.137)
0.014 (0.000,0.081)
0.029 (0.000,0.164)
0.023 (0.000,0.125)
0.014 (0.000,0.081)
0.035 (0.000,0.176)
0.022 (0.000,0.121)
0.943 (0.784,1.000)
0.913 (0.702,1.000)
0.934 (0.770,1.000)
0.717 (0.411,0.989)
0.850 (0.578,1.000)
0.813 (0.521,0.999)
44
Lco 07
Lco 09
Lco 13
bLco 303
bLco 310
bLco 317
0.025 (0.000,0.141)
0.011 (0.000,0.062)
0.014 (0.000,0.077)
0.026 (0.000,0.151)
0.026 (0.000,0.149)
0.026 (0.000,0.148)
0.019 (0.000,0.108)
0.012 (0.000,0.065)
0.013 (0.000,0.074)
0.026 (0.000,0.146)
0.026 (0.000,0.149)
0.026 (0.000,0.148)
0.937 (0.769,1.000)
0.964 (0.858,1.000)
0.960 (0.846,1.000)
0.922 (0.692,1.000)
0.922 (0.696,1.000)
0.922 (0.696,1.000)
0.019 (0.000,0.108)
0.014 (0.000,0.077)
0.012 (0.000,0.069)
0.026 (0.000,0.147)
0.026 (0.000,0.148)
0.026 (0.000,0.148)
45
Tabela 9. Parâmetros demográficos inferidos para as três espécies de felídeos (Leopardus tigrinus, L. geoffroyi e L. colocolo) usando o todo
baseado em coalescência implementado no programa Lamarc e considerando L. tigrinus do centro-nordeste (CNE) como uma quarta população.
Os valores são as dias calculadas a partir de múltiplas análises para cada um dos segmentos usando o todo Bayesiano (veja Materiais e
Métodos). As taxas de migração são expressas como o número de migrantes por geração (Nm) e os intervalos de confiança de 95% estão entre
parênteses. As maiores taxas são mostradas em negrito.
ATP7A BTK PLP1 I2
θ L. tigrinus SSE
0.00069 (0.00012 – 0.00315) 0.00148 (0.00022 – 0.00406) 0.00041 (7.29E-05 – 0.00147)
θ L. geoffroyi
0.00166 (0.00034 – 0.00632) 0.00038 (2.84E-05 – 0.00174) 0.00077 (0.00012 – 0.00236)
θ L. colocolo
0.00090 (3.18E-05 – 0.00752) 0.00060 (2.07E-05 - 0.00335) 0.00127 (0.00015 - 0.00912)
θ L. tigrinus CNE
1.65E-05 (1.04E-05 - 0.00157) 1.49E-05 (1.02E-05 - 0.00111) 1.47E-05 (1.03E-05 - 0.00108)
Nm (L. tigrinus SSE into L. geoffroyi)
0.89365 (0.00594 - 6.08708) 0.32108 (0.00081 - 1.77162) 0.62819 (0.00433 - 2.35340)
Nm (L. tigrinus SSE into L. colocolo)
0.19994 (3.95E-07 - 6.77655) 0.10706 (2.54E-07 - 2.83808) 0.07299 (1.81E-06 - 4.88122)
Nm (L. tigrinus SSE into L. tigrinus CNE)
0.00180 (1.23E-07 - 1.13753) 0.00464 (1.28E-07 - 1.10913) 0.00443 (1.27E-07 - 1.05827)
Nm (L. geoffroyi into L. tigrinus SSE)
0.61151 (0.01040 - 3.20225) 0.69951 (7.36E-05 - 3.89762) 0.36998 (0.01000 - 1.48738)
Nm (L. geoffroyi into L. colocolo)
0.37540 (4.86E-07 - 9.18604) 0.08423 (2.50E-07 - 2.57095) 0.09704 (1.82E-06 - 5.01386)
Nm (L. geoffroyi into L. tigrinus CNE)
0.00434 (1.27E-07 - 1.41643) 0.00383 (1.25E-07 - 1.02402) 0.00512 (1.36E-07 - 1.20839)
Nm (L. colocolo into L. tigrinus SSE)
0.11488 (1.54E-06 - 2.52953) 0.17750 (2.85E-06 - 2.70404) 0.06736 (9.13E-07 - 1.15095)
Nm (L. colocolo into L. geoffroyi)
0.29985 (5.60E-06 - 5.30271) 0.07895 (3.63E-07 - 1.56151) 0.09205 (1.53E-06 - 1.60432)
Nm (L. colocolo into L. tigrinus CNE)
0.00465 (1.29E-07 - 1.50003) 0.00374 (1.27E-07 - 1.04811) 0.00397 (1.28E-07 - 0.99995)
Nm (L. tigrinus CNE into L. tigrinus SSE)
0.07299 (1.49E-06 - 2.01263) 0.19482 (2.95E-06 - 2.75648) 0.09038 (9.85E-07 - 1.37197)
Nm (L. tigrinus CNE into L. geoffroyi)
0.14180 (4.43E-06 - 3.34307) 0.08695 (3.71E-07 - 1.58972) 0.16015 (1.98E-06 - 2.08279)
Nm (L. tigrinus CNE into L. colocolo)
0.14577 (4.10E-07 - 6.16792) 0.10612 (2.53E-07 - 2.73576) 0.08698 (1.80E-06 - 5.09481)
PLP1 I5 BGN SILV
θ L. tigrinus SSE
0.00025 (199E-05 – 0.00184) 0.00148 (0.00044 – 0.00368) 0.00024 (1.65E-05 – 0.00218)
θ L. geoffroyi
0.00025 (1.60E-05 – 0.00138) 0.00278 (0.00111 – 0.01015) 0.00088 (3.26E-05 – 0.00273)
θ L. colocolo
0.00174 (0.00032 - 0.00816) 0.00042 (1.93E-05 - 0.00209) 1.84E-05 (1.05E-05 - 0.00095)
θ L. tigrinus CNE
2.59E-05 (1.04E-05 - 0.00109) 4.15E-05 (1.05E-05 - 0.00094) 3.01E-05 (1.04E-05 - 0.00103)
Nm (L. tigrinus SSE into L. geoffroyi)
0.20364 (0.00039 - 1.39843) 1.04078 (0.04830 - 9.01234) 0.63235 (3.02E-05 - 2.70562)
Nm (L. tigrinus SSE into L. colocolo)
0.07775 (3.86E-06 - 3.20748) 0.04687 (2.32E-07 - 1.46811) 0.00236 (1.26E-07 - 0.71256)
Nm (L. tigrinus SSE into L. tigrinus CNE)
0.00812 (1.41E-07 - 1.16068) 0.03150 (5.94E-07 - 0.99848) 0.01650 (2.04E-07 - 1.28784)
46
Nm (L. geoffroyi into L. tigrinus SSE)
0.19175 (6.47E-06 - 1.86924) 1.29861 (0.04381 - 3.71007) 0.18847 (3.73E-06 - 2.24960)
Nm (L. geoffroyi into L. colocolo)
0.06145 (3.83E-06 - 2.88968) 0.08202 (2.51E-07 - 1.92886) 0.00524 (1.34E-07 - 0.94655)
Nm (L. geoffroyi into L. tigrinus CNE)
0.00723 (1.35E-07 - 1.08845) 0.01300 (1.27E-07 - 0.92545) 0.01290 (1.47E-07 - 1.35171)
Nm (L. colocolo into L. tigrinus SSE)
0.03184 (2.46E-07 - 1.38170) 0.09899 (5.41E-06 - 1.54248) 0.02917 (2.04E-07 - 1.62311)
Nm (L. colocolo into L. geoffroyi)
0.03392 (1.94E-07 - 1.08056) 0.14515 (1.47E-05 - 2.83910) 0.12140 (4.50E-07 - 2.15636)
Nm (L. colocolo into L. tigrinus CNE)
0.00429 (1.25E-07 - 0.89659) 0.00846 (1.28E-07 - 0.81540) 0.00650 (1.27E-07 - 0.890728)
Nm (L. tigrinus CNE into L. tigrinus SSE)
0.06229 (3.06E-07 - 1.81828) 0.24533 (1.94E-05 - 2.45404) 0.08615 (3.51E-07 - 2.21086)
Nm (L. tigrinus CNE into L. geoffroyi)
0.06782 (2.35E-07 - 1.38952) 0.06821 (1.28E-05 - 2.15935) 0.14250 (4.33E-07 - 2.26977)
Nm (L. tigrinus CNE into L. colocolo)
0.08089 (3.82E-06 - 3.09791) 0.01673 (2.29E-07 - 1.13507) 0.00130 (1.25E-07 - 0.61821)
CHRNA1 ALL
θ L. tigrinus SSE
0.00328 (0.00113 – 0.00849) 0.00110 (0.00064 – 0.00170)
θ L. geoffroyi
0,00362 (0.00111 - 0,00910) 0,00121 (0.00080 - 0,00212)
θ L. colocolo
0.00128 (0.00012 - 0.00492) 0.00085 (0.00035 - 0.00156)
θ L. tigrinus CNE
1.61E-05 (1.05E-05 - 0.00121) 1.54E-05 (1.27E-05 - 0.00018)
Nm (L. tigrinus SSE into L. geoffroyi)
3.22599 (0.17700 - 9.13790) 0.92595 (0.28500 - 1.90626)
Nm (L. tigrinus SSE into L. colocolo)
0.04067 (1.46E-06 - 2.26936) 0.07225 (1.00E-05 - 0.39119)
Nm (L. tigrinus SSE into L. tigrinus CNE)
0.00702 (1.47E-07 - 1.58722) 0.00643 (0.00119 - 0.13857)
Nm (L. geoffroyi into L. tigrinus SSE)
2.93096 (0.21186 - 8.51987) 0.92832 (0.32286 - 1.60289)
Nm (L. geoffroyi into L. colocolo)
0.05233 (1.49E-06 - 2.61141) 0.10883 (1.47E-05 - 0.54822)
Nm (L. geoffroyi into L. tigrinus CNE)
0.00720 (1.52E-07 - 1.61354) 0.00533 (1.35E-05 - 0.11939)
Nm (L. colocolo into L. tigrinus SSE)
0.12105 (1.41E-05 - 1.79897) 0.09284 (3.74E-05 - 0.39372)
Nm (L. colocolo into L. geoffroyi)
0.14286 (1.41E-05 - 1.94254) 0.10163 (4.23E-04 - 0.48031)
Nm (L. colocolo into L. tigrinus CNE)
0.00371 (1.35E-07 - 1.15033) 0.00349 (7.59E-07 - 0.09131)
Nm (L. tigrinus CNE into L. tigrinus SSE)
0.18441 (1.60E-05 - 2.54595) 0.16055 (0.02031 - 0.58777)
Nm (L. tigrinus CNE into L. geoffroyi)
0.21386 (1.66E-05 - 2.80922) 0.12106 (0.00173 - 0.53770)
Nm (L. tigrinus CNE into L. colocolo)
0.05172 (1.48E-06 - 2.43180) 0.06767 (1.02E-05 - 0.35847)
47
Legenda das Figuras
Fig. 1. A) Mapa da distribuição geográfica de Leopardus tigrinus (área na cor vermelha) e
Leopardus geoffroyi (área na cor azul) na América do Sul (modificado de Oliveira 1994,
Nowell and Jackson 1996, Eisenberg and Redford 1999, Sunquist and Sunquist 2002) com a
indicação de sua potencial zona de contato geográfico (faixa na cor roxa). O círculo indica a
posição do Rio Grande do Sul e o ponto de interrogação indica a incerteza com relação à
distribuição de L. tigrinus na bacia Amazônica. B) Mapa mostrando os registros de ocorrência
de L. tigrinus (pontos cinza) e L. geoffroyi (pontos pretos) no estado do Rio Grande do Sul. A
zona híbrida, na Depressão Central, localiza-se de leste a oeste em torno do paralelo 30º S.
Fig. 2. Desenho esquemático do cromossomo X com a localização aproximada dos genes em
megabases (Mb).
Fig. 3. Rede de haplótipos gerada para os segmentos nucleares: (A) ATP7A; (B) BTK; (C)
PLP1 I2; (D) PLP1 I5; (E) BGN, (F) segmentos do cromossomo X concatenados; (G) SILV; e
(H) CHRNA1. Cada haplótipo é representado por um rculo proporcional em tamanho a sua
frequência, as cores indicam a frequência de cada haplótipo em cada uma das espécies (preto
= L. geoffroyi, cinza claro = L. tigrinus, cinza escuro = L. tigrinus CNE e branco = L.
colocolo). As barras sobre as linhas indicam o número de substituições entre os haplótipos, e
os quadrados brancos representam os vetores médios.
Fig. 4. Representação dos haplótipos dos locos nucleares ligados ao X identificados através
do programa ARLEQUIN. Para cada um dos haplótipos é indicada a origem geográfica e o
clado da espécie a que pertence. Somente os sítios variáveis são mostrados. Os números dos
sítios se referem à posição em pares de base (pb) em cada um dos locos (primeira linha) e no
cromossomo X quando considerando os locos concatenados (segunda linha). As posições
hachuradas em colorido indicam os eventos de recombinação detectados entre os sítios
através do DnaSp.
48
Fig. 1
Fig. 2
?
49
A
B
C
D
Fig. 3
H1
50
F
Fig. 3
E
51
G
H
Fig. 3
52
L.colocolo
** Clado referente à população de L. tigrinus do CNE
ATP7A BTK PLP1 I2 PLP1 I5 BGN
Origem
geográfica
H2 G T G G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T C C C C RS/SP
H3 G T G G A G T A C C T G G A T A T G C G A C G T A G G A C T T T T G T T T T C RS
H4 G T G G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T T T T C
RS
H5 G T C G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T C C C C RS
H7 N T G G A G T A C C C G G A T A T G C G A C G T A G G G C C T T C G T C C C C RS
H8 N C G G A G T A C C C G G A T A T G C G A C G T A G G G C C T T C G T C C C C RS
H13
G T G G A G T A C C T G G A T A T G C G A C G T A G G G C C T T T G T T T T C RS
H18
G T N G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T C C C C RS
H19
G T G G A G T A C C C G G A T A T G C G A C G T A G G A C T T T T G T T T T C RS
H20
G T G G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T C C T C RS
H21
G T G G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T C T T C RS
H22
G T G G A G T A C C C G G A T A T G C G A C G T A G G G C C T T C G T C C C C RS/PR/SP
H23
G C G G A G T A C C C G G A T A T G C G A C G T A G G G C C T T C G T C C C C SP/GO
H24
G C G G A G T G C C C G G A T A T G C G A C G T A G G G C C T T C G T C C C C SP
H26
N T G G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T C C C C SP
H27
G T G G A G T A C C T G G A T A T G C G A C G T A G G G C C T T C G T C C C T SP
H30
G T G G A G T G C C C G G A T A T G C G A C G T A G G G T C T T C G T C C C C ES
H31
G T G G A G T A C C C G G A T A T G C G A C G T A G G G C C T T C G T T T T C RS
H1 N T G G G G T A A C C G G G T A T G C G A C A T A G G G C C T T C A T T T T C
RS
H6 G T G G G G T A A C C G G G T A T G C G A C A T A G G G C C T T C G T T T T C RS/ARG/URU
H9 G T G G G G T A A C C G G G T A T G C G A C A T A G G A C T T T T G T T T T C RS
H10
G T G G G G T A A C C G G G C A T G C G A C A T A G G A C T T T T G T T T T C RS
H11
G T G G G G T A A C C G G G T A T G C G A C A T A G G A C C T T C G T T T T C RS
H12
G T G G G G T A A C C G G G T A T G C G A C A T A G G G C C T T C G T C C C C RS
H14
G T G G G G T A A C C G G G T A T G C G A C A T A G G A C T T T C G T T T T C RS
H15
G T G G G G T A A C C G G G T A T G C G A C A T A G G G C C T T C G T C C T C RS
H16
G T G G G G T A A C C G G G T A T G C G A C A T A G G A C T T T T G T T T C C BOL
H17
G T G G G G T A A C C G G G T A T G C G A C A T A G G G C C T T C G T T T C C BOL
H25
G T G G G G T A A C C G G G T A T G C G A C A T A G G G C C T T C G T C T T C RS
H28
G T G G G G T A A C C G G G T A T G C G A C G T A G G A C T T T T G T T T T C RS
H29
G T G A G G C A C C C G G G T A T T C G A C G T A G A G C C T T C G T C T T C
GO/CE/PI **
H32
A T G G G A T A C C C G A G T C T G T A A T G G G C G A C T C C C G C T T T C ARG
H33
G T G G G A T A C G C A A G T C G G T A C C G G G G G A C T C C C G C T T T C URU
H34
G T G G G A T A C C C A A G T C T G T A C C G G G G G A C T C C C G C T T T C GO
15
207
297
326
331
205
313
319
355
364
8
79
126
169
203
437
450
475
738
87
122
157
286
307
356
487
548
100
108
148
167
212
267
284
352
500
522
570
584
Posição (pb) no
loco
15
207
297
326
331
590
698
704
740
749
992
1063
1110
1153
1187
1421
1434
1459
1722
1879
1914
1949
2078
2099
2148
2279
2340
2482
2490
2530
2549
2594
2649
2666
2734
2882
2904
2952
2966
Posição (pb) no X
Clado Leopardus tigrinus SSE
Clado Leopardus geoffroyi
Fig. 4
53
REFERÊNCIAS BIBLIOGRÁFICAS
Allendorf FW, Leary RF, Spruell P, Wenburg DJK. 2001. The problem with hybrids: setting
conservation guidelines. Trends Ecol. Evol. 16: 613-622.
Arnold ML. 1992. Natural hybridization as an evolutionary process. Annu Rev Ecol Syst. 23:
237-261.
Bandelt HJ, Foster P, Rohl A. 1999. Median-joining networks for inferring intraspecific
phylogenies. Mol. Biol. Evol. 16: 37-48.
Barton NH. 2001. The role of hybridization in evolution. Mol. Ecol. 10: 551-568.
Barton NH, Hewitt GM. 1985. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16: 113-148
Beaumont M, Barrat EM, Gottelli D, Kitchener AC, Daniels MJ, Pritchard JK, Bruford W.
2001. Genetic diversity and introgression in the Scottish wildcat. Molecular Ecology 10:
319-336.
Brumfield RT, Beerli P, Nickerson DA, Edwards SV. 2003. The utility of single nucleotide
polymorphisms in inferences of population history. Trends Ecol. Evol. 18: 249-257.
Congdon BC, Piatt JF, Martin K, Friesen VL. 2000. Mechanisms of population differentiation
in marbled murrelets: historical versus contemporary processes. Evolution 54: 974-986.
Culver M, Menotti-Raymond MA, O´Brien SJ. 2001. Patterns of size homoplasy at 10
microsatellite loci in pumas (Puma concolor). Mol. Biol. Evol. 18: 1151- 1156.
Eisenberg J, Redford K. 1999. Mammals of the Neotropics: the Central Neotropics. Vol. 3.
Illinois: University of Chicago Press.
Eizirik E, Murphy WJ, O’Brien SJ. 2001. Molecular Dating and Biogeography of the Early
Placental Mammal Radiation. The Journal of Heredity: 213-219.
Eizirik E, Indrusiak CB, Trigo TC, Sana DA, Mazim FD, Freitas TRO. 2006. Refined
Mapping and Characterization of the Geographic contact zone between Oncilla and
Geoffroy’s cat in Southern Brazil. Cat News 45: 8-11.
Falush D, Stephens M, Pritchard TJK. 2003. Inference of Population Structure Using Genetics
Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 164:
1567-1587.
Flamand JRB, Vankan D, Gairke KP, Duong H, Barker JSF. 2003. Genetic identification of
wild Asian water buffalo in Nepal. Anim. Conserv. 6: 265-270.
Frankham R, Ballou JD, Briscoe DA 2002. Introduction to Conservation Genetics.
Cambridge: Cambridge University Press.
Gay L, Neubauer G, Zagalska-Neubauer M, Debain C, Pons JM, David P, Crochet PA. 2007.
Molecular and morphological patterns of introgression between two large white-headed
gull species in a zone of recent secondary contact. Mol. Ecol. 16: 3215-3227.
Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing.
Genome Res. 8: 195-202.
54
Gottelli D, Sillero-Zubiri C, Applebaum GD, Roy MS, Girman DJ, Garcia-Moreno J,
Ostrander EA, Wayne RK. 1994. Molecular genetics of the most endangered canid: the
Ethiopian wolf, Canis simensis. Mol. Ecol. 3: 301-312.
Hansen MM, Ruzzante DE, Nielsen EE, Mensberg KD. 2000. Microsatellite and
mitochondrial DNA polymorphism reveals life-history dependent interbreeding between
hatchery and wild brown trout (Salmo trutta L.). Mol. Ecol. 9: 383-594.
Hare MP. 2001. Prospects for nuclear gene phylogeography. Trends Ecol. Evol. 16: 700-706
Hare MP, Cipriano F, Palumbi SR. 2002. Genetic evidence on the demography of speciation
in allopatric dolphin species. Evolution 56: 804-816.
Harrison RG. 1993. Hybrid zones and the evolutionary process. New York: Oxford
University Press.
Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O’Brien SJ.
2006. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311:
73-77.
Kuhner MK. 2006. Genetics and population analysis LAMARC 2.0: maximum likelihood and
Bayesian estimation of population parameters. Bioinform. Appl. Note 22: 768-770.
Lancaster ML, Gemmell NJ, Negro S, Goldsworthy S, Sunnucks P. 2006. Ménage à trois on
Macquarie Island: hybridization among three species of fur seal (Arctocephalus spp.)
following historical population extinction. Mol. Ecol. 15: 3681-3692.
Lecis R, Pierpaoli M, Birò ZS, Szemethy L, Ragni B, Vercillo F, Randi DE. 2006. Bayesian
analyses of admixture in wild and domestic cats (Felis silvestris) using linked
microsatellite loci. Mol. Ecol. 15: 119-131.
Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. (46 co-authors). 2005. Genome sequence,
comparative analysis and haplotype structure of the domestic dog. Nature 438: 803-819.
Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, O’Brien SJ. 1997.
Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian
genomes. Nature 15: 47-56.
Murphy WJ, Sun S, Chen ZQ, Pecon-Slaterry J, O’Brien SJ. 1999. Extensive conservation of
sex chromosome organization between cat and human reveled by parallel radiation hybrid
mapping. Genome Res. 9: 1223-1230.
Nolte AW, Freyhof J, Tautz D. 2006. When invaders meet locally adapted types: rapid
moulding of hybrid zones between sculpins (Cottus, Pisces) in the Rhine system. Mol.
Ecol. 15: 1983-1993.
Nowell K, Jackson P. 1996. Wild Cats: status survey and conservation action plan.
IUCN/SSC Cat Specialist Group, Gland, Switzerland.
Oliveira, TG. 1994. Neotropical Cats: Ecology and Conservation. São Luís: EDUFMA.
Pacheco NM, Congdon BC, Friesen VL. 2002. The utility of nuclear introns for investigating
hybridization and genetic introgression: a case study involving Brachyramphus murrelets.
Conserv. Genet. 3: 175-182.
55
Palumbi SR. 1996. Nucleic acids II: The polymerase chain reaction. In: HILLIS DM,
MORITZ C, MABLE BK, editors. Molecular Systematics. Sunderland, MA: Sinauer
Associates. p. 205-247.
Pontius JU, O’Brien SJ. 2007. Genome Annotation Resource Fields - GARFIELD: A
Genome Browser for Felis catus. Journal of Heredity 98: 386-389.
Pritchard JK, Stephens M, Donnely PJ. 2000. Inference of population structure using
multilocus genotype data. Genetics 155: 945-959.
Pritchard JK, Wen X, Falush D. 2007. Documentation for structure software: Version 2.2. p.
1-36.
Randi E, Pierpaoli M, Beaumont M, Ragni B, Sforzi A. 2001. Genetic Identification of wild
and domestic cats (Felis silvestris) and their hybrids using bayesian clustering methods.
Mol. Biol. Evol. 18: 1679-1693.
Reich DE, Wayne RK, Goldstein DB. 1999. Genetic evidence for a recent origin by
hybridization of red wolves. Mol. Ecol. 8: 139-144.
Roy MS, Geffen E, Smith D, Ostrander EA, Wayne RK. 1994. Patterns of differentiation and
hybridization in North American Wolflike canids, revealed by analysis of microsatellite
loci. Mol. Biol. Evol. 11: 553- 570.
Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R. 2003. DNASP, DNA polymorphism
analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497.
Rozen S, Skaletsky HJ 2000. Primer3 on the WWW for general users and for biologist
programmers. In: Krawetz S, Misener S, editors. Bioinformatics Methods and Protocols:
Methods in Molecular Biology. Totowa, NJ: Humana Press. p. 365-386.
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: a Laboratory Manual, 2nd
edition. New York: Cold Spring Harbor Laboratory Press.
Schlötherer C. 1998. Microsatellites. In: Hoelzel AR, editors. Molecular Genetic Analysis of
Populations: a Practical Approach. 2nd edition. New York: Oxford University Press Inc. p.
237-261.
Schneider S, Kueffer JM, Roesli D, Excoffier L. 2000. Arlequin ver. 2.1: A software for
population genetic data analysis. Genetic and Biometry Laboratory, University of Geneva,
Switzerland.
Schwartz MK, Pilgrim KL, Mckelvey KS, Lindquist L, Claar JJ, Loch S, Ruggiero LF. 2004.
Hybridization between Canada lynx and bobcats: genetic results and management
implications. Conserv. Genet. 5: 349- 355.
Seldin MF, Morii T, Collins-Schramm HE, Chima B, Kittles R, Criswell LA, Li H. 2004.
Putative ancestral origins of chromosomal segments in individual African Americans:
implications for admixture mapping. Genome Res. 14: 1076-1084.
Shi L, Drummond P, De Kloet S, Pimentel-Smith G, Smith EJ. 2001. Comparative DNA
sequence analysis of genetic variation in the African grey parrot, Psittacus erythacus.
Genetica 110: 227-230.
56
Slatkin M. 1995. A measure of population subdivision based on microsatellite allele
frequencies. Genetics 139: 457-462.
Schmidt-Kuntzel A, Nelson G, David V, Schäffer A, Eizirik E, Roelke-Parker M, Kehler J,
Hannah S, O’Brien SJ, Menotti-Raymond M. 2009. Linkage Map and the Sex-linked
Orange Locus Mapping of Orange, Multiple Origins, and Epistasis over Non-Agouti.
Genetics.
Stephens M, Smith N, Donnelly P. 2001. A new statistical method for haplotype
reconstruction from population data. Amer. Jour. of Hum. Genet. 68: 978-989.
Sunquist ME, Sunquist F. 2002. Wild cats of the World. Chicago: University Chicago Press.
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA: MEGA4: Molecular Evolutionary
Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599
Thompson JD, Higgins DG, Gibson TJ. 1994. ClustalW: Improving the sensitivy of
progressive multiple sequence weighting, positions-specific gap penalties and weight
matrix choice. Nucleic Acids Res. 22: 4673-4680.
Trigo TC, Freitas TRO, Kunzler G, Cardoso L, Silva JCR, Johnson WE, O’Brien SJ, Bonatto
SL, Eizirik E. 2008. Inter-species hybridization among Neotropical cats of the genus
Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L.
tigrinus in southern Brazil. Mol. Ecol. 17: 4317-4333.
Vähä J, Primmer CR. 2006. Efficiency of model-based Bayesian methods for detecting
hybrid individuals under different hybridization scenarios and with different numbers of
loci. Mol. Ecol. 15: 63-72.
Venta PJ, Brouillette JA, Yuzbasiyan-Gurkan V, Brewer GJ. 1996. Gene-specific universal
mammalian sequence-tagged sites: application to the canine genome. Biochemical
Genetics 34: 321-341.
Verardi A, Lucchini V, Randi E. 2006. Detecting introgressive hybridization between free-
ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium
analysis. Mol. Ecol. 15: 2845-2855.
Vilà C, Wayne RK. 1999. Hybridization between wolves and dogs. Conserv Biol 13: 195-
198.
Zhang DX, Hewitt G. 2003. Nuclear DNA analyses in genetic studies of populations:
practice, problems and prospects. Mol. Ecol. 12: 563-584.
Watterson GA. 1975. On the number of segregating sites in genetical models without
recombination. Theoretical Pop Biology 7: 256-276.
Wurster-Hill DH, Centerwall WR. 1982. The interrelationships of chromosome banding
patterns in canids, mustelids, hyena, and felids. Cytogenet Cell Genet 34: 178-92.
57
APÊNDICE
58
Table 1 – Demographic parameters inferred for the three hybridizing species (Leopardus tigrinus, L. geoffroyi and L. colocolo) using the
coalescent-based approaches implemented in Lamarc. Migration rates are expressed as number of migrants. Ninety-five per cent confidence
intervals are show in parenthesis.
mtDNA X segment Y segment
θ L. tigrinus
0.04396 (0.02491 – 0.07689) 0.00029 (0.00007 – 0.00073) 0.00035 (0.00009 – 0.00147)
θ L. geoffroyi
0.03387 (0.01711 – 0.05649) 0.00027 (0.00003 – 0.00071) 0.00019 (0.00002 – 0.00090)
θ L. colocolo
0.06681 (0.02234 – 0.13657) 0.00030 (0.00004 – 0.00223) 0.00054 (0.00003 – 0.00380)
Nm (L. tigrinus into L. geoffroyi) 1.948 (0.226 – 10.465) 0.230 (0.001 – 0.717) 0.166 (0.001 – 0.910)
Nm (L. tigrinus into L. colocolo) 2.611 (0.114 – 13.383) 0.119 (0.000 – 2.101) 0.048 (0.000 – 2.275)
Nm (L. geoffroyi into L. tigrinus) 3.656 (0.588 – 12.627) 0.255 (0.008 – 0.732) 0.238 (0.005 – 0.343)
Nm (L. geoffroyi into L. colocolo) 0.005 (0.000 – 2.158) 0.000 (0.000 – 0.993) 0.066 (0.000 – 2.507)
Nm (L. colocolo into L. tigrinus) 0.736 (0.018 – 4.005) 0.047 (0.000 – 0.602) 0.044 (0.000 – 1.033)
Nm (L. colocolo into L. geoffroyi) 0.001 (0.000 – 0.744) 0.000 (0.000 – 0.327) 0.043 (0.000 – 0.816)
59
Table 2. Individuals inferred to have a hybrid (L. tigrinus vs. L. geoffroyi) origin based on the complete set of molecular markers used in this
study. I) Proportion of membership q of each individual inferred by microsatellite analyses using STRUCTURE. The values in parentheses are
the posterior credibility intervals. II) Species-specific haplotypes from molecular segments of the mitochondrial DNA (mtDNA), X and Y
chromosome introns. Introgressed haplotypes are shown in bold.
Leopardus geoffroyi Leopardus tigrinus
I II I II
ID Microsatellites mtDNA
X chr Y chr ID Microsatellites mtDNA X chr Y chr
bLge01φ
0.973 (0.839, 1.000)
Lti
Lge Lge
bLti01*φ
0.316 (0.098,0.567)
Lge
Lti
F
bLge02φ
0.811 (0.494, 1.000)
Lti Lti Lti
bLti05φ
0.026 (0.000,0.193) Lti
Lge Lge
bLge04*φ
0.475 (0.208, 0.737) Lge
Lti Lti
bLti09*φ
0.546 (0.303,0.782)
Lge
Lti
F
bLge05*φ
0.532 (0.293, 0.769) Lge
Lti
Lge bLti47* 0.391 (0.097,0.696) Lti Lti F
bLge07*φ
0.432 (0.120, 0.736)
Lti ---
Lge
bLti49*φ
0.636 (0.388,0.855)
Lge
Lti
F
bLge08*φ
0.554 (0.302, 0.800)
Lti Lti
Lge bLti51* 0.317 (0.098,0.575) Lti Lti F
bLge10φ
0.883 (0.635, 1.000) Lge
Lti F
bLti68φ
0.035 (0.000,0.253) Lti
Lge
Lti
bLge11*φ
0.527 (0.275, 0.777)
Lti
Lge Lge
bLti79*φ
0.561 (0.322,0.795)
Lge
Lge / Lti
F
bLge12φ
0.992 (0.956, 1.000) Lge
Lti Lti
bLti98* 0.640 (0.379,0.878) Lti Lti F
bLge13*φ
0.483 (0.247, 0.720)
Lti Lti Lti
bLti100* 0.285 (0.017,0.558) Lti --- Lti
bLge31* 0.738 (0.486, 0.944) Lge Lge Lge bLti102* 0.344 (0.055,0.659) Lti Lti F
bLge32*φ
0.567 (0.329, 0.796) Lge
Lti
Lge bLti108* 0.313 (0.085,0.586) Lti Lti ---
bLge33* 0.820 (0.600, 0.994) Lge Lge Lge
bLti119*φ
0.504 (0.245,0.763) Lti
--- Lge
bLge35* 0.784 (0.550, 0.957) Lge Lge Lge bLti120* 0.295 (0.072,0.564) Lti Lti Lti
bLge38* 0.535 (0.272, 0.789) Lge Lge F
bLti121*φ
0.787 (0.543,0.962)
Lge
Lti Lti
bLge39* 0.645 (0.361, 0.896) Lge --- --- bLti135* 0.524 (0.276,0.771) Lti Lti F
bLge42*φ
0.494 (0.257, 0.732) Lge
Lti Lti
bLti137* 0.244 (0.002,0.514) Lti Lti Lti
bLge46*φ
0.327 (0.052, 0.626)
Lti
Lge
Lti
bLti138* 0.361 (0.017,0.664) Lti --- F
bLge47* 0.703 (0.447, 0.917) Lge Lge F bLti140* 0.296 (0.081,0.549) Lti Lti Lti
bLge49φ
0.773 (0.403, 1.000) Lge Lti Lge bLti141* 0.408 (0.177,0.661) Lti --- ---
60
Table 2 (Cont.)
Leopardus geoffroyi Leopardus tigrinus
I II I II
ID Microsatellites mtDNA
X chr Y chr ID Microsatellites mtDNA X chr Y chr
bLge72*φ
0.166 (0.000, 0.462)
Lti
---
Lti
bLti149* 0.458 (0.157,0.742) Lti --- ---
bLge73*
0.404 (0.166, 0.663) Lge --- Lge
bLge74*φ
0.365 (0.121, 0.635)
Lti
Lge
F
bLge75*
0.606 (0.308, 0.891) Lge Lge F
bLge76*
0.526 (0.244, 0.799) Lge Lge Lge
bLge78*
0.765 (0.536, 0.945) Lge Lge F
bLge79*φ
0.653 (0.366, 0.900)
Lti Lti Lti
bLge80φ
0.942 (0.781, 1.000)
Lti
Lge
Lti
bLge89*
0.752 (0.507, 0.947) Lge Lge ---
bLge90*φ
0.560 (0.288, 0.824) Lge Lge
Lti
bLge91*
0.645 (0.390, 0.865) Lge Lge Lge
bLge93*φ
0.390 (0.117, 0.692)
Lti
Lge
F
bLge94*
0.535 (0.282, 0.774) Lge Lge F
bLge96* 0.549 (0.285, 0.795) Lge --- ---
LgeN11φ
0.979 (0.844, 1.000)
Lti ---
---
* Evidence of hybridization based on microsatellite data; φ Evidence of hybridization based on molecular sequences.
Note: F = Female; Lge = L. geoffroyi specific haplotype; Lti = L. tigrinus specific haplotype.
61
Table 3 – Levels of genetic differentiation between the four clusters defined by STRUCTURE analysis based on Fst and Rst indexes.
L. geoffroyi SSE L. tigrinus CNE L. tigrinus L. colocolo
L. geoffroyi --- 0.105* (2.122) 0.413* (0.355) 0.535* (0.217)
SSE L. tigrinus 0.069* (3.367) --- 0.328* (0.512) 0.680* (0.118)
CNE L. tigrinus 0.099* (2.263) 0.176* (1.174) --- 0.837* (0.049)
L. colocolo 0.143* (1.498) 0.119* (1.842) 0.241* (0.789) ---
Fst below, Rst above * p < 0.001
Abbreviations: SSE – south and southeast Brazilian regions and CNE – central and northeast Brazilian regions.
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo