Download PDF
ads:
Elizamar Ciríaco da Silva
Respostas fisiológicas do umbuzeiro (Spondias
tuberosa Arruda) aos estresses hídrico e salino
Recife, Pernambuco
2008
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
i
Elizamar Ciríaco da Silva
Respostas fisiológicas do umbuzeiro (Spondias
tuberosa Arruda) aos estresses hídrico e salino
Tese apresentada ao Programa de Pós-
Graduação em Botânica da Universidade
Federal Rural de Pernambuco, como requisito
para obtenção do título de Doutor em Botânica,
área de concentração em Fisiologia e linha de
pesquisa Fisiologia e Biotecnologia.
Orientadora:
Profa. Dra. Rejane J. Mansur C. Nogueira
Co-orientadores:
Dr. Natoniel Franklin de Melo
Prof. Dr. Fernando Henrique de Aguiar Vale
Recife, Pernambuco
2008
ads:
FICHA CATALOGRÁFICA
CDD 581. 1
1. Transpiração
2. Resistência estomática
3. Potencial hídrico foliar
4. Solutos compatíveis
5. Seca
6. Salinidade
I. Nogueira, Rejane Jurema Mansur Custódio
II. Título
S586r Silva, Elizamar Ciríaco da
Respostas fisiológicas do umbuzeiro (Spondias tuberosa Arru –
da) aos estresses hídricos e salino / Elizamar Ciríaco da Silva. --
2008.
142 f. : il.
Orientadora : Rejane Jurema Mansur Custódio Nogueira
Tese (Doutorado em Botânica) – Universidade Federal Rural
de Pernambuco. Departamento de Biologia
Inclui anexo e bibliografia
ii
iii
A minha mãe Eloiza Gomes da
Silva (in memorian) que sempre
incentivou meus estudos e esteve
presente em todos os momentos de minha
vida, assim como ao meu pai e irmãos.
Ofereço
OfereçoOfereço
Ofereço
Ao meu esposo Osmário e aos meus
filhos Caio e Thiago, que participaram
comigo de todas as etapas desta tese,
suportando minha ausência em muitos
momentos e aliviando meus fardos com
a alegria que tanto me proporcionam.
Dedico
DedicoDedico
Dedico
iv
“A maior recompensa não é o que
recebemos de nosso trabalho, mas o que nos
tornamos devido a ele”.
John Ruskin
“O único meio de realizar alguma
coisa é ajoelhar-se e pedir ajuda ao Senhor,
e então, colocar-se de e enfrentar o
trabalho”.
Gordon B. Hinckley
v
AGRADECIMENTOS
A Deus, meu Pai Eterno, que guiou todos os meus passos até aqui e em quem
confio a minha própria existência.
Ao meu esposo Osmário e aos meus filhos Caio e Thiago, pela paciência durante
minha ausência, apoio, incentivo e amor durante o decorrer do meu doutorado.
Aos meus pais, irmãos e amigos pelo incentivo constante.
A minha orientadora Profa. Dra. Rejane J. Mansur C. Nogueira, pelos
ensinamentos, confiança, orientação e amizade.
Aos meus co-orientadores, Dr. Natoniel Franklin de Melo e Prof. Dr. Fernando
Henrique de Aguiar Vale, pelo apoio na condução do projeto e elaboração da tese.
Ao Dr. Francisco Pinheiro de Araújo, pesquisador da Embrapa Semi-Árido, pelo
preparo das mudas utilizadas nesta pesquisa e, principalmente, pela solidariedade,
preocupação e carinho demonstrado durante todo o período de execução deste projeto, sempre
pronto a ajudar.
À Universidade Federal Rural de Pernambuco, especialmente ao Programa de Pós-
Graduação em Botânica, pelo apoio durante a execução dessa pesquisa.
À Embrapa Semi-Árido, pela receptividade em dispor das instalações e do material
vegetal utilizado neste trabalho.
À CAPES, pela concessão da bolsa, sem a qual o teria sido possível a conclusão
deste trabalho.
Aos meus amigos do Laboratório de Fisiologia Vegetal, Márcio, Alice, Eric,
Marcelle, André, Danúbia, Felipe, Patrícia, Hugo Bentzen, Marcelo, Ana, Rodrigo, Erika e
Hugo Henrique, pelos momentos de muito trabalho e alegria que passamos juntos.
Aos amigos da pós-graduação, em especial à Ana Cecília, Gilberto, Sandra,
Andreza e Juliana, pelo apoio e agradável convivência durante o curso.
vi
Ao meu amigo Manoel Bandeira, pela amizade, sugestões e ajuda na correção.
Aos amigos Michael Kalani Kauwe, Albert Douglas e Dr. Timothy Heard pelas
correções no inglês.
Ao Laboratório de Anatomia Vegetal da Universidade Federal de Minas Gerais,
pelo apoio e tempo despendido para a realização das análises anatômicas.
Aos membros da banca examinadora, Prof. Dr. Laurício Endres, Dr. Francisco
Pinheiro de Araújo, Prof. Dr. Mauro Guida dos Santos, Profa. Dra. Lília Gomes Willadino e
Profa. Dra. Rosimar dos Santos Musser, pelas valiosas sugestões.
Enfim, a todos os que direta ou indiretamente colaboraram para a realização desta
tese de doutorado, o meu muito obrigada.
vii
SUMÁRIO
Lista de abreviaturas .......................................................................................................................x
Lista de tabelas ..............................................................................................................................xi
Lista de figuras .............................................................................................................................xiv
Resumo geral...............................................................................................................................xvii
General abstract............................................................................................................................xix
Parte 1...........................................................................................................................................21
1. Introdução............................................................................................................................22
2. Revisão de Literatura...........................................................................................................25
2.1 Panorama geral da fruticultura no Brasil.....................................................................25
2.2 Aspectos gerais e agronômicos do umbuzeiro ............................................................26
2.3 Efeito do déficit hídrico sobre o crescimento, comportamento estomático,
potencial hídrico foliar e ajustamento osmótico das plantas....................................28
2.4 Modificações morfoanatômicas nas folhas em resposta ao estresse hídrico...............32
2.5 Aspectos gerais da salinização dos solos ....................................................................34
2.6 Efeito do estresse salino sobre o crescimento, trocas gasosas e ajustamento
osmótico das plantas..........................................................................................................35
3. Referências bibliográficas. ..................................................................................................38
Capítulo 1 - Physio-anatomical changes induced by intermittent drought in four umbu
tree genotypes...............................................................................................................................53
Abstract....................................................................................................................................54
1. Introduction .........................................................................................................................55
2. Material and methods ..........................................................................................................57
2.1 Plant material, growth and experimental design ........................................................57
2.2 Transpiration and difusive resistance ........................................................................58
2.3 Soil moisture...............................................................................................................58
viii
2.4 Stomatal density, stomatal index, stomatal aperture size and proportions between
tissues .......................................................................................................................59
2.5 Statistical analysis ......................................................................................................60
3. Results .................................................................................................................................61
4. Discussion............................................................................................................................71
5. Conclusions ........................................................................................................................75
Acknowledgements .................................................................................................................76
References ...............................................................................................................................76
Capítulo 2 - Water relations and organic solutes accumulation in four umbu tree
genotypes under intermittent drought.......................................................................................81
Abstract..........................................................................................................................................82
Resumo..........................................................................................................................................83
1. Introduction .........................................................................................................................84
2. Material and methods ..........................................................................................................86
2.1 Plant material, growth conditions and experimental design........................................86
2.2 Leaf water potential measurement...............................................................................87
2.3 Soil moisture................................................................................................................87
2.4 Biochemical analysis...................................................................................................88
2.5 Statistical analysis .......................................................................................................88
3. Results and discussion.........................................................................................................90
4. Conclusions .......................................................................................................................101
5. Acknowledgement.............................................................................................................102
6. References ........................................................................................................................102
Capítulo 3 - Physiological responses to salt stress in young umbu plants............................106
Abstract........................................................................................................................................107
1. Introduction .......................................................................................................................108
ix
2. Material and methods ........................................................................................................109
2.1 Plant material, growth and treatment conditions ......................................................109
2.2 Growth measurement.................................................................................................109
2.3 Transpiration, diffusive resistance, and water potential measurements....................110
2.4 Na
+
, K
+
, Cl
-
, amino acid, and soluble carbohydrate contents....................................110
2.5 Experimental design and statistical analysis: ............................................................110
3. Results ...............................................................................................................................111
3.1 Growth ......................................................................................................................111
3.2 Transpiration, diffusive resistance, and water potential............................................114
3.3 Na
+
, K
+
, Cl
-
, amino acid, and soluble carbohydrate contents....................................115
4. Discussion..........................................................................................................................121
Acknowledgements ...............................................................................................................124
References .............................................................................................................................125
Considerações finais....................................................................................................................129
Anexos.........................................................................................................................................131
Anexo 1 – Normas para publicação na revista Environmental and Experimental Botany...... ...131
Anexo 2 – Normas para publicação na revista Brazilian Journal of Plant Physiology ........... ...137
Anexo 3 – Aceite para publicação na revista Environmental and Experimental Botany........ ...142
x
LISTA DE ABREVIATURAS
AA
Aminoácidos
AO (SA)
Abertura do ostíolo (stomatal aperture)
AP
Altura das plantas
BGU (GBU)
Banco de germoplasma de umbuzeiro (Germplasm bank
of umbu tree)
CHS
Carboidratos solúveis
Cl
-
Cloreto
DC
Diâmetro do caule
DE (SD)
Densidade estomática (stomatal density)
DPV (VPD)
Déficit de pressão de vapor (vapor pressure déficit)
E
Transpiração
IE (SI)
Índice estomático (stomatal index)
K
+
Potássio
MSF (LDM)
Matéria seca da folha (leaves dry matter)
MST (TDM)
Matéria seca total (total dry matter)
Na
+
Sódio
NaCl
Cloreto de sódio
NF
Número de folhas
PAR
Radiação fotossinteticamente ativa (photosynthetically
active radiation)
PRO
Prolina
PROT
Proteínas
R/Pa (R/Sh)
Razão raiz / parte aérea (root to shoot ratio)
SLA
Specific leaf área (área foliar específica)
r
s
Resistência difusiva
T
ar
(T
air
)
Temperatura do ar
UR (RH)
Umidade relativa do ar (relative humidity)
Ψ
ΨΨ
Ψ
pd
Potencial hídrico foliar pre-dawn
Ψ
ΨΨ
Ψ
w
Potencial hídrico foliar
xi
LISTA DE TABELAS
Revisão de Literatura
Tabela 1. Procedência e valores de alguns caracteres observados nas árvores de
umbuzeiro, identificadas como promissoras ou excêntricas para formação do banco de
germoplasma do umbuzeiro (BGU). EMBRAPA-CPATSA, Petrolina-PE. 1997............................27
Capítulo 1:
Table 1. Transpiration rates (E) of four grafted umbu trees genotypes grown in
greenhouse conditions under intermittent drought. Means of 145 assessment made along
the stress period (31 days) are shown................................................................................................61
Table 2. Re-watering intervals (days) of four grafted umbu genotypes relative to
stomatal closure.................................................................................................................................62
Table 3. Percent soil moisture on weight basis of four grafted umbu genotypes before
perform re-watering in stressed plants for occasion of stomatal closure. The sample
were taken for occasion of stomatal closure ( 1
st
, 2
sn
, 3
rd
, and 4
th
) and in the end of the
experimental period (harvest)............................................................................................................64
Table 4. Difusive resistance (r
s
) of four grafted umbu trees genotypes grown in
greenhouse conditions under intermittent drought. Means of 145 assessment made along
the stress period are shown (31 days)................................................................................................65
Table 5. Matrix of simple correlation between environmental (PAR, T
air
, RH and VPD)
and physiological (E and rs) factors of four grafted umbu trees genotypes grown in
greenhouse conditions under intermittent drought............................................................................68
Table 6. Stomatal density (SD), stomatal index (SI), and stomatal aperture size (SA) in
four umbu tree genotypes after 31 days under intermittent drought. ................................................70
Table 7. Abaxial epiderm, spongy parenchima, palisade parenchima, and adaxial
epiderm tickness m) of four umbu tree genotypes after 31 days grown under
intermittent drought...........................................................................................................................71
xii
Capítulo 2:
Table 1. Re-watering intervals (days) of four grafted umbu trees genotypes relative to
stomatal closure................................................................................................................................. 89
Table 2. Percent soil moisture on a weight basis of four umbu tree genotypes grown
under intermittent drought. The first samples were taken before perform re-watering in
stressed plants for occasion of the water potential measurements, when plants presented
stomatal closure. The second sample collection corresponds to the last evaluation after
31 treatment days (harvest)................................................................................................................90
Table 3. Daily average of leaf water potential (Ψ
w
) of four umbu trees genotypes grown
in greenhouse conditions under intermittent drought. Data was taken for occasion of the
first stomatal closure and after 31 treatment days. The first stomatal closure occurred
after four days of withholding water to genotype GBU 68 and after five days to GBU 44,
48 and 50. .........................................................................................................................................91
Table 4. Soluble carbohydrate contents in the leaves of four umbu tree genotypes
growing under intermittent drought. The first harvest was done when the first stomatal
closure occurred (4
th
day to GBU 68 and 5
th
day to the remained genotypes) and the
second harvest was performed after 31 days of treatments at 800 h. ................................................96
Table 5. Free amino acids contents in leaves of four umbu tree genotypes growing under
intermittent drought. The first harvest was done when the first stomatal closure occurred
(4
th
day to GBU 68 and 5
th
day to the remained genotypes) and the second harvest was
performed after 31 days of treatments at 800 h.................................................................................97
Table 6. Total soluble protein content in the leaves of four umbu tree genotypes growing
under intermittent drought. The first harvest was done when the first stomatal closure
occurred (4
th
day to GBU 68 and 5
th
day to the remained genotypes) and the second
harvest was performed after 31 days of treatments at 800 h. ............................................................98
Table 7. Free proline content in the leaves of four umbu tree genotypes growing under
intermittent drought. The first harvest was done when the first stomatal closure occurred
(4th day to GBU 68 and 5th day to the remained genotypes) and the second harvest was
performed after 31 days of treatments at 800 h.................................................................................99
xiii
Table 8. Total soluble carbohydrates, free amino acids, total soluble protein and free
proline contents in the roots of four umbu tree genotype under intermittent drought after
31 treatment days...............................................................................................................................101
Capítulo 3:
Table 1. Specific leaf area (SLA) and leaf area ratio (LAR) of young umbu plants under
increasing NaCl levels after 36 days of stress. Means of six replicates ± SD are shown. ................114
xiv
LISTA DE FIGURAS
Capítulo 1:
Figure 1. Air temperature (Tair), vapor pressure deficit (VPD), and photosynthetically
active radiation (PAR) measured during the experimental period. Data were taken
between 9-10h in green house conditions .........................................................................................60
Figure 2. Transpiration (E) in four grafted umbu trees genotypes grown in greenhouse
conditions under intermittent drought and re-watered when presented stomatal closure.
Arrows indicate the re-watering days. Means ± Stand-deviation of six replicates are
shown.................................................................................................................................................63
Figure 3. Difusive resistance (r
s
) in four grafted umbu trees genotypes grown in
greenhouse conditions under intermittent drought and re-watered when presented
stomatal closure. Arrows indicate the re-watering days. Means ± Stand-deviation of six
replicates are shown...........................................................................................................................66
Figure 4. Transpiration alterations (E) relative to diffusive resistance (r
s
) in grafted
umbu trees genotypes grown under intermittent drought. The numbers 44, 48, 50 and 68
represent different genotypes and the letters represent water treatments: control (C) and
stressed (S) by cycles of withholding water......................................................................................67
Figures 5 –12. Abaxial epiderms of four grafted umbu trees genotypes (Spondias
tuberosa Arruda). 5 6. GBU 44; 7 8. GBU 48; 9 10. GBU 50; 11 - 12. GBU 68.
Control (5, 7, 9,11) and stressed (6, 8, 10, 12). Bars = 20 µm. .........................................................69
Capítulo 2:
Figure 1. Air temperature (Tair), vapor pressure deficit (VPD), and photossyntheticaly
active radiation (PAR) taken daily during the experimental period, between 900 h and
1000 h, in greenhouse conditions ......................................................................................................89
Figure 2. Daily course of leaf water potential (Ψ
w
) of four umbu tree genotypes
growing in green house conditions under intermittent drought by withholding water
after four (genotype GBU 68) and five days (the remained genotypes). Values followed
by different letters does not significantly differ by Tukey’s test (P>0.05). ......................................92
xv
Figure 3. Daily course of leaf water potential (Ψ
w
) of four umbu tree genotypes
growing in green house conditions after 31days under intermittent drought by
withholding water. Plants were re-watered in function of stomatal closure. Values
followed by different letters do not significantly differ by Tukey’s test (P>0.05)............................93
Capítulo 3:
Fig. 1. Plant height, number of leaves, and stem diameter of young umbu plants
cultivated at increasing NaCl levels. Means of six replicates ± SD are shown.................................112
Fig. 2. Leaves (A), stem (B), root (C), and total dry masses (D), root to shoot ratio (E)
and leaf area (F) of young umbu plants after 36 days at increasing salt levels. Means of
six replicates ± SD are shown. Different letters denote statistical difference by Tukey’s
test (P< 0.05) among treatments........................................................................................................113
Fig. 3. Biomass allocation to roots ( ), stem ( ) and leaves ( ) in young umbu plants
after 36 days at increasing salt levels. Different letters denote statistical difference by
Tukey’s test (P< 0.05) among treatments..........................................................................................114
Fig. 4. Daily course of transpiration (E) and diffusive resistance (rs) in young umbu
plants cultivated at increasing NaCl levels. Measurements were accomplished after 7 (A
and B), 15 (C and D), 21 (E and F), and 28 (G and H) days of salt stress. Means of six
replicates ± SD are shown. ................................................................................................................116
Fig. 5. Pre-dawn leaf water potential (Ψ
pd
) of young umbu plants cultivated under
increasing NaCl levels. Means of six replicates ± SD are shown. Different letters denote
statistical difference by Tukey’s test (P< 0.05) among treatments. ..................................................117
Fig. 6. Sodium (Na+) and chloride (Cl-) contents in leaves (A and B), stem (C and D),
and roots (E and F) in young umbu plants cultivated under increasing NaCl levels. DM
= dry mass. Means of six replicates ± SD are shown. Different letters denote statistical
difference by Tukey’s test (P< 0.05) among treatments....................................................................118
Fig. 7. Potassium content (K+) and sodium/potassium ratio (Na+/K+) in leaves (A and
B), stem (C and D), and roots (E and F) in young umbu plants cultivated under
increasing NaCl levels. DM = dry mass. Means of six replicates ± SD are shown.
Different letters denote statistical difference by Tukey’s test (P< 0.05) among
treatments. .........................................................................................................................................119
xvi
Fig. 8. Soluble carbohydrates and free amino acids content in leaves (A and B), stem (C
and D), and roots (E and F) in young umbu plants cultivated under increasing NaCl
levels. DM = dry mass. Means of six replicates ± SD are shown. Different letters denote
statistical difference by Tukey’s test (P< 0.05) among treatments. ..................................................120
Silva, Elizamar Ciríaco da. Dr. Universidade Federal Rural de Pernambuco, fevereiro/2008. Respostas
fisiológicas do umbuzeiro (Spondias tuberosa Arr. Cam.) aos estresses hídrico e salino. Dra. Rejane J.
Mansur C. Nogueira, Dr. Natoniel Franklin de Melo, Dr. Fernando Henrique de Aguiar Vale.
xvii
RESUMO GERAL
Dentre as principais fruteiras nativas do Nordeste, especialmente aquelas encontradas no
semi-árido, o umbuzeiro (Spondias tuberosa Arruda) desponta com uma alternativa
importante, por ser uma fruta bem aceita pelo consumidor e por ter uma boa produção em
ambientes secos. Dessa forma, o comércio dos frutos em feiras livres ou através de
cooperativas proporciona uma fonte de renda complementar para os pequenos agricultores.
No entanto, essa renda pode ser comprometida pelo extrativismo e o desmatamento
excessivos, que tem se intensificado a cada ano. Preocupada com a redução populacional
desta espécie pela ação antrópica, a Embrapa Semi-Árido vem desenvolvendo estudos sobre
produção de mudas, cultivo e preservação da herança genética, através da recuperação de
acessos com características morfológicas distintas e a implantação de um banco ativo de
germoplasma, para disponibilizar os mais promissores para os pequenos agricultores, além de
contribuir com o reflorestamento da Caatinga com uma espécie nativa. Dos fatores climáticos
limitantes na produção de espécies frutíferas no semi-árido nordestino, a seca é o principal
fator, aliado também ao problema crescente de salinização dos solos, que tem se agravado a
cada ano. Os mecanismos utilizados pelo umbuzeiro para tolerar a seca ainda não estão
completamente esclarecidos e não se conhece ainda as respostas fisiológicas frente a
salinidade do solo. Desta forma, o presente trabalho objetivou avaliar as respostas fisiológicas
do umbuzeiro quando submetido às condições de seca e salinidade. Para avaliar as respostas à
seca, desenvolveu-se um experimento em casa de vegetação utilizando mudas enxertadas de
quatro acessos de umbuzeiro (acessos BGU 44, BGU 48, BGU 50 e BGU 68) classificados
como umbu-gigante, com o objetivo de avaliar as alterações no comportamento estomático,
parâmetros anatômicos, relações hídricas e alguns parâmetros bioquímicos induzidos pela
seca intermitente, além das possíveis variações genotípicas. Foram efetuadas mensurações da
transpiração (E) e da resistência difusiva (r
s
) diariamente após a suspensão da rega até ocorrer
o fechamento estomático, momento em que as plantas foram re-irrigadas. A rega foi suspensa
novamente até ocorrer novo fechamento estomático e este ciclo foi repetido por um período
de 31 dias. O potencial hídrico foliar (Ψ
w
) foi determinado em dois cursos nictimerais (no
momento do primeiro fechamento estomático e ao final do período experimental). Também
foram avaliados os teores de carboidratos solúveis totais (CHS), aminoácidos livres (AA),
proteína (PROT) e prolina (PRO) nas folhas e nas raízes, assim como alterações anatômicas.
Os acessos apresentaram regularidade no período de fechamento estomático entre as regas,
demonstrando diferenças intra-específicas. Houve correlação com as variáveis ambientais
sugerindo que, além da água, o comportamento estomático dos acessos BGU 44 e BGU 68
sofreram influência da Tar, UR e DPV, enquanto que o acesso BGU 50 sofreu influência do
PAR e o BGU 48 não se correlacionou com os outros fatores, indicando que a água foi o fator
que exerceu maior influência neste acesso. Alterações anatômicas em resposta à seca foram
Silva, Elizamar Ciríaco da. Dr. Universidade Federal Rural de Pernambuco, fevereiro/2008. Respostas
fisiológicas do umbuzeiro (Spondias tuberosa Arr. Cam.) aos estresses hídrico e salino. Dra. Rejane J.
Mansur C. Nogueira, Dr. Natoniel Franklin de Melo, Dr. Fernando Henrique de Aguiar Vale.
xviii
observadas na densidade de estômatos (DE), reduções no índice estomático (IE) e na abertura
do ostíolo (AO). O acesso BGU 48 manteve as características anatômicas inalteradas. Houve
uma inversão na proporção dos tecidos do acesso BGU 44 quando sob estresse, diminuindo a
espessura do parênquima lacunoso e aumentando o parênquima paliçádico. O inverso ocorreu
com o BGU 68 e os demais acessos permaneceram inalterados. O horário de menor Ψ
w
para a
maioria dos acessos foi entre 8h e 12h. O Ψ
w
das plantas estressadas do BGU 44 e BGU 50
foi reduzido significativamente às 8h. O BGU 68 apresentou os valores mais elevados de Ψ
w.
O prolongamento do estresse provocou reduções nos teores de CHS nas folhas de todos os
acessos. Houve aumento no teor de AA nas folhas dos BGU’s 44 e 48, enquanto que os
BGU’s 50 e 68 reduziram 40% e 43%, respectivamente. Ao final do período experimental
esse comportamento se manteve para o BGU 44 e o BGU 50. Não houve diferença
significativa para os teores de PROT nas folhas, mas houve aumento de 50% nos teores de
PRO, exceto para o BGU 50. Foram verificadas alterações na concentração de CHS, AA e
PRO nas raízes, com diferença entre os acessos. Os acessos BGU 68 e BGU 50 foram os mais
contrastantes em condições de seca. Para avaliar as respostas do umbuzeiro ao estresse salino,
foi desenvolvido um experimento utilizando-se plantas propagadas por sementes. As plantas
foram cultivadas em areia lavada, regadas com solução nutritiva de Hoagland & Arnon, sem e
com adição de NaCl (25, 50, 75 e 100 mM). Avaliou-se o crescimento, o Ψ
w
, E e r
s
. O teor de
Na
+
, K
+
, Cl
-
, carboidratos solúveis e aminoácidos livres foram dosados nos diversos órgãos da
planta. A maioria das variáveis estudadas foi afetada em níveis de NaCl de 50 mM, reduzindo
o número de folhas, a altura das plantas, o diâmetro do caule e a massa seca e aumentando a
relação raiz/parte aérea (R/Pa). O potencial hídrico foliar antes do amanhecer (Ψ
pd
) foi
reduzido nas plantas dos tratamentos 75 e 100 mM de NaCl. A concentração de Na
+
e Cl
-
nas
folhas aumentou em função dos veis de NaCl aplicados, mas, o teor de K
+
não foi afetado.
Nos caules e raízes, houve uma saturação na retenção de Na
+
e Cl
-
nos tratamentos acima de
50 mM. Os resultados desta pesquisa permite inferir que existem diferenças fisiológicas e
anatômicas entre os acessos de umbuzeiro estudados; que eles respondem de forma diferente à
seca intermitente; que a manutenção da turgescência foliar está relacionada à reserva de água
nos xilopódios associado ao mecanismo de fechamento estomático eficiente e não ao acúmulo
de solutos osmoticamente ativos, tanto em situação de seca como de salinidade no meio;
devido à grande variação encontrada, o acúmulo de solutos orgânicos não demonstrou ser um
mecanismo fisiológico indicador de tolerância à seca e a salinidade nesta espécie; o
umbuzeiro tolera níveis de salinidade de até 50 mM de NaCl sem apresentar alterações
fisiomorfológicas significativas na fase inicial do desenvolvimento.
Palavras-chave: transpiração, resistência estomática, potencial hídrico foliar, solutos
compatíveis, seca, salinidade.
Silva, Elizamar Ciríaco da. Dr. Universidade Federal Rural de Pernambuco, fevereiro/2008. Respostas
fisiológicas do umbuzeiro (Spondias tuberosa Arr. Cam.) aos estresses hídrico e salino. Dra. Rejane J.
Mansur C. Nogueira, Dr. Natoniel Franklin de Melo, Dr. Fernando Henrique de Aguiar Vale.
xix
GENERAL ABSTRACT
Among the principal native fruit trees in Northeastern Brazil, especially those found in the
semi-arid areas, the umbu tree (Spondias tuberosa Arruda) represents itself as an important
alternative as it well accepted by consumers and is a good produce in dry environments.
Thus, the fruit trade fair or through cooperatives provides a source of supplementary income
for small farmers. However, this income can be compromised by harvesting and excessive
deforestation, which has intensified each year. Concern with population reduction of this
species and by anthropic, Brazilian Institute for the Semi-Arid Tropic has developed studies
on seedlings production, cultivation, and genetic inheritance preservation recovering
genotypes with distinct morphological characteristics and deployment of a germplasm active
bank provide the most promising for small producers, in addition to contributing to the
reforestation of the Caatinga with a native species. Of the climatic factors limiting fruit
species production in the semi-arid northeast, drought is the main factor, also allied to the
growing problem of soil salinization, which has worsened each year. The mechanisms used by
umbu tree to tolerate drought is not well elucidated and the physiological response before soil
salinity is not yet known. Thus, the present work aimed to evaluate the physiological
responses of umbu tree to drought and salt stresses. To evaluate drought responses, a project
was developed in green house conditions using four grafted genotypes classified as giant
umbu (BGU 44, BGU 48, BGU 50 and BGU 68) in order to evaluate the alterations on
stomatal behavior, anatomical parameters, water relations and some biochemical aspects
induced by intermittent drought and the possible genotypical variations. Transpiration (E) and
diffusive resistance (r
s
) were measured daily after the beginning of the stress treatments by
withholding water. When plants presented stomatal closure, the vases were re-watered and the
water withhold again. This cycle was repeated for a 31 period days. The leaf water potential
(Ψ
w
) was measured in four-hour intervals during a 24-hour period at the moment of the first
stomatal closure and at the end of the experimental period. Total soluble carbohydrates
(CHS), free amino acids (AA), protein (PROT) and proline (PRO) in leaves and roots were
also measured. Certain regularity in the stomatal closure was observed among the watering
period, showing differences between the species. The correlation with environmental factors
suggest that, besides the water, stomatal behavior of BGU 44 and BGU 68 were influenced by
Tar, RH and VPD, while the access BGU 50 were influenced by PAR and BGU 48 had no
correlation with these environmental factors, suggesting that the water exerted the major
influence in this genotype. Anatomical alterations in response to drought on stomatal density
(DE) and reductions on stomatal index (IE) and stomatal aperture size (AO) were observed.
The access BGU 48 maintained its anatomical features unaltered. There was an inversion in
tissue proportion in BGU 44 under stress conditions, reducing the thickness of the spongy
parenchyma and increasing palisade parenchyma. The inverse occurred with BGU 68 and the
Silva, Elizamar Ciríaco da. Dr. Universidade Federal Rural de Pernambuco, fevereiro/2008. Respostas
fisiológicas do umbuzeiro (Spondias tuberosa Arr. Cam.) aos estresses hídrico e salino. Dra. Rejane J.
Mansur C. Nogueira, Dr. Natoniel Franklin de Melo, Dr. Fernando Henrique de Aguiar Vale.
xx
remaining genotypes continued unchanged. The lower Ψ
w
time of most of the genotypes was
between 8h and 12h. The Ψ
w
of the stressed plants of BGU 44 and BGU 50 reduced
significantly at 8h. The highest Ψ
w
was observed to BGU 68.
The stress prolongation induced
reductions in CHS content in the leaves of all genotypes. There were increases in the leaves to
AA in BGUs 44 and 48, while BGUs 50 and 68 were reduced by about 40% and 43%
respectively. BGU 44 and BGU 50 kept this behavior at the end of the experimental period.
Significant differences in PROT content were not observed, but there were increases of 50%
in PRO, except to BGU 50. Alterations on CHS, AA and PRO contents in the roots were
verified and varied among the different genotypes. BGU 68 and BGU 50 were the most
contrasting genotypes. In order to evaluate the salt stress responses in umbu plants a project
was developed using seedlings propagated by seeds. Plants were grown in washed sand with
Hoagland & Arnon nutrient solution without salt and with 25, 50, 75 and 100mM NaCl.
Growth, Ψ
w
, E and r
s
were then evaluated. Na
+
, K
+
, Cl
-
, soluble carbohydrates and free amino
acid contents were measured in several plant organs. Most variables were affected with
salinity above 50 mM NaCl showing decreases in: number of leaves, plant height, stems
diameter and dry masses and increases in root to shoot ratio. Reductions in pre-dawn leaf
water potential (Ψ
pd
) were observed in plants submitted to 75 and 100 mM NaCl. Salt levels
applied increased Na
+
and Cl
-
contents in leaves. However, K
+
content was not affected. A
saturation to retain Na
+
and Cl
-
in stems and roots was verified in treatments above 50 mM
NaCl. These results allow us to say that there are physiological and anatomical differences
among umbu tree genotypes; genotypes respond differently to intermittent drought; the turgor
maintenance in umbu tree is relative to water storage in the xylopodium associated with the
efficient stomatal closure mechanism and not by osmotic active solutes accumulation in either
drought or salt stress conditions; due to the great variation found, the organic solutes
accumulations did not demonstrate to be a good physiological trait as indicator to drought-
and salt-tolerance in umbu plants. This specie tolerates salt levels until 50 mM NaCl without
showing significant physio-morphological alterations.
Key-words: transpiration, stomatal resistance, leaf water potential, compatible solutes,
drought, salinity.
21
Parte 1
*
1. INTRODUÇÃO
2. REVISÃO DE LITERATURA
2.1 Panorama geral da fruticultura no Brasil
2.2 Aspectos gerais e agronômicos do umbuzeiro
2.3 Efeito do ficit hídrico sobre o crescimento, comportamento estomático e
ajustamento osmótico das plantas.
2.4 Aspectos gerais da salinização dos solos
2.5 Efeito do estresse salino sob o desenvolvimento e ajustamento osmótico das plantas.
2.6 Modificações morfoanatômicas nas folhas em resposta aos estresses hídrico e salino.
3. REFERÊNCIAS BIBLIOGRÁFICAS
*
As referências bibliográficas desta sessão seguem as normas da ABNT.
22
1. INTRODUÇÃO
O Brasil é um dos maiores repositórios de espécies nativas do mundo, devido a sua
localização geográfica e dimensão territorial, possuindo importantes centros de diversidade
genética de plantas nativas. Apresenta condições edafoclimáticas favoráveis para a produção
de frutas tropicais para o mercado mundial, e algumas fruteiras proporcionam mais de uma
safra por ano (PLANETA ORGÂNICO, 2004).
Dentre as principais fruteiras nativas do Nordeste, com potencial econômico, o
umbuzeiro (Spondias tuberosa Arruda) desponta com uma alternativa importante, uma vez
que o extrativismo dos frutos ajuda na complementação da renda familiar dos pequenos
agricultores (LIMA FILHO et al., 2001; ARAÚJO e CASTRO NETO, 2002) além do seu
aproveitamento na fabricação de polpas, doces e geléias.
O cultivo do umbuzeiro pode ser realizado sem a necessidade de desmatamento da
caatinga, visto que ele se desenvolve bem junto a outras plantas como a catingueira e a
faveleira. Estima-se que uma caatinga enriquecida com 100 plantas de umbuzeiro pode chegar
a produzir 6,5 toneladas de frutos por ha/ano (ARAÚJO et al., 2004). Essa significativa
produção de frutos do umbuzeiro pode contribuir muito para o desenvolvimento da região
semi-árida com o aproveitamento racional dos frutos (CAVALCANTI et al., 1999).
Diversas pesquisas nas áreas de produção de mudas e indução floral, para
enriquecimento da caatinga com esta espécie, vêm sendo realizadas (ARAÚJO e SANTOS,
2000). Tem-se observado uma redução na densidade populacional das espécies frutíferas das
regiões semi-áridas devido, principalmente, ao extrativismo e desmatamento, comuns em
áreas de caatinga. Grande parte da variabilidade dessas espécies tem sido perdida antes
mesmo de serem conhecidas (SAMPAIO et al., 1998). Por este motivo, a Embrapa Semi-
Árido implantou um Banco de Germoplasma de Umbuzeiro (BGU) com o objetivo de
preservar a herança genética desta espécie. Contudo, os estudos sobre as relações hídricas e o
comportamento estomático dos diferentes acessos existentes no BGU ainda são escassos e os
poucos trabalhos encontrados referem-se a publicações em congressos científicos (SILVA et
al. 2004b, 2005, 2006a, 2006b).
Entre os trabalhos realizados sobre a fisiologia do umbuzeiro destacam-se os estudos
pioneiros realizados por Ferri (1953a, 1953b), que avaliou aspectos da transpiração de várias
espécies da caatinga, entre elas o umbuzeiro, e mais recentemente os estudos sobre as relações
hídricas (LIMA FILHO e SILVA, 1988; NOGUEIRA et al., 1999; LIMA FILHO, 2001,
2004) e as trocas gasosas (LIMA FILHO, 2001; ARAÚJO e CASTRO NETO, 2002; LIMA
23
FILHO, 2004) em condições de campo. Além destes, ainda podemos encontrar os trabalhos
realizados por Cavalcanti et al. (2002) e Drumond et al. (2003) que avaliaram o
desenvolvimento inicial do umbuzeiro. Recentemente, Neves et al. (2004) estudaram o
crescimento e a nutrição mineral desta espécie sob condições salina.
Uma das maiores limitações verificadas nas regiões semi-áridas é o déficit hídrico,
comum nessas áreas devido à baixa pluviosidade, distribuição das chuvas, elevadas taxas
de evapotranspiração e baixa capacidade de retenção de água dos solos, em geral rasos e
pedregosos (ANDRADE LIMA, 1989).
A água participa como reagente em numerosas reações metabólicas e a sua falta afeta
todos os aspectos do crescimento e desenvolvimento dos vegetais (KRIEG, 1993; LARCHER,
2000). Diversos processos fisiológicos e bioquímicos, tais como a troca de gases entre o
interior da folha e a atmosfera, a fotossíntese (PAGTER et al., 2005) e o metabolismo dos
carboidratos, proteínas, aminoácidos e outros compostos orgânicos, são alterados pela seca
(SIRCELJ et al., 2005).
A regulação estomática para restringir a perda excessiva de água por transpiração é
uma das primeiras linhas de defesa das plantas ao estresse hídrico, atuando como um recurso
para prevenir a dessecação dos tecidos como resultado da desidratação e para manter a
turgescência foliar por um período maior (MATTOS, 1992; LARCHER, 2000; SILVA et al.,
2003b). Contudo, o fechamento estomático afeta a difusão do CO
2
para o interior das células,
refletindo em futura redução na taxa de fotossíntese, e consequentemente na produtividade
(LARCHER, 2000).
A manutenção da turgescência celular também pode ocorrer pelo acúmulo de
substâncias orgânicas e íons inorgânicos em resposta ao déficit hídrico (CHARTZOULAKIS
et al., 1999; NOGUEIRA et al., 2002). Esse mecanismo, denominado de ajustamento
osmótico, contribui para a redução do potencial hídrico celular e assim favorece o influxo de
água para o interior do vegetal.
Além da seca, a salinidade nos solos vem crescendo a cada ano, tornando-se um
grande problema em muitas áreas semi-áridas. Esse aumento deve-se a uma drenagem
insuficiente, irrigação ineficiente, alta taxa de evaporação dos solos, em geral rasos e
pedregosos e baixa precipitação pluviométrica, associada às características do material de
origem e às condições geomorfológicas e hidrológicas (WHITEMORE, 1975; MENGEL e
KIRKBY, 1987; MARSCHNER, 1990).
Segundo Souza (1994), os solos afetados por sais representam aproximadamente 33%
da área mundial irrigada. No Brasil, aproximadamente nove milhões de hectares são afetados
24
pela presença de sais, que compreendem sete Estados brasileiros (GHEYI e FAGERIA,
1997).
O acúmulo de sais no solo provoca reduções na qualidade e produtividade das culturas
(MENGEL e KIRKBY, 1987). Basicamente, as plantas que crescem em solos salinos
enfrentam dois problemas: uma alta pressão osmótica provocada pela alta concentração de
sais no solo (baixo potencial hídrico no solo) e uma alta concentração de íons potencialmente
tóxicos, como Na
+
e Cl
-
(MARSCHNER, 1990).
Para sobrevierem em ambientes hídricos deficitários, seja pela escassez hídrica no solo
ou pela indisponibilidade de água em virtude da salinidade, as plantas desenvolveram, ao
longo do tempo, modificações morfológicas e anatômicas, permitindo tolerar o ambiente
adverso (CHARTZOULAKIS et al., 2002a). Em situação de estresse, tanto os aspectos
morfoanatômicos com os fisiológicos e bioquímicos sofrem alterações. Contudo, essas
alterações não representam um padrão entre as espécies que ali habitam. Em algumas plantas,
as principais alterações são: o aumento da espessura da cutícula e da densidade de estômatos e
escamas, assim como o aumento no número de células da epiderme e do mesofilo, porém com
uma redução no tamanho das mesmas (BOTTI et al., 1998; BOSABADILIS e KOFIDIS,
2002). Observa-se que a redução da condutância estomática e da fotossíntese pode estar
relacionada com a redução nos espaços intercelulares (CHARTZOULAKIS et al., 1999,
2002a).
Dessa forma, o estudo da fisiologia das plantas nativas pode ajudar na compreensão
dos mecanismos de sobrevivência em ambientes adversos. Para tanto, parâmetros bioquímicos
e morfo-anatômicos podem servir de ferramenta para uma melhor compreensão dos processos
fisiológicos, principalmente no que diz respeito às relações hídricas e trocas gasosas, havendo
a necessidade de se desenvolverem mais estudos a esse respeito.
Com a possiblidade da expansão de cultivo do umbuzeiro no Nordeste, surge a
necessidade de implementação de novas ações de pesquisa que possam contribuir para o
aprimoramento do manejo desta cultura em questão, que irão favorecer a geração de renda e a
permanência do homem no campo.
25
2. REVISÃO DE LITERATURA
2.1 Panorama geral da fruticultura no Brasil
A fruticultura é destaque no Brasil, tanto econômica quanto socialmente, pelo valor
comercial, alimentício e por constituir-se em importante fonte geradora de empregos, que
favorece a permanência do homem no campo. O Brasil é, atualmente, o terceiro maior
produtor de frutas do mundo, ficando atrás apenas da Índia e da China, com uma produção de
38.125.000 toneladas (FAO, 2006) e vem desenvolvendo essa atividade de modo acelerado,
apresentando reflexos positivos e promissores na economia dos Estados (NATALE et al.,
1995).
Entretanto, dos mais de 1.800.000 ha de área cultivada, 73% do total da produção
correspondem às culturas de citrus e banana, e grande parte das espécies de fruteiras nativas
ainda são pouco exploradas (ALVES et al., 2005).
Dos mais de 30 pólos de produção de frutas espalhados no país de Norte a Sul, o
Nordeste é, por excelência, um grande centro para a fruticultura (ALVES et al., 2005), sendo
uma das atividades do setor primário com maior perspectiva, devido às condições ecológicas
favoráveis em termos climáticos, principalmente para as espécies tropicais, nativas e exóticas,
onde o solo também satisfaz as mais variadas exigências.
Os vales de rios como o São Francisco e o Açu, entre outros, mostram a real vocação
da mencionada região para a produção de frutas, visando não apenas ao mercado interno, mas
também à exportação de frutas in natura e de seus subprodutos industrializados (EMBRAPA,
2004).
Visando a implantação de uma fruticultura voltada para áreas secas da região, a
Embrapa Semi-Árido vem obtendo bons resultados no cultivo de fruteiras como ceriguela,
cajá-manga, umbu-cajá, cajá e umbuguela enxertadas no umbuzeiro, visto que as mesmas
fazem parte da mesma família, ou seja, Anacardeaceae, e apresentam bom desenvolvimento e
sobrevivência em condições de sequeiro absolutas (EMBRAPA, 2003).
Além disso, tem-se buscado diminuir o enorme fosso existente entre as frutas nativas e
aquelas que têm espaço cativo no mercado, com investigações sobre o desenvolvimento de
tecnologias que viabilizem o cultivo comercial dessas fruteiras nativas, em especial do
umbuzeiro, através do uso da técnica de indução floral (LIMA FILHO, 2003).
26
2.2 Aspectos gerais e agronômicos do umbuzeiro
O umbuzeiro ou imbuzeiro (Spondias tuberosa Arr. Câm.), pertencente à Família
Anacardiaceae, é uma espécie xerófila típica das caatingas do Nordeste Brasileiro, que ocorre
em pomares naturais desde o Ceará até o norte de Minas Gerais (LORENZI, 1998). É uma
árvore de vida longa, de pequeno porte, possuindo um tronco curto e copa em forma de
guarda-chuva com diâmetro de 10 a 15 m (MAIA, 2004). É capaz de suportar longos períodos
de seca e produzir em solos ruins (EPSTAIN, 1998).
Suas raízes superficiais exploram cerca de 1m de profundidade. Possui um órgão
subterrâneo (túbera ou batata) conhecido como xilopódio, que é constituído de tecido
lacunoso que armazena água, mucilagem, glicose, tanino, amido, ácidos e sais minerais
essenciais para a sua sobrevivência durante a estação seca (MAIA, 2004).
O caule tem ramos novos lisos e ramos velhos com ritidomas; as folhas são verdes,
alternas, compostas, imparipinadas e suas flores são brancas, perfumadas, melíferas,
agrupadas em panícula de 10-15 cm de comprimento. O fruto é uma drupa de forma
arredondada a ovalada, com diâmetro médio de 3,0 cm, pesando entre 10 e 20 g. É constituído
em média por 22% de casca, 68% de polpa e 10% de caroço (EPSTEIN, 1998).
Os frutos são consumidos in natura ou preparados na forma de sorvetes, sucos e
umbuzada. Frutifica no período chuvoso e cada planta chega a produzir 300 kg de frutos por
safra. O período de frutificação é de aproximadamente dois meses e apresenta a peculiaridade
de emitir as inflorescências antes das folhas, no período seco (EPSTAIN, 1998; FERREIRA,
2003).
Segundo Ferreira et al. (2005), o umbuzeiro se consagra por ser uma espécie frutífera
de grande importância econômica, social e ecológica. O extrativismo do fruto é de grande
importância para a economia regional, principalmente, entre os meses de novembro e abril,
quando é responsável pela ocupação da mão de obra, gerando renda e sustentação para as
famílias (LIMA FILHO et al., 2001). Segundo pesquisa realizada pelo Instituto Brasileiro de
Geografia e Estatística - IBGE, em 2001, o Brasil produziu 9.919 toneladas de umbu,
ocasionando uma renda de R$ 3.498.000,00 (IBGE, 2007).
A área total plantada com umbuzeiro (excetuando as plantas nativas), segundo censo
da CODEVASF (2001) é de 509,3 ha, sendo 0,5 ha em formação, 23,0 ha em produção
crescente, 332,8 em produção plena e 153,1 ha em declínio de produção. Sabe-se, no entanto,
que esta área já cresceu bastante nos últimos anos (FERREIRA et al., 2005).
Estudos realizados em oito comunidades rurais localizadas no semi-árido baiano
revelaram que a renda média obtida por pessoa na coleta do umbu foi de R$ 276,00 por safra.
27
A coleta dessa fruta foi responsável pela maior absorção de mão-de-obra e geração de renda
das famílias de pequenos agricultores na área pesquisada (EMBRAPA, 2003).
O umbuzeiro apresenta uma grande variabilidade genética entre indivíduos
encontrados nas várias regiões do nordeste brasileiro e norte de Minas Gerais, com marcadas
diferenças desde a conformação da copa até o tamanho e peso dos frutos (SANTOS et al.
1999b).
Com o objetivo de preservar a variabilidade genética do umbuzeiro, a Empresa
Brasileira de Pesquisa Agropecuária (EMBRAPA Semi-Árido) implantou, em 1994, um
Banco Ativo de Germoplasma de Umbuzeiro, que atualmente é formado por 78 acessos
(Oliveira et al, 2004) oriundos de plantas coletadas de várias regiões agroecológicas do
Nordeste, abrangendo os Estados de Alagoas, Bahia, Pernambuco, Ceará, Rio Grande do
Norte e Minas Gerais (SANTOS et al. 1999a, 1999b).
Dentre esses acessos, encontram-se os BGU’s 44, 48, 50 e 68, caracterizados como
umbu gigante em virtude de seus frutos pesarem em média 86,7g, 75,30g, 85,0g e 96,7g,
respectivamente (SANTOS et al. 1999b). As principais características destes acessos
encontram-se relacionadas na tabela 1:
Tabela 1. Procedência e valores de alguns caracteres observados nas árvores de umbuzeiro,
identificadas como promissoras ou excêntricas para formação do banco de germoplasma do
umbuzeiro (BGU). EMBRAPA-CPATSA, Petrolina-PE. 1997.
BGU
1
Procedência
Caracteres
2
PMF LGR PSC PSS PSP BRI ALP CCS MAC MEC NPR
44-96 Anagé-BA 86,7 53,3 18,7 10,0 58,0 12,1 8,50 1,90 13,8 12,8 04
48-96 A. Dourada-BA 85,0 52,0 22,5 9,8 52,7 12,7 4,0 1,10 8,8 8,2 12
50-96 Santana-BA 75,3 53,0 17,7 10,0 47,6 12,8 8,2 2,30 12,2 11,8 03
68-96 Lontra-MG 96,7 56,7 24,3 13,3 59,1 10,0 4,5 1,35 13,1 11,4 08
1/O primeiro número corresponde à ordem de caracterização “in situ” e o segundo número ao ano do transplantio
para o campo. 2/ PMF= peso do fruto (g); LRG= diâmetro do fruto (mm); PSC= peso da casca (g); PSS= peso da
semente (g); PSP= peso da polpa (g); BRI= sólidos solúveis totais da polpa (oB ); ALP= altura da planta (m);
CCS= circunferência do caule a 20 cm do solo (m); MAC= maior diâmetro da copa (m); MEC= menor diâmetro
da copa (m); NRP= número de ramos primários. Fonte: SANTOS et al. 1999b.
Mudas do BGU 48 têm sido distribuídas entre pequenos produtores e em quatro
Unidades de Observação, sendo duas em Floresta-PE e duas em Caicó-RN (Relatório
Executivo de Acompanhamento, 2004).
28
2.3 Efeito do déficit hídrico sobre o crescimento, comportamento estomático, potencial
hídrico foliar e ajustamento osmótico das plantas.
O desempenho e distribuição de uma espécie vegetal podem ser relacionados à sua
capacidade de adquirir água, nutrientes, fixação de carbono e na maneira pelas quais esses
fluxos são regulados (MATTOS, 1992).
Entre os vários estresses abióticos, a seca é o principal fator que limita a produtividade
das culturas em todo o mundo (VALLIOYODAN e NGUYEN, 2006), principalmente em
regiões semi-áridas e áridas (QUEZADA et al., 1999; CHARTZOULAKIS et al., 2002a;
PATAKAS et al., 2005; SOUZA et al., 2005). No nordeste brasileiro, a média anual de
precipitação, em algumas áreas, situa-se entre 250 e 500 mm (ANDRADE LIMA, 1989;
MENDES, 1986), distribuídos de forma irregular, prejudicando assim o crescimento e a
produtividade das plantas.
A planta que é capaz de obter mais água ou que tem maior eficiência no seu uso
resistirá melhor à seca. Algumas plantas possuem adaptações como as plantas C
4
e CAM que
as permitem explorar ambientes mais áridos, enquanto outras possuem mecanismos de
aclimatação que são ativados em resposta ao estresse (TAIZ e ZEIGER, 2002).
A exposição das plantas a um ambiente limitado de água durante vários estádios do
desenvolvimento, parece ativar vários processos fisiológicos e provocar mudanças no
desenvolvimento (VALLIYODAN e NGUYEN, 2006).
Um dos processos fisiológicos mais sensíveis à deficiência hídrica é o crescimento
celular (QUEZADA et al., 1999). Como conseqüência da baixa disponibilidade de água no
solo, a expansão e a área foliar são reduzidas (SADRAS e MILROY, 1996), são observadas
modificações no padrão de distribuição radicular (FAGERIA et al., 1884), redução na
produção de biomassa e na produtividade das plantas. Por este motivo a redução do
crescimento das plantas é considerada a primeira e mais séria conseqüência fisiológica do
déficit hídrico nas mesmas (CAIRO, 1995; QUEZADA et al., 1999; LARCHER, 2000).
As espécies decíduas apresentam um mecanismo eficiente para escapar à seca,
incluindo o fechamento dos estômatos, a redução da área foliar e mudanças na orientação da
folha (GINDABA et al., 2005). Durante a estação seca, as folhas que permanecem na planta
podem influenciar fortemente no controle do equilíbrio da água, ajustando a transpiração
como uma função da limitação hidráulica devido a uma elevação no déficit de pressão de
vapor atmosférico e do dessecamento superficial do solo (PRADO et al., 2004).
Diversos fatores externos como temperatura, radiação, umidade relativa do ar e
velocidade dos ventos interferem no processo de transpiração, a medida em que aumentam a
29
diferença no déficit de pressão de vapor entre a superfície da folha e o ar que a envolve
(LARCHER, 2000; SILVA et al., 2004a). Quando a abertura estomática é reduzida, o fluxo de
transpiração diminui em maior grau do que a diminuição do fluxo de absorção de CO
2
. No
entanto, o fechamento total dos estômatos impede a absorção de CO
2
essencial para a
fotossíntese, podendo afetar de forma irreversível o crescimento ou a sobrevivência da planta.
Dessa forma, o controle das trocas gasosas representa um dilema, pois elas devem regular
fluxos opostos de forma que o balanço drico e o de carbono sejam mantidos em condições
de permitir a máxima eficiência do uso dessas substâncias (ANGELOCCI, 2002).
Em plantas que habitam regiões semi-áridas, a resistência oferecida pelos estômatos à
perda de vapor d’água constitui uma estratégia vital de sobrevivência, principalmente no
horário de maior demanda evaporativa (SILVA et al., 2003b). Silva et al. (2004a), verificaram
diferentes padrões de resposta do controle estomático ao longo do dia em dez espécies da
Caatinga no início da estação seca. Espécies como Croton campestres e Caesalpinia
pyramidalis aumentaram a resistência difusiva (r
s
) nas horas mais quentes do dia e
recuperaram o grau de abertura dos estômatos à tarde. Já as demais espécies, como Capparis
flexuosa, Zizhiphus joazeiro, Bahunia cheilanta e Aspidosperma pyrifolium tenderam a
aumentar a r
s
no horário mais quente e mantiveram assim até o final do dia.
Na tentativa de se identificar parâmetros que sirvam de indicadores de tolerância ao
estresse hídrico, alguns pesquisadores têm desenvolvido trabalhos com plantas de regiões
semi-áridas (BARBOSA e PRADO, 1991; LIMA FILHO et al. 1992; NOGUEIRA et al.,
1998a, 1999; CHARTOZOULAKIS et al. 1999; BARBOSA et al. 2000; MANSUR e
BARBOSA, 2000; NOGUEIRA e SILVA, 2002; SILVA et al., 2003a, 2003b) e com plantas
cultivadas (NOGUEIRA et al., 2001; CHARTZOULAKIS et al., 2002a; GOMES et al., 2004;
INMAN-BAMBER e SMITH, 2005; PATAKAS et al., 2005; NOGUEIRA et al., 2006).
Silva et al. (2003a) verificaram que um nível de irrigação de 50% da capacidade de
campo (Cc) durante 45 dias, não comprometeu o crescimento das plantas de Tabebuia aurea,
Enterolobium contortisiliquum e Mimosa caesalpiniifolia, porém afetou as trocas gasosas
reduzindo o grau de abertura dos estômatos e, conseqüentemente, a transpiração das plantas
(SILVA et al., 2003b). Em baraúna (Schinopsis brasiliensis Engl.), Nogueira e Silva (2002)
verificaram que esta espécie utilizou o fechamento dos estômatos como meio de
sobrevivência a períodos prolongados de escassez hídrica na fase de planta jovem.
Com relação ao umbuzeiro, dentre os poucos trabalhos relacionados ao
comportamento estomático e às relações hídricas destacam-se os estudos realizados por Ferri
(1953a, 1953b) e recentemente os desenvolvidos por Lima Filho e Silva (1988) e Lima Filho
(2004) abordando aspectos das trocas gasosas em campo; os realizados por Nogueira et al.
30
(1999) que avaliaram a variação diária do potencial hídrico foliar em cinco espécies da
caatinga; os de Lima Filho (2001) que estudou as relações dricas do umbuzeiro na estação
seca e chuvosa; e o trabalho de Araújo e Castro Neto (2002) que utilizaram parâmetros
fisiológicos como potencial hídrico, taxa fotossintético e condutância estomática para avaliar
o pegamento de enxertos.
Lima Filho (2004) observou que o umbuzeiro exibe dois picos de transpiração durante
o dia, às 10 e 16 horas. Isto significa que mesmo em boas condições de umidade do solo, o
umbuzeiro exerce um rígido controle das perdas de água através dos estômatos, como
observado por Lima Filho et al. (1988), assegurando uma significativa economia de água ao
restringir a transpiração ao meio dia, horário de maior temperatura do ar e baixa umidade
relativa.
Embora o umbuzeiro habite preferencialmente ambientes secos, sendo, portanto,
adaptado a tais regiões, não se conhece exatamente os mecanismos fisiológicos utilizados por
esta espécie que permitem tal adaptação. Sabe-se, porém, que as reservas encontradas nos
xilopódios, órgãos subterrâneos capazes de armazenar água e solutos orgânicos, são
responsáveis pela sobrevivência da espécie nos períodos de estiagem.
Contudo, a literatura disponível a respeito do comportamento fisiológico dos genótipos
de umbuzeiro existentes no Banco Ativo de Germoplasma (BGU) ainda é bastante escassa,
tendo sido encontrado apenas os trabalhos realizados por Silva et al. (2004b, 2005, 2006a,
2006b), que se referem às comunicações em congressos científicos.
O potencial hídrico foliar, o conteúdo relativo de água e as trocas gasosas têm sido
comumente utilizados para avaliar as respostas fisiológicas das plantas sob deficiência hídrica
(QUEZADA et al., 1999; CHARTZOULAKIS et al., 2002a; DAMATTA et al., 2003; SILVA
et al., 2003b; GOMES et al.; 2004; PATAKAS et al., 2005; SOUZA et al., 2005), e na
maioria das plantas, esse estresse resulta na redução desses parâmetros, os quais induzem o
fechamento estomático. Essas mudanças têm impacto no metabolismo celular, incluindo a
fotossíntese. No entanto, não resta dúvida que os estômatos desempenham um papel
importante controlando o balanço hídrico entre a perda de água e o ganho de carbono
(GINDABA et al., 2005).
A redução do potencial da água da folha (Ψ
w
) com o declínio da disponibilidade de
água do solo, leva à perda de turgescência e ao fechamento estomático (MANSUR e
BARBOSA, 2000). No entanto, existe diferença no padrão de comportamento do Ψw entre as
espécies, sendo estas classificadas tipicamente como isoídricas, cujas plantas conseguem
manter valores de Ψw quase constante ao longo do dia ou do ano, independente das mudanças
nas condições hídricas do solo e da atmosfera, ou são classificadas como anisoídricas, cujos
31
valores no Ψw geralmente apresentam grandes flutuações em resposta ao secamento do solo
(TARDIEU e SIMONNEAU, 1998).
Segundo Tardieu e Simonneau (1998), um típico comportamento isoídrico, por
exemplo, é encontrado em milho, cujo Ψw antes do amanhecer (predawn) diferiu entre
plantas de tratamentos hídricos distintos (déficit), mas ao longo do dia não houve grande
variação, sugerindo que o Ψw não foi dependente do status hídrico do solo e as plantas com
comportamento anisoídrico, como exemplo, o girassol, apresentaram variações do Ψw ao
longo do dia, com diferenças aproximadamente constantes entre os tratamentos dricos. O
mesmo foi observado em plantas de alfafa arbórea em campo (GONZÁLES-RODRÍGUEZ et
al., 2005) e em duas espécies de eucalipto (FRANK et al., 2007).
A diferença básica entre os dois comportamentos reside no fato das plantas
anisoídricas manterem valores mais baixos de potencial hídrico foliar do que nas isoídricas,
não apenas antes do amanhecer, mas principalmente ao meio-dia em condições de seca,
quando comparados aos das plantas irrigadas, indicando uma moderada regulação da
transpiração através dos estômatos (FRANK et al., 2007).
No entanto, Schultz (2003) verificou que diferentes genótipos de videira apresentaram
tanto o comportamento isohídrico como o anisohídrico, afirmando que esta espécie pode
apresentar os dois tipos de comportamento. Devido a essas diferenças, Frank et al. (2007)
fizeram uma abordagem sobre um outro tipo de comportamento denominado de
isohidrodinâmico, uma vez que os autores encontraram uma larga flutuação sazonal no Ψw do
eucalipto (Eucalyptus gomphocephala), confirmando o comportamento anisohídrico, mas
exibiu um incomum gradiente de potencial hídrico hidrodinâmico (induzido pela
transpiração), constante ao meio-dia.
A manutenção da turgescência celular pode ocorrer pelo acúmulo de substâncias
orgânicas e íons inorgânicos, como uma resposta ao estresse, processo conhecido como
ajustamento osmótico (BEGG e TURNER,1976; HARE et al., 1998; HONG-BO et al.,
2006a). Os solutos orgânicos, também chamados de solutos compatíveis, são compostos de
baixo peso molecular, altamente solúveis, que não apresentam toxicidade em altas
concentrações no interior das células (ASHRAF e FOOLAD, 2007). Quando as plantas são
expostas ao déficit hídrico, algumas medidas osmoprotetoras são tomadas, como por exemplo,
a conversão do amido em carboidratos solúveis (sacarose, glicose, frutose, etc.). O acúmulo
de açúcares no citosol ajuda a promover o influxo de água (CAIRO, 1995; LARCHER, 2000).
O aumento de açúcares nas folhas em resposta à baixa disponibilidade de água no solo tem
sido observado por muitos pesquisadores (SÁNCHEZ et al., 1998; SIRCELJ et al., 2005;
HONG-BO et al., 2006b).
32
Os compostos nitrogenados, como proteínas e aminoácidos (arginina, prolina, lisina,
histidida, glicina, etc.) e poliaminas entre outros, constituem outro grupo de compostos que
também são afetados pelo déficit hídrico e que participam do ajustamento osmótico (RABE,
1990). Observa-se um aumento nos teores de aminoácidos livres (SIRCELJ et al., 2005) e
uma redução na taxa de síntese ou decréscimo nos teores de proteína nas plantas em resposta
à seca (RABE, 1990).
O aumento nos teores de prolina é de grande importância para a adaptação das plantas
durante o período de estresse (SARKER et al., 2005) e geralmente seu acúmulo ocorre em
grandes quantidades nos vegetais superiores como resposta aos estresses ambientais
(ASHRAF e FOOLAD, 2007). A prolina, um aminoácido resultante da hidrólise de proteínas,
tem o papel de atuar como agente osmorregulador em muitas espécies cultivadas (MARUR et
al.,1994; NOGUEIRA et al.,1998c; SÁNCHEZ et al., 1998, NOGUEIRA et al., 2001;
HONG-BO et al., 2006a; KNIPP e HONERMEIER, 2006), e tem sido um indicador utilizado
nos estudos de plantas tolerantes à seca (CAIRO, 1995). O incremento de prolina também tem
sido relacionado com a diminuição do potencial da água nas folhas (MARTINEZ e
MORENO,1992; KNIPP e HONERMEIER, 2006). Além do seu papel como agente
osmorregulador, a prolina contribui para a estabilização de membranas e proteínas e na
remoção de radicais livres (ASHRAF e FOOLAD, 2007).
2.4 Modificações morfoanatômicas nas folhas em resposta ao déficit hídrico.
A adaptação das plantas ao seu ambiente depende, em grande parte, dos aspectos
morfológicos das folhas, pois as características químicas e/ou morfológicas da superfície
foliar condicionam à quantidade de luz que está sendo absorvida ou refletida, o grau de
hidrofobia do órgão, a pressão de vapor do ar em contato com as folhas, a eficiência do órgão
em defender-se de parasitas e patógenos e a magnitude da transpiração cuticular (SANTIAGO
et al., 2001).
De todos os órgãos, a folha é o mais sensível na percepção dos estresses ambientais,
razão pela qual ela exibe mais facilmente modificações morfológicas como conseqüência dos
efeitos dos estresses abióticos (PARÉZ-MARTINÉZ et al., 2004). Essas modificações podem
alterar a difusão de dióxido de carbono da cavidade sub-estomática para tios de
carboxilação, e assim contribuir para a manutenção das taxas fotossintéticas, apesar da baixa
condutância estomática (EVANS et al. 1994, citado por CHARTZOULAKIS et al.,1999).
A capacidade de reduzir a transpiração permite que as plantas tenham uma melhor
gestão da água disponível no solo. Quando as plantas fecham antecipadamente, mas
33
reversivelmente os estômatos, essa adaptação é modulativa. Uma adaptação modificativa
ocorre quando folhas que se desenvolvem em períodos de seca apresentam estômatos
menores, porém mais numerosos (LARCHER, 2000).
Segundo Larcher (2000), as folhas das plantas geneticamente adaptadas têm as paredes
da epiderme mais fortemente cutinizadas e com maior espessura das camadas de cera. Os
estômatos geralmente estão presentes apenas na face inferior das folhas, sendo menores e
freqüentemente protegidos por pêlos ou no interior de criptas estomáticas. Deste modo, o ar à
volta dos estômatos fica mais úmido e a resistência à movimentação do ar da camada
imediatamente adjacente à epiderme (camada limite) aumenta.
As principais alterações morfoanatômicas encontradas em plantas submetidas à
deficiência hídrica incluem a redução no tamanho das folhas, o enrolamento da folha,
aumento na quantidade de pêlos, desenvolvimento de estômatos profundos, acúmulo de
mucilagem e outros compostos secundários no mesofilo (SANTOS e GRISI, 1976;
BOSABADILIS e KOFIDIS, 2002), aumento na densidade de estômatos, espessura da
cutícula, número de células epidérmicas e células do mesofilo, porém com reduções em seus
tamanhos (SANTOS e GRISI, 1976; BOTTI et al., 1998).
Essas modificações anatômicas, entretanto, apresentam variações tanto entre as
espécies (SANTOS e GRISI, 1976) como dentro de uma mesma espécie (BOSABADILIS e
KOFIDIS, 2002), evidenciando diferenças adaptativas inter e intra-específicas induzidas pelos
fatores ambientais.
Santos e Grisi (1976) encontraram uma grande variação na anatomia de oito espécies
da caatinga, o que os permitiu dizer que embora as espécies estudadas sejam típicas de região
semi-árida, apresentaram estruturas xeromórficas pouco pronunciadas. Estudos realizados por
Sayed (1996) em um arbusto do deserto (Zygophyllum qatarense Hadidi) demonstraram
grande variação na morfologia das folhas em função da época do ano, com a formação de
folhas bifoliadas durante a estação chuvosa, as quais apresentaram maior densidade de
estômatos e maior área e espessura da folha do que as folhas simples formadas durante a
estação seca.
Chartzloulakis et al. (1999) e Bosabalidis e Kofidis (2002) observaram diferenças
entre dois cultivares de oliveira com relação à densidade e tamanho dos estômatos quando as
plantas foram submetidas a estresse hídrico, utilizando esses parâmetros como ferramenta
para indicar o cultivar Koroneiki como mais adaptado às condições de déficit hídrico do que o
cultivar Mastoidis. A redução na densidade e tamanho dos estômatos aumenta a resistência
estomática, a qual limita o excesso de perda de água por transpiração (PARES-MARTINÉZ et
al., 2004).
34
Em adição, Chartzoulakis et al. (2002a) verificaram que o estresse hídrico provocou
redução na espessura de quase todos componentes histológicos de dois cultivares de
abacateiro. Como conseqüência, os espaços intercelulares nas folhas de plantas estressadas
foram menores do que nas plantas controles, nos dois cultivares.
Com relação ao umbuzeiro, modificações morfoanatômicas em resposta ao estresse
hídrico ainda são pouco estudadas, indicando assim a necessidade de mais investigação acerca
destas alterações, uma vez que a anatomia pode servir de ferramenta para uma compreensão
das relações hídricas e do comportamento estomático desta espécie.
2.5 Aspectos gerais da salinização dos solos
As terras afetadas por sais ocorrem em praticamente todas as regiões climáticas, desde
os trópicos úmidos até as regiões polares. Os solos salinos podem ser encontrados nas
diferentes altitudes, tanto em locais abaixo do nível do mar, como é o caso do Mar Morto,
como em montanhas com altitudes acima de 5000 metros, como o Plateau Tibetano (SINGH e
CHATRATH, 2001).
Os solos afetados por sais são aqueles que contêm excessivas concentrações de sais
solúveis e/ou sódio trocável (SHAINBERG, 1975). Os sais solúveis do solo consistem, em
grande parte e em proporções variadas, dos cátions Na
+
, Ca
2+
e Mg
2+
e dos ânions Cl
-
e SO
4
2-
,
os demais geralmente são encontrados em baixas concentrações. O excesso desses sais reduz
o potencial hídrico da solução do solo e aumenta a condutividade elétrica (CE), de forma que
um solo é considerado salino quando a CE do seu extrato de saturação é superior a 4 dS.m
-
1
(MARSCHNER, 1990; AZEVEDO NETO, 2005).
Os solos salinos são abundantes em regiões áridas e semi-áridas, onde a quantidade de
chuva é insuficiente para uma lixiviação substancial (MARSCHNER, 1990). Além desses
fatores, a qualidade da água de irrigação, altas taxas de evaporação e baixa precipitação
pluviométrica, aliada ao material de origem contribuem para o processo de salinização
(SOUZA, 1994).
A salinização dos solos é um sério problema no mundo inteiro e tem crescido
substancialmente, causando perdas na produtividade das culturas. Estima-se que 20% das
terras cultivadas do mundo e, aproximadamente 1/2 das terras irrigadas estejam afetadas por
sais (SAIRAM e TYAGI, 2004).
Apesar das informações sobre as áreas salinizadas no Brasil não serem bem definidas,
estima-se que 20% a 25% das áreas irrigadas próximas a rios e fluxos intermitentes
apresentam problemas de salinidade e/ou drenagem (FAO, 2006). Aproximadamente 13% do
35
território brasileiro localiza-se em regiões semi-áridas, onde os solos têm sofrido crescentes
aumentos nos processos de salinização (ARAUJO FILHO et al., 1995).
Os perímetros irrigados do Nordeste têm aproximadamente 23.000 ha, incluindo sete
Estados (Bahia, Sergipe, Alagoas, Pernambuco, Paraíba, Rio Grande do Norte e Ceará) dos
quais 25% já se encontram salinizados (FAO, 2006).
Este problema tem crescido consideravelmente nessas regiões, onde a água que é
perdida do solo pelo processo de evapotranspiração é maior do que a infiltração da água das
chuvas, neste mesmo solo, durante o ano. O resultado é que os sais depositados com a
irrigação ficam concentrados no solo, com sérias conseqüências nas terras agrícolas e prejuízo
no custo da produção (MARSHNER, 1990; HOPKINS, 1995; LARCHER, 2000).
2.6 Efeito do estresse salino sobre o crescimento, trocas gasosas e ajustamento osmótico
das plantas.
Segundo Prisco (1980), a alta concentração de sais causa uma redução no potencial
osmótico do solo, gerando uma diminuição do gradiente de potencial hídrico do sistema solo-
planta. Dessa forma, as plantas são submetidas a um estresse drico, processo esse referido
como “seca fisiológica”.
A alta concentração de sais no solo, além de reduzir o potencial hídrico do solo,
provoca a ação dos íons sobre o protoplasma, causando distúrbios funcionais e injúrias, uma
vez que a taxa de crescimento celular é o produto da extensibilidade da parede celular
(ASHRAF e HARRIS, 2004). A resposta imediata das plantas ao estresse salino é a redução e
posterior paralisação na expansão da superfície foliar (PARIDA e DAS, 2005). Dessa forma,
o balanço osmótico é essencial para o crescimento dos vegetais em meio salino e qualquer
falha neste balanço resultará em injúrias semelhantes aos da seca, como a perda de
turgescência e a redução no crescimento, resultando em plantas atrofiadas, desidratação e
finalmente a morte das células (BLAYLOCK, 1994; ASHRAF, 2004).
Segundo Munns (2005) a inibição do crescimento das plantas sob salinidade ocorre por
duas razões. A primeira é devido ao efeito osmótico ou déficit hídrico provocado pela
salinidade, que reduz a habilidade de absorção de água. A segunda é devido ao efeito
específico dos íons ou excesso de íons, que entra no fluxo de transpiração e eventualmente
causa injúria nas folhas, reduzindo assim o crescimento.
A tolerância à salinidade geralmente é avaliada em termos de produção de biomassa
em meio salino em comparação com a produção em condições não salinas, ou condições
36
ideais. Em plantas perenes, a tolerância também pode ser avaliada em termos de
sobrevivência (MUNNS, 2002).
A redução no crescimento das plantas em resposta ao estresse salino tem sido
observada por diversos autores (NOGUEIRA et al., 1998b; OLIVEIRA et al., 1998; MELONI
e MARTINEZ, 1999; BEZERRA NETO e NOGUEIRA, 1999; TÁVORA et al., 2001;
VIEGAS et al., 2001, VIÉGAS et al., 2003), permitindo-os classificar as espécies em
tolerantes ou sensíveis, porém o nível de tolerância e as taxas de redução a um nível letal
variam grandemente entre as diferentes espécies vegetais e dentro de uma mesma espécie
(MUNNS, 1993; PARIDA e DAS, 2005).
Reduções de 60% no crescimento da parte aérea foram observadas em plantas de
Leucaena leucocephala cultivadas em meio hidropônico com 100 mol.m
-3
de NaCl. Nas
mesmas condições, plantas de Prosopis juliflora reduziram apenas 15% (VIÉGAS et al.,
2003). Em gravioleiras, além da redução na produção de massa seca, a área foliar foi
severamente reduzida em plantas cultivadas em meio contendo NaCl na CE de 9 dS.m
-1
(CAVALCANTE et al., 2001). Azevedo Neto et al. (2004) verificaram reduções na produção
de massa seca para a parte aérea em oito genótipos de milho cultivados sob 100 mol.m
-3
NaCl, no entanto um deles (BR5033) não teve a massa seca da raiz afetada pelo sal. De forma
semelhante, Chartzoulakis et al. (2002b) verificaram reduções no crescimento e na partição de
massa seca em seis cultivares de oliveira, porém os efeitos da salinidade diferiram entre os
cultivares.
A regulação da transpiração tem um significado importante no controle do acúmulo de
sal para a parte aérea, uma vez que o transporte de sal ocorre principalmente via fluxo
transpiratório (ROBINSON et al., 1997; MUNNS, 2002). Os sais carregados pelo fluxo de
transpiração são depositados nas folhas e com a evaporação da água, a concentração de sais
gradualmente aumenta, por isso são maiores nas folhas mais velhas do que nas mais jovens
(MUNNS, 2002).
As taxas de transpiração geralmente tendem a declinar com o aumento da salinidade na
rizosfera (PRISCO et al., 1980; ROBINSON et al., 1997; SILVA, J. V. et al., 2003b). Essa
tendência foi observada em goiabeira (TÁVORA et al., 2001), oliveira (LORETO et al.,
2003), limoeiro (CRUZ et al., 2003), pinheira (NOGUEIRA et al., 2004) e pessegueiro
(MASSAI et al., 2004).
A tolerância ao estresse salino é um fenômeno complexo que deve envolver mudanças
tanto no desenvolvimento como nos processos fisiológicos e bioquímicos (DELAUNEY e
VERMA, 1993; HARE e CRESS, 1997). Em halófitas terrestres, a alta tolerância ao sal é
baseada principalmente na inclusão de sais e sua utilização para a manutenção da turgescência
37
foliar ou na substituição do K
+
pelo Na
+
em rias funções metabólicas (MARSCHNER,
1990). Em glicófitas, a principal determinante da tolerância é a exclusão do sal da parte aérea
(BINZEL et al., 1988; ROBINSON et al. 1997; MUNNS, 2002), que pode ocorrer pela
habilidade de limitar a absorção e/ou transportar os íons (principalmente Na
+
e Cl
-
) da raiz
para a parte aérea, como observado por Chartzoulakis et al. (2002b) em seis cultivares de
oliva.
Em adição, a síntese de moléculas osmoprotetoras como sacarose, prolina, betaína e
trealose permitem o ajustamento osmótico, favorecendo a absorção de água e a manutenção
da turgescência foliar (SERRAJ e SINCLAIR, 2002). Os solutos orgânicos além de atuarem
na homeostase iônica e na estabilização de algumas macromoléculas e organelas, favorecem a
manutenção da integridade da membrana (BOHNERT e SHEN, 1999; BRAY et al., 2000).
Contudo, os ajustes metabólicos dependerão do genótipo, da intensidade e duração do estresse
e das etapas ontogenéticas em que essas alterações ocorrerão (SORIANO, 1980).
O acúmulo de solutos orgânicos em resposta à salinidade foi estudado em milho
(AZEVEDO NETO et al., 2004), sorgo (SILVA, J. V. et al. 2003a; LACERDA et al., 2003,
LACERDA et al., 2006), feijão (COSTA et al., 2003; SILVA, J. V. et al., 2003b), amora
(AGASTIAN et al., 2000), cajueiro (VIÉGAS e SILVEIRA, 1999; SILVEIRA et al., 2003),
algaroba, leucena, jurema preta e angico vermelho (VIÉGAS et al., 2003), entre outras
espécies.
Existem poucos estudos com relação às respostas do umbuzeiro sob condições salinas.
Neves et al. (2004) classificaram o umbuzeiro como moderadamente tolerante a salinidade
quando esta espécie é cultivada em até 31 mM de NaCl em solução nutritiva, utilizando como
base a redução na produção de matéria seca.
Como o umbuzeiro é uma espécie nativa do semi-árido brasileiro e devido ao grande
problema de salinização das áreas de agricultura, nos perguntamos se o umbuzeiro pode ser
cultivado em solos salinos nas regiões semi-áridas, e quais os níveis de NaCl que podem
comprometer o crescimento inicial e as relações hídricas nesta espécie.
Os programas de melhoramento não podem ser bem sucedidos na ausência de dados
sobre os mecanismos fisiológicos utilizados pelas plantas para enfrentar o estresse salino.
Uma compreensão precisa dos mecanismos de tolerância pode ajudar a solucionar a base
genética das características sobre a herança e padrões de dominância da tolerância ao sal
(SINGH e CHATRATH, 2001).
38
3. REFERÊNCIAS BIBLIOGRÁFICAS
AGASTIAN, P.; KINGSLEY, S. J.; VIVEKANADAN, M. Effect of salinity on
photosynthesis and biochemical characteristics in mulberry genotypes, Photosynthetica, v. 38,
n.2, p. 287-290, 2000.
ALVES, R. E. et al. Produção de Fruteiras Nativas, Fortaleza: Instituto Frutal, 2005. 213p.
ANDRADE LIMA, D. Plantas das Caatingas. Rio de Janeiro: Academia Brasileira de
Ciências, 1989. 243p.
ANGELOCCI, L. R. Agua na planta e trocas gasosas / energéticas com a atmosfera:
introdução ao tratamento biofísico. Piracicaba: L.R. Angelocci, 2002. 272p.
ARAUJO, F. P. e CASTRO NETO, M. T. Influência de fatores fisiológicos de plantas-
matrizes e de épocas do ano no pegamento de diferentes métodos de enxertia do umbuzeiro.
Revista Brasileira de Fruticultura, Jaboticabal. v.24, n.3, p.752-755, 2002.
ARAÚJO, F. P. e SANTOS, C. A. F. Umbuzeiro dá vida a outras plantas e amplia alternativas
para o Semi-Árido. EMBRAPA Semi-Árido, Petrolina-PE. 2000. Disponível em
http://www.cpatsa.embrapa.br/artigos/umbu.html. Acesso em 08 mar. 2003.
ARAÚJO, F. P. et al. Enriquecimento da caatinga com clones de umbuzeiro (Spondias
tuberosa Arr.) selecionados para maior tamanho do fruto. EMBRAPA Semi-Árido, Petrolina-
PE. Disponível em: http://www.aguadechuva.hpg.ig.com.br/3simposio/pdf/037-2001.pdf.
Acesso em 08 jul. 2004.
ARAÚJO FILHO, J.B.; GHEYI, H.R.; AZEVEDO, N.C. Tolerância da bananeira à salinidade
em fase inicial de desenvolvimento. Pesquisa Agropecuária Brasileira, Brasília, v.30, n.7,
p.989-997, jul. 1995.
ASHRAF, M.; FOOLAD, M. R. Roles to glycine betaíne and proline in improving plant
abiotic stress resistance. Environmental and Experimental Botany, v. 59, p. 206-216, 2007.
39
ASHRAF, M.; HARRIS, P. J. C. Potential biochemical indicators of salinity tolerance in
plants.2004. Plant Science, v.166, 3-16.
AZEVEDO NETO, A. D. Aspectos fisiológicos e bioquímicos do estresse salino em plantas
de milho. Tese (Doutorado) em Bioquímica - Universidade Federal do Ceará. Fortaleza: 2005.
149f.
AZEVEDO NETO, A.D. et al. Effects of salto n plant growth, stomatal response and solute
accumulation of different maize genotypes, Brazilian Journal of Plant Physiology, v. 16,
n.1, p.31-38, 2004.
BARBOSA, D. C A.; NOGUEIRA, R. J. M. C.; MELO FILHO, P. A. Comparative studies of
growth in three especies of “caatinga” submitted to water stress. Phyton, Vicente Lopez,
v.69, p.45-50, 2000.
BARBOSA, D. C. A.; PRADO, M. C. G. Quantitative analysis of the growth of Parkinsonia
aculeata L. In a grenhouse. Phyton, Vicente López, v.52, p.17-26, 1991.
BEGG, J.E.; TURNER, N.C. Crop water deficits. Advance in Agronomy, New York, v. 28,
p. 161-217, 1976.
BEZERRA NETO, E.; NOGUEIRA, R. J. M. C. Estudo comparativo do crescimento de
plantas de tomate e milho sob condições de salinidade. Brazilian Archives of Biology and
Technology, Curitiba, v. 42, n. 4, p. 471-475, 1999.
BINZEL, M. L. et al. Intercellular compartimentation of ions in salt adapted tobacco cells.
Plant Physiology, v. 86, p.607-614, 1988.
BLAYLOCK, A. D. Soil salinity, salt tolerance, and growth potential of horticultural and
landscape plants. University of Wyoming. Cooperative Extension Service. Bull 988,
February, 1994.
BOHNERT, H. J., SHEN, B. Transformation and compatible solutes. Science Horticulture,
v. 78, p. 237-260, 1999.
40
BOSABALIDIS, A. M.; KOFIDIS, G. Comparative effects of drought stress on leaf anatomy
of two olive cultivars. Plant Science, v. 163, p.375-379, 2002.
BOTTI, C. et al. Morphological and anatomical characterization of six jojoba clones at saline
and non-saline sites. Industrial Crops and Products, v. 9, p.53-62, 1998.
BRAY, E. A.; BAILEY-SERRES, J.; WERETILNYK, E. Responses to abiotic stresses. In:
Buchana B. B.; Gruissem, W.; Jones, R. L. (eds.), Biochemistry and Molecular Biology of
Plants, pp. 1158-1203, ASPP, Rockville, 2000.
CAIRO, P. A. R. Curso Básico de Relações Hídricas de Plantas. Vitória da Conquista:
Universidade Estadual da Bahia, 1995. 32p.
CAVALCANTE, L. F. et al. Desenvolvimento inicial da gravioleira sob fontes e níveis de
salinidade da água. Revista Brasileira de Fruticultura, v. 23, n.2, p. 455-459, 2001.
CAVALCANTI, N. B., RESENDE, G. M., BRITO, L. T. L. Desenvolvimento do imbuzeiro
(Spondias tuberosa Arr. Cam.) na região semi-árida do Nordeste brasileiro. Comunicação.
Revista Ciência e Agrotecnologia, v.23, n.1, p.212-213, 1999.
CAVALCANTI, N. B.; RESENDE, G. M.; BRITO, L. T. L. Emergência e crescimento do
imbuzeiro (Spondias tuberosa Arr. Cam.) em diferentes substratos. Revista Ceres, Viçosa,
v.49, n.282, p.97-108, 2002.
CHARTZOULAKIS, K.; PATAKAS, A.; BOSABALIDIS, A. M. Changes in water relations,
photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars.
Environmental and Experimental Botany, v. 42, p. 113-120, 1999.
CHARTZOULAKIS, K. et al. Water stress affects leaf anatomy, gas exchange, water
relations and growth of two avocado cultivars. Scientia Horticulturae, v. 95, p. 39-50,
2002a.
CHARTZOULAKIS, K. et al. Effect of NaCl salinity on growth, íon content and CO
2
assimilation of six olive cultivars. Scientia Horticulturae, v.96, p.235-247, 2002b.
41
CODEVASF. Centro Frutícola: programa fruticultura, relatório das fases produtivas.
Disponível:www.codevasf.gov.br/fruticultura. Acesso em: 08 ago. 2005.
COSTA, P. H. A. et al. Crescimento e níveis de solutos orgânicos e inorgânicos em cultivares
de Vigna ungüiculada submetidos à salinidade. Revista Brasileira de Botânica, v.26, n.3,
p.289-97, 2003.
CRUZ, J. L. et al. Produção e partição de matéria seca e abertura estomática do limoeiro
‘cravo’ submetido a estresse salino. Revista Brasileira de Fruticultura, v. 25, n. 3, p. 528-
531, 2003.
DAMATTA, F. M. et al. Drought tolerance of two field-grown clones of Coffea canephora,
Plant Science, v. 164, p. 111-117, 2003.
DELAUNEY, A. J.; VERMA, D. P. S. Proline biosíntesis and osmorregulation in plants. The
Plant Journal, v. 4, p. 215-223, 1993.
DRUMOND, M. A., NASCIMENTO, C. E., MORGADO, L. B. Desenvolvimento inicial do
umbuzeiro (Spondias tuberosa Arruda) no semi-árido pernambucano. Disponível em:
http://www.aguadechuva.hpg.ig.com.br/3simposio/pdf/055-2001.pdf. Acesso em 08 jul. 2003.
EMBRAPA. Banco de Notícias: Mini fábricas de processamento de umbu multiplica renda de
produtores no semi-árido baiano. Publicado em 20/01/2003. Disponível em
<http://www.embrapa.br:8080/>. Acesso em 08 mai. 2003.
EMBRAPA. A expansão da fruticultura no Nordeste do Brasil. Disponível em :
<http://www.embrapa.br/embrapa/uc/acs/emb30anos/fruticultura.html.> Acesso em 20 out,
2004.
EPSTEIN, L. A riqueza do umbuzeiro. Comunicações Revista Bahia Agrícola. v.2, n.3.,
p.31-34, 1998.
42
FAO- FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS.
Extent and Causes of Salt-affected Soils in Participating Countries. Disponível em:
http://www.fao.org/ag/agl/agll/spush/topic2.htm. Acesso em 08 jul. 2006.
FAGERIA, N. K.; BALIGAR, V. C.; CLARK, R. B. Physiology of crop production. New
York: The Haworth Press Inc.1984. 345p.
FERREIRA, J. A. Umbujeiro. Disponível em: http://www.portalcoite.hpg.ig.com.br/imagens/.
Acesso em 11 abr. 2003.
FERREIRA, et al. Frutíferas. In: SAMPAIO, E. V. S. B. et al. Espécies da Flora Nordestina
de Importância Econômica Potencial. Recife: Associação Plantas do Nordeste, 2005. 331p.
FERRI, M. G. Water balance of plants from the caatinga. I. Transpiration of some of the most
frequent species of caatinga of Paulo Afonso (Bahia) in the searen. Revista Brasileira de
Biologia, v.12, n.3, p.301-312, 1953a.
FERRI, M. G. Water balance of plants from the caatinga. II. Further information on
transpiration and stomatal behavior. Revista Brasileira de Biologia, v.3, n.3, p.237-244,
1953b.
FRANK, P. J.; DRAKE, P. L.; FROEND, R. H. Anisohydric but isohydrodynamic: seasonally
constant plant water potential gradient explained by a stomatal control mechanism
incorporating variable plant hydraulic conductance. Plant, Cell and Environment, v. 30, p.
19-30, 2007.
GHEYI, H.; FAGERIA, N. K. Efeito dos sais sobre as plantas. In: Manejo e controle da
salinidade na agricultura irrigada. Campina Grande: UFPB, p.125-131,1997.
GINDABA, J.; ROZANOV, A.; NEGASH, L. Photosynthetic gas exchange, growth and
biomass allocation of two Eucalyptus and indigenous tree species of Ethiopia under moisture
deficit, Forest Ecology and Management, v. 205, p.127-138, 2005.
43
GOMES, M. M. A. et al. Interactions between leaf water potential, stomatal conductance and
abscisic acid contento f orange trees submitted to drought stress.Brazilian Journal of Plant
Physiology, v. 16, n.3, p.155-161, 2004.
GONZÁLES-RODRIGUEZ et al. Physiological responses of tagasaste to a progressive
drought in its native environment on the Canary Island. Environmental and Experimental
Botany, v.53, p.195-204, 2005.
HARE, P. D.; CRESS, W. A. Metabolic implications of stress-induced proline accumulation
in plants. Plant Growth Regulation, v. 21, p. 79-102, 1997.
HARE, P. D., CRESS, W. A.; VAN STADEN, J. Dissecting the roles of osmolyte
accumulation during stress. Plant, Cell and Environment, v. 21, p. 535-553, 1998.
HONG-BO, S. et al. Investigation of the relationship of proline with wheat anti-drought under
soil water deficits. Colloids and Surfaces B: Biointerfaces, v.53, p. 113-119, 2006a.
HONG-BO, S.; SONG-SUO, L.; MING-AN, S. Osmotic regulation of 10 wheat (Triticum
aestivum L.) genotypes at soil water deficits. Colloids and Surfaces B: Biointerfaces, v. 47,
p.132-139, 2006b.
HOPKINS, W. Introduction to Plant Physiology, New York: John Wiley & Sons, Inc.,
1995. 464p.
IBGE- Instituto Brasileiro de Geografia e Estatística. Produção da Extração Vegetal e da
Silvicultura 2001. Disponível em http://www.ibge.net/home/estatistica/economia. Acesso
em 08 mai. 2007.
INMAN-BAMBER, N. G.; SMITH, D. M. Water relations in sugarcane and response to water
deficits, Field Crops Research, v. 92, p.185-202, 2005.
KNIPP, G.; HONERMEIER, B. Effect of water stress on proline accumulation of genetically
modified potatoes (Solanum tuberosun L.) generating fructans. Journal of Plant Physiology,
v. 163, p. 392-397, 2006.
44
KRIEG, D. R. Stress tolerance mechanisms in above ground organs. In: Proceedings of the
workshop on adaptation of plants to soil stress. Nebrasca, INTSORMIL, 1993, p.65-79.
LACERDA, C. F. et al. A.Osmotic adjustment in roots and leaves of two sorghum genotypes
under NaCl stress. Brazilian Journal of Plant Physiology, v. 15, n.2, p. 113-118, 2003.
LACERDA, C. F. et al. Proline accumulation in sorghum leaves is enhanced by salt-induced
tissue dehydration. Revista Ciência Agronômica, v.37, n.1, p.110-112, 2006.
LARCHER, W. Ecofisiologia Vegetal. São Carlos: RIMA, 2000. 531p.
LIMA FILHO, J. M. P. Internal water relations of umbu tree under semi-arid conditions.
Revista Brasileira de Fruticultura, Jabuticabal, v.23, n.3, p.518-521, 2001.
LIMA FILHO, J. M. P. Modernidade no cultivo do umbuzeiro. EMBRAPA Semi-árido.
Disponível em: http://www.cpatsa.embrapa.br/artigos/inducaoimbu.html - Acesso em 08 mar.
2003.
LIMA FILHO, J. M. P. Gas exchange of the umbu tree under semi-arid conditions. Revista
Brasileira de Fruticultura, v. 26, n. 2, p. 206-208, 2004.
LIMA FILHO, J. M. P.; DRUMOND, M. A..; MACENO, D. S. Comportamento fisiológico
da leucena e albizia sob condições semi-áridas. Pesquisa Agropecuária Brasileira, Brasília,
n. 27, v. 4, p.537-542, 1992.
LIMA FILHO, J.M.P. et al. Indução floral do umbuzeiro. In: CONGRESSO BRASILEIRO
DE FISIOLOGIA VEGETAL, 8, 2001, Ilhéus. Resumos...Sociedade Brasileira de Fisiologia
Vegetal, 2001. p. 111.
LIMA FILHO, J. M. P.; SILVA, C. M. M. S. Aspectos fisiológicos do umbuzeiro. Pesquisa
Agropecuária Brasileira, Brasília, v.23, n.3, p.1091-1094, 1988.
LORENZI, H. Árvores Brasileiras. Manual de Identificação e Cultivo de Plantas
Arbóreas do Brasil. 2. ed., v.1, São Paulo: Plantarum, 1998. p.45.
45
LORETO, F.; CENTRITTO, M.; CHARTZOULAKIS, K. Photosynthetic limitations in olive
cultivars with different sensitivity to salt stress. Plant, Cell and Environment, v. 26, p. 595-
601, 2003.
MAIA, G. N. Caatinga: árvores e arbustos e suas utilidades, 1ed., São Paulo:D&Z
Computação Gráfica e Editora, 2004.
MANSUR, R. J. C. N.; BARBOSA, D. C. A.. Comportamento fisiológico em plantas jovens
de quatro espécies lenhosas da caatinga submetidas a dois ciclos de estresse hídrico. Phyton,
Vicente Lopéz, v.68, p.97-106, 2000.
MARSCHNER, H. Mineral nutrition of high plants. London: Academic Press. 1990. 674p.
MARTINEZ, C. A., MORENO, U. Expresiones fisiologicas de resistencia a la sequia en dos
variedades de papa sometidas a estress hidrico en condiciones de campo. Revista Brasileira
de Fisiologia Vegetal, Londrina, v.4, n.1, p.33-38, 1992.
MARUR, C. J.; SODEK, L.; MAGALHÃES, A. C. Free amino acids in leaves of cotton
plants under water deficit. Revista Brasileira de Fisiologia Vegetal, Londrina, v.6, n.2,
p.103-108, 1994.
MASSAI, R.; REMORINI, D.; TATTINI, M. Gas exchangae, water relations and osmotic
adjustment in two scion/rootstock combinations of Prunus under various salinity
concentrations. Plant and Soil, v. 259, p. 153-162, 2004.
MATTOS, E.A. Trocas gasosas em folhas de três espécies arbóreas do cerradão da
Fazenda Canchim, São Carlos (SP): a disponibilidade hídrica durante a estiagem de
inverno limita a abertura estomática?.1992. 156f. Dissertação (Mestrado em Ecologia e
Recursos Naturais) –Universidade Federal de São Carlos, São Carlos, 1992.
MELONI, D. A.; MARTINEZ, C. A. Ajustamento osmótico em plantas de algodoeiro cv.
Guazuncho e Porá submetidas a estresse salino. In: VII Congresso Brasileiro de Fisiologia
Vegetal. Resumos. Revista Brasileira de Fisiologia Vegetal, v.11(supl.), 1999.
46
MENDES, B.V. Alternativas tecnológicas para a agropecuária do semi-árido. 2ed. São
Paulo: Nobel, 1986,171p.
MENGEL, K.; KIRKBY, E. A. Principles of plant nutrition. Bern: Internacional potash
Institute,1987, 687p.
MUNNS, R. Physiological processes limiting plant growth in saline soils: some dogmas and
hypotheses, Plant, Cell and Environment, v.16, p. 15-24, 1993.
MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell and Environment,
v. 25, p. 239-250, 2002.
MUNNS, R. Genes and salt tolerance: bringing them together. New Phytologist, v. 167, p.
645-663, 2005.
NATALE, W. et al. Adubação nitrogenada na cultura da goiabeira. Revista Brasileira de
Fruticultura, Cruz das Almas, v.17, n.2, p.7-15, ago. 1995.
NEVES, O. S. C; CARVALHO, J. G.; RODRIGUES, C. R. Crescimento e nutrição mineral
de mudas de umbuzeiro (Spondias tuberosa Arr. Cam.) submetidas e níveis de salinidade em
solução nutritiva, Revista Brasileira de Fruticultura, v. 24, n.3, p. 752-755, 2004.
NOGUEIRA, R. J. M. C.; ALOUFA, M. A. I.; ALBUQUERQUE, M. B. Stomatic behaviour
and leaf water potential in Young plants of Annona squamosa submitted to saline stress.
Fruits, v.59, n.3, 2004.
NOGUEIRA, R. J. M. C; BARBOSA, D. C. A.; MORAES, J. A. P. V. 1998a.Trocas gasosas
e relações hídricas em plantas jovens envasadas de três espécies da caatinga, submetidas a
deficiência de água. Phyton, Vicente Lopéz, v.62, n.1\2, p.37-46. 1998a.
NOGUEIRA, R. J. M. C.; BURITY, H. A.; MORAES, J. A. P. V. Transpiração e potencial
hídrico foliar em aceroleiras (Malpighia emarginata D.C.) cultivadas na zona semi-árida de
Pernambuco. Revista Ciência Rural, v.3, n.2 p. 75-81. 1998b.
47
NOGUEIRA, R. J. M. C. et al. Comportamento fisiológico de duas cultivares de amendoim
submetidas a diferentes regimes hídricos. Pesquisa Agropecuária Brasileira. Brasília, v.33,
n.12, p. 1963-1969, dez. 1998c.
NOGUEIRA, R. J. M. C.; MELO FILHO, P. A.; SANTOS, R. C. Curso diário do potencial
hídrico foliar em cinco espécies lenhosas da caatinga. Revista Ecossistema, v. 23, p.73-77,
1999.
NOGUEIRA, R. J. M. C. et al. Alterações na resistência à difusão de vapor das folhas e
relações hídricas em aceroleiras submetidas a déficit de água. Revista Brasileira de
Fisiologia Vegetal, Londrina, v. 13, n.1, p. 75-87, 2001.
NOGUEIRA, R. J. M. C.; SILVA, E. C. Comportamento estomático em plantas jovens de
Schinopsis brasiliensis Engl. cultivadas sob estresse hídrico.Iheringia, Série Botânica, Porto
Alegre, v. 57, n. 1, p.31-38. 2002.
NOGUEIRA, R. J. M. C.et al. Comportamento estomático e potencial da água da folha em
amendoim cv. BRS 151-L7 submetido a estresse hídrico. Revista Brasileira de Oleaginosas
e Fibrosas, v. 10, n. ½, p. 985-991, 2006.
OLIVEIRA, F. A.; CAMPOS, T. G.; OLIVEIRA, B. C. Efeito de substratos salinizados na
germinação, vigor e no desenvolvimento do algodoeiro herbáceo. Revista Engenharia
Agrícola, Jaboticabal, v.18, n.2, p.1-10, dez.,1998.
OLIVEIRA, V. R., RESENDE, M. E. V., NASCIMENTO, C. E. S., DRUMOND, M. A.,
SANTOS, C. A. F. Genetic variability of provenances and progênies of umbu tree by mixed
linear model methodology (REML/BLUP). Revista Brasileira de Fruticultura, v.26, p.53-
56, 2004.
PAGTER, M.; BRAGATO, C.; BRIX, H. Tolerance and physiological responses of
Phragmites australis to water deficit. Aquatic botany, v. 81, p.285-299, 2005.
PARÉS-MARTÍNEZ, J. et al. Características de los estomas, densidad e índice estomático y
su variación en función a la injertación en Annona muricata L. y A. Montana Madfac.
Bioagro, v.16, n.3, p. 213-218, 2004.
48
PARIDA, A. K.; DAS, A. B. Salt tolerance and salinity effects on plants: a review.
Ecotoxicology and Environmental Saafey, v. 60, p. 324-349, 2005.
PATAKAS, A.; NOITSAKIS, B.; CHOUZOURI, A. Optimization of irrigation water use in
grapevines using the relationship between transpiration and plant water status. Agricultura
Ecosystems and Environment, v.106, p. 253-259, 2005.
PLANETA ORGÂNICO. Fruticultura: um mercado estratégico para a produção
agroecológica no Brasil. Disponível em: http://www.planetaorganico.com.br/fruticultura.htm.
Acesso em 20 out. 2004.
PRADO, C. H. B. A. et al. Seasonal leaf gas exchange and water potential in a woody cerrado
species community. Brazilian Journal of Plant Physiology, v. 16, n.1, p.7-16, 2004.
PRISCO, J.T. Alguns aspectos da fisiologia do “stress” salino. Revista Brasileira de
Botânica, São Paulo, v.3, p.85-94, 1980.
QUEZADA, R. A. P.; ONTIVEROS, J. L. R.; HERNÁNDEZ, V. A. G. Transpiracion,
potencial hídrico y prolina em zarzamora bajo deficit hídrico. Terra, v. 17, n.2, p.125-130,
1999.
RABE, E. Stree physiology: the functional significance of the accumulation of nitrogen-
containing compounds. Journal of Horticultural Science, v. 65, n.3, p.231-243, 1990.
ROBINSON, M. F. et al. How can stomata contribute to salt tolerance? Annals of Botany,
v.80, p. 387-393, 1997.
RELATÓRIO EXECUTIVO DE ACOMPANHAMENTO. PPA 3666 Inovação
Tecnológica para a Fruticultura Irrigada no Semi-Árido Nordestino. Subprojeto
17.1999.131.01. Disponível em: 200.252.165.21/sarc/profruta/
doc/frutas/frut/17199913303.pdf Acesso em: 20 jul 2004.
SADRAS, V. O.; MILROY, S. P. Soil-water thresholds for the responses of leaf expansion
and gas exchange: a review. Field Crop Research, v. 47, p.253-266, 1996.
49
SAIRAN, R. K.; TYAGI, A. Physiology and molecular biology of salinity stress tolerance in
plants. Current Science, v. 86, n.3, p. 407-421, 2004.
SAMPAIO, E. V. S. B. et al. Regeneração da vegetação de caatinga após corte e queima em
Serra Talhada, PE. Pesquisa Agropecuária Brasileira, Brasília, v.33, n.5, p.621-632, 1998.
SÁNCHEZ, F. J. et al. Turgor maintenance, osmotic adjustament and soluble sugar and
proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, v.
59, p. 225-235, 1998.
SANTIAGO, E. J. A. et al. Aspectos da anatomia foliar da pimenta-longa (Piper
hispidinervium C. DC.) sob diferentes condições de luminosidade. Revista Ciência e
Agrotecnologia, Lavras, v. 25, n. 5, p. 1035-1042, 2001.
SANTOS, A. V. P., GRISI, B. M. Anatomia foliar ecológica de algumas plantas da caatinga.
Revista Brasileira de Biologia, Rio de Janeiro, v. 36, n.4, p.773-787, 1976.
SANTOS, C. A. F., NASCIMENTO, C. E. S., CAMPOS, C. O. Preservação da variabilidade
genética e melhoramento do umbuzeiro. Revista Brasileira de Fruticultura, Jaboticabal, v.
21, n.2, p.104-109, 1999a.
SANTOS, C. A. F., NASCIMENTO, C. E. S., OLIVEIRA, M. C. Recursos genéticos do
umbuzeiro: preservação, utilização e abordagem metodológica. In: QUEIRÓZ, M. A.,
GOEDERT, C. O., RAMOS, S. R. R. ed. Recursos genéticos e melhoramento de plantas do
Nordeste brasileiro (on-line). Versão 1.0. Petrolina-PE. EMBRAPA Semi-Árido/Brasília-DF:
Embrapa Recursos Genéticos e Biotecnologia. Nov, 1999b. Disponível em:
http://www.cpatsa.embrapa.br/livrorg/umbuzeiro.doc. Acesso em 24 ago. 2003.
SARKER, B.; HARA, M.; UEMURA, M. Proline synthesis, physiological responses and
biomass yield of eggplants during and after repetitive soil moisture stress. Scientia
Horticulturae, v. 103, p.387-402, 2005.
SAYED, O. H. Adaptational responses of Zygophyllum qatarense Hadidi to stress conditions
in a desert environment, Journal of Arid Enviroments, v. 52, n.32, p. 445-452, 1996.
50
SERRAJ, R.; SINCLAIR, T. R. Osmolyte accumulation: can it really help increase crop yield
under drought conditions? Plant, Cell and Environent, v.25, p.333-341. 2002.
SHAINBERG, I. Salinity soils effects of salinity on the physics and chemistry of soils. In:
PELLJAKOFF-MAYBER, A.; GALE, J. (Eds), Plant in Saline Environments, New York:
Springer-Verlag, 1975, 213p.
SHULTZ, H. R. Differences in hydraulic architecture account for near-isohydric and
anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant,
Cell and Environment, v. 26, p. 1393-1405. 2003.
SILVA, E. C.; NOGUEIRA, R. J. M. C. Crescimento de quatro espécies lenhosas cultivadas
sob estresse hídrico em casa de vegetação. Revista Ceres, v. 50, v. 288, p. 203-217, 2003a.
SILVA, E. C. et al. Comportamento estomático e potencial da água da folha em três espécies
lenhosas cultivadas sob estresse hídrico. Acta Botânica Brasílica, v. 17, n.2, p. 231-246,
2003b.
SILVA, E. C. et al. Aspectos ecofisiológicos de dez espécies em uma área de caatinga no
município de Cabaceiras, Paraíba, Brasil. Iheríngia, Série Botânica, v. 59, n.2, p.201-205,
2004a.
SILVA, E. C.; NOGUEIRA, R. J. M., SANTOS, E. A. – Comportamento estomático e
potencial da água da folha em mudas enxertadas de quatro acessos de umbuzeiro cultivados
sob estresse hídrico. In: Reuinão Nordestina de Botânica, 27. 2004. Anais... Petrolina:
Sociedade Botânica do Brasil, 2004b. CD-ROOM.
SILVA, E. C. et al. Influência do estresse hídrico no comportamento estomático de mudas de
três acessos de umbuzeiro. In: X Congresso Brasileiro de Fisiologia Vegetal e XII Congresso
Latino Americano de Fisiologia Vegetal, 2005, Recife. Anais.... Recife : Universidade
Federal Rural de Pernambuco, 2005. v. único.
51
SILVA, E. C. et al. Trocas gasosas em quatro acessos de umbuzeiro no início da estação seca,
Petrolina, PE. In: XIX Congresso Brasileiro de Fruticultura, 2006b, Cabo Frio. Frutas do
Brasil: Saúde para o mundo, 2006a. v. único. p. 334.
SILVA, E. C. et al.. Fisioanatomia estomática de quatro acessos de umbuzeiro. In: XXIX
Reunião Nordestina de Botânica, 2006b, Mossoró. Anais.... Mossoró : UERN. CDRoom.
SILVA, J. V. et al. Crescimento e osmorregulação em dois genótipos de sorgo submetido a
estresse salino. Revista Ciência Agronômica, v. 34, n.2, p.125-131, 2003a.
SILVA, J. V. et al. Physiological responses of NaCl stressed cowpea plants grown in nutrient
solution supplemented with CaCl
2
. Brazilian Journal of Plant Physiology, v. 15, n.2, p.99-
105, 2003b.
SILVEIRA, J. A. G. et al. Proline accumulation and glutamine synthetase activity are
increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology, v.160,
n. 2, p.115-123, 2003.
SINGH, K. N.; CHATRATH, R. Salinity tolerance. In: Reynolds, M.P., J.I. Ortiz-
Monasterio, and A. McNab (eds.). 2001. Application of Physiology in Wheat Breeding.
Mexico, D.F.: CIMMYT. p.101-110.
SIRCELJ. H. et al. Biochemical responses in leaves of two apple tree cultivars subjected to
progressing drought. Journal of Plant Physiology, v. 162, p. 1308-1318, 2005.
SORIANO, A. Ecofisiologia del stress en las plantas. Revista de la Facultad de Agronomia,
n.1, p.1-12, 1980.
SOUZA, S. R., Efeito da salinidade e da relação N/K, em solução sobre o crescimento e
composição de duas cultivares de batata doce. 1994. 84f. Dissertação (Mestrado) -
Universidade Federal Rural de Pernambuco, Recife, 1994.
SOUZA, C. R. et al. Control of stomatal aperture and carbon uptake by deficit irrigation in
two grapevine cultivars, Agriculture Ecosystems and Environment, v. 106, p. 261-274,
2005.
52
TAIZ, L.; ZEIGER, E. Plant Physiology. 3ed., Massachusetts: Sinauer Associates, 2002,
690p.
TARDIEU F.; SIMONNEAU, T. Variability among species of stomatal control under
fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric
behaviours. Journal of Esperimental Botany, v.49, p. 419-432, 1998.
TÁVORA, F. J. F.; FERREIRA, R. G.; HERNANDEZ, F. F. F.; Crescimento e relações
hídricas em plantas de goiabeira submetidas a estresse salino com NaCl. Revista Brasileira
de Fruticultura, Jaboticabal, v.23 , n.2 ,p.39-46, 2001.
VALLIYODAN, B.; NGUYEN, H. T. Understanding regulatory networks and engineering
for enhaced drought tolerance in plants. Current Opinion in Plant Biology, v. 9, p.1-7,
2006.
VIÉGAS, R. A. et al. Effects of NaCl-salinity on growth and inorganic solute accumulation in
young cashew plants. Revista Brasileira de Engenharia Agricola e Ambiental, Campina
Grande, v.5, n.2., p. 216-222, 2001
VIÉGAS, R. A. et al. Plant growth, accumulation and solute partitining of four Forest species
under salt stress. Revista Brasileira de Engenharia Agrícola e Ambiental, v.7, n. 2, p.258-
262, 2003.
VIÉGAS, R. A.; SILVEIRA, J. A. G. Ammonia assimilation and proline accumulation in
young cashew plants during long term exposure to NaCl-salinity, Revista Brasileira de
Fisiologia Vegetal, v. 11, n.3, p.153-159, 1999.
WHITEMORE, J. Saline and sodic soils. Logan, USA, 1975 7 p. Mimeografado.
53
Capítulo 1
Physio-anatomical changes induced by intermittent drought in
four umbu tree genotypes
Abstract
1. Introduction
2. Material and methods
2.1 Plant material, growth and experimental design
2.2 Transpiration and diffusive resistance
2.3 Soil moisture
2.4 Stomatal density, stomatal index, stomatal aperture size and proportions between
tissues
2.5 Statistical analysis
3. Results
4. Discussion
5. Conclusions
6. Acknowledgments
7. References
Cópia do Manuscrito enviado para publicação na Revista Environmental and Experimental
Botany. O texto está formatado de acordo com as normas da revista, com exceção das figuras
e tabelas que foram inseridas no corpo do trabalho.
54
Physio-anatomical changes induced by intermittent drought in four umbu
tree genotypes
*
Elizamar Ciríaco da Silva
a†
, Rejane Jurema Mansur Custódio Nogueira
ab
, Fernando
Henrique de Aguiar Vale
c
, Francisco Pinheiro de Araújo
d
, Mariana Antunes Pimenta
c
.
a
Laboratório de Fisiologia Vegetal,Universidade Federal Rural de Pernambuco, 52171-030, Recife,
Pernambuco, Brazil
a,b
Departamento de Biologia, Universidade Federal Rural de Pernambuco, 52171-030, Recife, Pernambuco,
Brazil
c
Departamento de Biologia, Universidade Federal de Minas Gerais, 31270-90, Pampulha, Minas Gerais,,
Brazil
d
Embrapa Semi-Árido, P. O. Box 23, 56300-970, Petrolina, PE, Brazil.
Abstract
Transpiration (E), diffusive resistance (r
s
) and anatomical parameters were measured in
plants of four grafted umbu tree genotypes (GBUs 44, 48, 50 and 68) in order to evaluate
alterations induced by intermittent drought and possible genotypic variations. Transpiration
measurements were taken daily until stomatal closure by withholding water as well as when
the plants were re-watered and the watering interrupted again, repeating this cycle for a
period of 31 days (stress period). The control plants were also irrigated daily. Regularity in
the stomatal closure was observed throughout the watering period, exhibiting intra-specific
differences. Stomatal behavior of GBU 44 and GBU 68 were influenced by air temperature
(T
air
) and vapor pressure deficit (VPD), whereas GBU 50 was influenced by
photosynthetically active radiation (PAR). GBU 48 had no correlation with these
environmental factors, suggesting the water exerted the major influence on this genotype.
*
Part of the doctorate thesis of the first author
Corresponding author: Tel: +55 81 33206352; +55 81 99988420; fax: +55 81 33206300.
E-mail address: elizaciriaco@gmail.com
55
Anatomical alterations in response to drought were observed in stomatal density (SD),
reductions in the stomatal index (SI) and stomatal aperture size (SA). The anatomical
features of the GBU 48 genotype remained unaltered. There was an inversion in tissue
proportion in GBU 44 under stress conditions, reducing the spongy parenchyma thickness
and increasing palisade parenchyma. The inverse occurred with GBU 68, while the
remaining genotypes were unaltered. These results suggest that there are physiological and
anatomical differences between genotypes, as evident in the different responses to
intermittent drought.
Key words: diffusive resistance; Spondias tuberosa, stomatal density; transpiration; water
deficit
1. Introduction
Water deficit is known to alter physiological processes as well as induce
morphological and anatomical changes in many plant species. These changes mainly occur
in gas exchange, which influences the photosynthetic process and synthesis of organic
solutes (Chartzoulakis et al., 2002). Changes also occur in all histological components of the
leaf (Bosabalidis and Kofidis, 2002).
Plants grown in arid and semi-arid environments are exposed to long periods of water
deficit and have developed adaptations in order to tolerate drought. The reduction in
photosynthetic rate associated with stomatal closure due to changes in leaf water status is
commonly observed in plants grown under water deficit conditions (Chartzoulakis et al.,
1999; Nogueira et al., 2001; Silva et al., 2003). As water availability in the soil decreases,
the transpiration rate also decreases as a result of stomatal closure. The instantaneous control
of the transpiration stream by the stomata is an important defense mechanism used by many
56
species living in arid environments in order to avoid excessive water loss by transpiration
(Gucci et al., 1996; Nogueira et al., 1998; Silva et al., 2004) and eventual death by
desiccation (Silva et al., 2000).
Although water is the determinant factor in the stomatal aperture mechanism in
plants under water deficit, several authors have demonstrated the influence of environmental
factors on stomatal behavior in a number of species, such as air temperature (Silva et al.,
2003), light and vapor pressure deficit (Gucci et al., 1996; Thomas and Eamus, 2002; Gomes
et al., 2004).
Environmental stress can result in both physiological and anatomical changes in the
leaf (Mott and Michaelson, 1991). Changes in the anatomical characteristics of the leaf are
known to alter the diffusion of CO
2
conductance from the substomatal cavities to
carboxylation sites and thus contribute toward the maintenance of photosynthetic rates
despite the low stomatal conductance (Evans et al., 1994, cited by Chartzoulakis et al.,
1999). Under water deficit conditions, an increase in stomata density and the number of
smaller-sized mesophyll cells of all histological components of the leaf have been observed,
which result in improved control of water loss (Bosabalidis and Kofidis, 2002; Chartzoulakis
et al., 2002).
The umbu tree (Spondias tuberosa Arruda.) is a xerophytic tree belonging to the
Anacardiaceae that produces edible fruit for humans and animals alike. It is native from the
dry lands of northeastern Brazil known as the Caatinga and represents a source income for
small farmers. The significant fruit production and use can contribute greatly to regional
development in semi-arid areas (Cavalcanti et al., 1999). Due to the considerable variability
in shape, canopy architecture, productivity, and physiochemical characteristics of the fruit,
the Brazilian Institute of Agricultural Research for the Semi-arid Tropics (Embrapa-
CPATSA) has implanted an active germplasm bank on umbu trees (GBU) formed by 78
genotypes (Oliveira et al., 2004). The GBU 44, 48, 50 and 68 genotypes are characterized as
57
giant umbu, as mean weights of their fruit are 86.7g, 75.30 g, 85.0 g and 96.7 g, respectively
(Santos et al., 1999). More than 40,000 GBU 48 seedlings have been distributed to small
farmers in the semi-arid region. Four Observation Units have been implanted using this
genotype. Two are located in the city of Floresta, Pernambuco, Brazil and another two are
located in Caicó, Rio Grande do Norte, Brazil.
Only a few studies have addresses the physiological and anatomical alterations in the
umbu genotypes in response to water deficit. According to Lima Filho (2004), field
observations have demonstrated that umbu trees limit water loss by transpiration through
strict stomatal control, thereby assuring adequate water economy. The present study was
carried out to test the hypothesis that the ability to overcome drought differs between the
genotypes and physiological alterations may be explained by anatomical changes. Thus, the
objective was to assess alterations in water vapor gas exchange and anatomical changes
induced by intermittent drought in four umbu tree genotypes.
2. Material and methods
2.1Plant material, growth and experimental design:
Research was carried out in greenhouse conditions at the Laboratory of Plant
Physiology of the Universidade Federal Rural de Pernambuco (UFRPE), Brazil, from
November to December 2005. Six-month-old grafted umbu tree seedlings (Spondias
tuberosa Arruda) were provided by Embrapa Semi-Árido (CPATSA), Petrolina,
Pernambuco, Brazil. The plants were grown in containers with 8 kg of Argisoil provided by
the same company, with loan-sandy texture, 71% sand, 17% clay, 12% silt and a global
density of 1.51 g cm
-3
; 9.97% humidity in field capacity (-33 kPa) and 4.01% at the
permanent wilting point (-1500 kPa). The soil chemical analysis was performed at the
Laboratory of Soil Fertility (UFRPE). The soil contained 41 mg dm
-3
of P, 0.20 cmol
c
dm
-3
58
of Na
+
, 0.33 cmol
c
dm
-3
of K
+
; 7.15 cmol
c
dm
-1
of Ca
2+
+ Mg
2+
; 5.15 cmol
c
dm
-3
of Ca
2+
and
0.05 cmol
c
dm
-3
of Al
3+
. In order to simulate the environmental conditions, soil correction
was not performed. A randomized 4X2 factorial experimental design was used,
corresponding to four umbu tree genotypes (GBU 44, GBU 48, GBU 50 and GBU 68) and
two water treatments (control with daily watering until lixiviation; and stressed
withholding water until plants exhibited stomatal closure, then watering again), with six
replications.
2.2 Transpiration and diffusive resistance:
Transpiration (E) and diffusive resistance (r
s
) were measured using a steady state
porometer, model LI-1600 (LI-COR, Inc. Lincoln, NE, USA), which set the null point near
humidity in the greenhouse. As the porometer gave us E values in µg.cm
-2
.s
-1
, the values
were converted to mmol.m
-2
.s
-1
. Two mature and fully expanded leaves located in middle of
each plant were sampled. Measurements were carried out daily between 9 and 10 am. Air
temperature (T
air
), photosynthetic active radiation (PAR) and air relative humidity (RH)
measurements were also taken and the vapor pressure deficit was calculated (VPD). These
variables exhibited variations from 30.24 °C to 34.14 °C; 179.7 µmol.m
-2
.s
-1
to 470.8
µmol.m
-2
.s
-1
, 28.7% to 43.3% and 2.46 kPa to 3.75 kPa, respectively. Figure 1 displays the
means of the climatic parameters.
2.3 Soil moisture:
Soil humidity was determined from three soil samples of each treatment and each
genotype, totaling 24 samples. Samples were taken when plants exhibited stomatal closure.
The soil was collected after the assessment of stomatal behavior and before re-watering. Soil
moisture was determined using the equation: θ = (SWW – SDW)/SDW x 100, where θ = soil
humidity in the mass base; SWW= soil wet weight; SDW= soil dry weight. The soil-water
59
characteristic curve (SWCC) was determined through a Richards’s membrane pressure
chamber. This curve was used to estimate the soil water potential when stomatal closure
occurred.
2.4 Stomatal density, stomatal index, stomatal aperture size and proportions between
tissues:
Twelve leaves per treatment from each genotype were collected at the end of the
experimental period (after 31-stress days) for anatomical analysis. The leaves were rinsed in
running water, dried on absorbent paper and fixed for 48 h in 37 to 40% formaldehyde, 50%
glacial acetic acid and ethyl alcohol (1:1:18 v/v). The leaves were then transferred to 70%
ethanol (Johansen, 1940) and sent to the Anatomy Laboratory of the Universidade Federal of
Minas Gerais, where the anatomical analysis was performed. Cross and paradermal freehand
sections were taken from the intermediate region of the leaves, stained with Astra Blue and
safranin and placed on semi-permanent glass slides. Epidermal dissociation was performed
using the Jeffrey method [10% chromic acid, 10% nitric acid (1:1v/v)], as described by
Kraus and Arduin (1997). Permanent slides were mounted after dehydration of the leaves in
a butanolic series (Johansen 1940), unfiltered in Paraplast® (Kraus and Arduin 1997), cut on
a Jung Biocut® rotary microtome and submitted to Astra Blue and safranin staining (Kraus
and Arduin 1997). The slices were performed in Entelan® following the usual plant anatomy
method for light microscopy.
Leaf cell and tissue structures from each treatment and genotype were characterized.
The comparison and identification of variations between treatments and genotypes were
performed by measuring stomatal density (SD) and the number of cells (mm
2
), using a lit
chamber coupled to an Olympus CH30 microscope, in 20 areas of 0.01mm
2
(40x objective);
area was gauged by an Olympus micrometric slide. Stomatal index (SI) was calculated
according to Cutter (1986). Stomatal aperture size (SA) was calculated using the ellipse
60
formula (A = a.b.π, where a = half-axis of larger diameter and b = half-axis of smaller
diameter) after digital imaging of the stomata using a Motic
®
camera and respective
program. Leaf thickness and tissue proportions were determined by linear measurements of
cross-sections using the digitalized images from the Motic
®
system. Photomicrography was
performed using an Olympus BH2 microscope with the AD photographic system.
2.5 Statistical analysis:
Data were submitted to analysis of variance (ANOVA) and means compared by
Tukey’s multiple range test (P< 0.05), using a statistical program (Statistica version 6.0.).
T
air
(°C)
30
32
34
36
Days
0 5 10 15 20 25 30
PAR (
µ
µ
µ
µ
mol m
-2
s
-1
)
0
200
400
600
VPD (kPa)
0
1
2
3
4
5
Figure 1. Air temperature (T
air
), vapor pressure deficit (VPD), and photosynthetically active
radiation (PAR) measured during the experimental period. Data were taken between 9-10h in
green house conditions.
61
3. Results
The intermittent drought induced significant reductions in transpiration rates (E) in all
genotypes studied (Tab. 1). Highest E was observed in GBU 48 irrespective of the treatments
applied, while GBU 68 had the lowest E when cultivated under adequate water availability
in the soil. However, latter genotype did not differ from the GBU 44 and GBU 50 genotypes
when submitted to water deficit.
Table 1. Transpiration rates (E) of four grafted umbu trees genotypes grown in greenhouse
conditions under intermittent drought. Means of 145 assessment made along the stress period
(31 days) are shown.
E (mmol.m
-2
.s
-1
)
Genotypes Control Stressed
GBU 44 4.86 aB 1.96 bB
GBU 48 6.52 aA 2.71 bA
GBU 50 4.75 aB 1.66 bB
GBU 68 3.60 aC 1.68 bB
Values followed by different letters, lower case among treatments and capital letters among genotypes differ by
Tukey’s test (P<0.05).
The stomata of the GBU 68 genotype appeared more drought-sensitive, reducing its
stomatal aperture faster than the other genotypes (Tab. 2). GBU 68 generally exhibited
stomatal closure in five-day intervals, amounting to five re-watering sessions during the
experimental stress period (31 days). GBU 44, GBU 48 and GBU 50 followed this
sensitivity pattern, with GBU 50 maintaining the stomata open for a higher period of time
than the others (about seven days) (Tab. 2).
62
Table 2. Re-watering intervals (days) of four grafted umbu trees genotypes relative to
stomatal closure.
Re-watering intervals (days)
Genotypes
1
st
re-watering
2
sn
re-watering
3
rd
re-watering
4
th
re-watering
5
th
re-watering
Mean
GBU 44 5 6 5 5 5 5.2
GBU 48 5 7 7 5 - 6
GBU 50 5 8 7 6 - 6.5
GBU 68 4 5 6 5 4 4.8
Figure 2 clearly shows that GBU 44 and GBU 68 recovered their transpiration rate
more quickly than GBU 48 and GBU 50, reaching equal to or near control plant values after
24 h of re-watering. GBU 48 and GBU 50 generally maintained lower E values after re-
watering in comparison to control plants. Recovery was observed in these genotypes only
after 21 and 26 days, respectively, under intermittent drought conditions. When plants
exhibited stomatal closure, soil moisture was near the permanent wilting point (-15 atm)
(Fig. 2, Tab. 3).
63
0 5 10 15 20 25 30
0
2
4
6
8
10
Control
Stressed
BGU 44
0 5 10 15 20 25 30
E (mmol.m
-2
.s
-1
)
0
2
4
6
8
10
BGU 48
0 5 10 15 20 25 30
0
2
4
6
8
10
Days after treatment
0 5 10 15 20 25 30
0
2
4
6
8
10
BGU 50
BGU 68
Figure 2. Transpiration (E) in four grafted umbu trees genotypes grown in greenhouse
conditions under intermittent drought and re-watered when presented stomatal closure.
Arrows indicate the re-watering days. Means ± Stand-deviation of six replicates are shown.
64
Table 3. Percent soil moisture on weight basis of four grafted umbu genotypes before
perform re-watering in stressed plants for occasion of stomatal closure. The sample were
taken for occasion of stomatal closure ( 1
st
, 2
sn
, 3
rd
, and 4
th
) and in the end of the
experimental period (harvest).
Soil moisture (%)
Genotypes
1
st
2
sn
3
rd
4
th
Harvest
Control
GBU 44 15.76 15.81 14.74 17.17 17.35
GBU 48 19.34 16.89 19.00 15.81 16.52
GBU 50 18.69 17.27 16.52 16.02 17.37
GBU 68 17.55 19.59 16.37 11.26 18.81
Stressed
GBU 44 5.76 3.39 3.33 3.72 1.89
GBU 48 6.07 3.55 3.16 3.28 1.69
GBU 50 8.98 3.26 4.06 2.97 2.31
GBU 68 4.60 3.28 3.19 3.92 3.89
Although significant differences relative to transpiration were observed between
genotypes (P<0.01), diffusive resistance (r
s
)
did not differ significantly in control plants,
suggesting that E can exhibit variations for the same r
s
value (Tab. 4). However, intermittent
drought induced increases in r
s
for most of the genotypes studied, with a greater increase in
GBU 68. This genotype exhibited the highest r
s
recorded as well as the greatest variation in
r
s
values (Fig. 3). The GBUs 44 and 68 genotypes exhibited a similar pattern of behavior,
with high r
s
and great variation between values, whereas the GBU 48 and 50 genotypes
exhibited lower r
s
and little variation.
65
Table 4. Difusive resistance (r
s
) of four grafted umbu trees genotypes grown in greenhouse
conditions under intermittent drought. Means of 145 assessment made along the stress period
are shown (31 days).
r
s
(s.cm
-1
)
Genotypes Control Stressed
GBU 44 1.84 bA 19.30 aA
GBU 48 1.70 aA 10.69 aB
GBU 50 2.38 bA 15.38 aAB
GBU 68 3.37 bA 25.19 aA
Values followed by different letters, lower case among treatments and capital letters among genotypes, differ
by Tukey’s test (P<0.05).
Stomatal closure occurred with lower r
s
values in GBU 48, whereas the GBU 68 and
44 genotypes considerably increased r
s
values to close their stomata. For some genotypes,
values of r
s
around 20 s.cm
-1
has limited transpiration, as observed in GBU48 (Fig. 3 and 4),
while other genotypes have considerably increased r
s
values to close stomata (GBU 44 and
68). In general, E values less than 0.5 mmol.m
-2
.s
-1
were associated to high r
s
values (Fig. 4).
66
0 5 10 15 20 25 30
0
50
100
150
200
Control
Stressed
BGU 44
0 5 10 15 20 25 30
r
s
(s.cm
-1
)
0
50
100
150
200
BGU 48
0 5 10 15 20 25 30
0
50
100
150
200
Days after treatment
0 5 10 15 20 25 30
0
50
100
150
200
BGU 50
BGU 68
Figure 3. Diffusive resistance (r
s
) in four grafted umbu trees genotypes grown in greenhouse
conditions under intermittent drought and re-watered when presented stomatal closure.
Arrows indicate the re-watering days. Means ± Stand-deviation of six replicates are shown.
67
r
s
(s.cm
-1
)
0 20 40 60 80 100
E (mmol.m
-2
.s
-1
)
0
2
4
6
8
10
44C
44S
48C
48S
50C
50S
68C
68S
y= 9.4824x
-0.9029
r
2
=0.9752
Figure 4. Transpiration alterations (E) relative to diffusive resistance (r
s
) in grafted umbu
trees genotypes grown under intermittent drought. The numbers 44, 48, 50 and 68 represent
different genotypes and the letters represent water treatments: control (C) and stressed (S) by
cycles of withholding water.
Photosynthetic active radiation (PAR) had a positive correlation with transpiration in
GBU 50 alone, while relative humidity (RH), air temperature (T
air
) and vapor pressure
deficit (VPD) had a correlation with E in GBU 44 (Tab. 5). This genotype seems to undergo
more of an influence from climatic parameters than the others. In the GBU 68 genotype,
there was a negative correlation between RH and r
s
and a positive correlation between r
s
and
T
air
as well as VPD. In GBU 48, however, there were no correlations with the environmental
parameters assessed. This demonstrates that water was the sole determinant factor to
stomatal closure in GBU 48.
68
Table 5. Matrix of simple correlation between environmental (PAR, T
air
, RH, and VPD) and
physiological (E and r
s
) factors of four grafted umbu tree genotypes grown in greenhouse
conditions under intermittent drought.
Genotypes
Parameters
GBU 44 GBU 48 GBU 50 GBU 68
E X r
s
-0.690 ** -0.681 ** -0.691 ** -0.638 **
E X PAR 0.208
NS
0.151
NS
0.463 ** 0.203
NS
E X RH 0.390 ** -0.049
NS
-0.131
NS
0.138
NS
E X T
air
-0.380 ** 0.032
NS
0.229
NS
-0.197
NS
E X VPD -0.417 ** 0.032
NS
0.196
NS
-0.190
NS
r
s
X PAR -0.043
NS
-0.0003
NS
-0.122
NS
0.024
NS
r
s
X RH -0.171
NS
-0.066
NS
-0.170
NS
-0.290 *
r
s
x T
air
0.259 *
0.0642
NS
0.054
NS
0.266 *
r
s
X VPD 0.223
NS
0.078
NS
0.141
NS
0.306 **
NS
Non significant ; * Significant (P<0.05) ; ** Significant (P<0.01)
The umbu plants exhibited anomocytic stomata located on the lower surface of the
leaves (Fig.5-12). We rarely found isolated stomata on the upper surface, which does not
characterize an amphistomatous leaf. There were significant differences (P<0.01) between
genotypes regarding some anatomical parameters. GBU 50 had the highest stomatal density
(SD) under control conditions, whereas GBU 44 had higher SD under stress conditions (Tab.
6). Short-term intermittent drought (31 days) induced an increase in SD in GBU 44 alone.
Unexpectedly, there was a significant reduction in SD in GBU 50. The remaining genotypes
were unaltered (Tab. 6).
69
Figures 5–12. Abaxial epiderms of four grafted umbu trees genotypes (Spondias tuberosa
Arruda). Genotypes: 5–6. GBU 44; 7–8. GBU 48; 9–10. GBU 50; 11-12. GBU
68. Treatments: Control (5, 7, 9,11) and stressed (6, 8, 10, 12). Bars = 20 µm.
70
Significant differences between genotypes were also observed regarding the stomatal
index (SI) (P<0.01). Under control conditions, GBU 50 had a higher SI in comparison to the
other genotypes. Under stress conditions, the SI was reduced in both GBU 50 and 44. The
remaining genotypes were unchanged (Tab. 6). There was significant difference in stomatal
aperture (SA) (P<0.01). GBU 68 had the highest SA values under both control and stress
conditions (Tab. 6). Reductions in SA were observed in GBU 44 and 68 under stress
conditions. This reduction was approximately 50% in GBU 44 and 28.6% in GBU 68.
Table 6. Stomatal density (SD), stomatal index (SI), and stomatal aperture size (SA) in four
umbu tree genotypes after 31 days under intermittent drought.
Stomatal density (mm
2
) Stomatal index
(%)
Stomata aperture size
(mm)
Genotypes
Control Stressed Control Stressed Control Stressed
GBU 44
340 bB 535 aA 20.84 aAB 18.00 bA 41.63 aB 20.34 bC
GBU 48
300 aB 340 aB 17.58 aC 15.41 aA 39.94 aB 33.71 aB
GBU 50
497.5 aA 215 bC 21.19 aA 12.62 bB 38.15 aB 35.62 aB
GBU 68
385 aB 330 aB 18.36 aBC 17.33 aA 74.73 aA 53.33 bA
Values followed by different letters, lower case among treatments and capital letters among genotypes differ by
Tukey’s test (P<0.05).
Differences between GBU 44 and GBU 68 were observed regarding tissue proportion
as a consequence of the inversion in both spongy and palisade parenchyma thickness that
occurred in these genotypes (Tab. 7). The same was not observed in GBU 48 and GBU 50.
Drought induced a reduction in spongy parenchyma and an increase in palisade parenchyma
thickness in GBU 44, which is a classic plant response to water deficit (Larcher, 2003),
whereas GBU 68 increased spongy parenchyma and reduced palisade parenchyma.
71
Comparing control treatments between genotypes, GBU 68 was different from the others,
exhibiting the largest lower surface thickness, least spongy parenchyma and largest palisade
parenchyma thickness. GBU 44 had the lowest surface thickness (Tab. 7). Comparing
genotypes of the stressed plants, GBU 44 was the most different genotype, with the lowest
lower proportion of spongy parenchyma and highest proportion of palisade parenchyma.
Total leaf thickness was not altered by any treatment.
Table 7. Abaxial epiderm, spongy parenchima, palisade parenchima, and adaxial epiderm
tickness (µm) of four umbu trees genotypes after 31 days grown under intermittent drought.
Abaxial epidermis (µm) Adaxial epidermis (µm)
Genotypes
Control Stressed Control Stressed
GBU 44
4.57 aB 4.53 aB
7.3 aB 8.2 aA
GBU 48
4.13 aB 4.57 aB
8.57 aA 9.27 aA
GBU 50
4.53 aB 4.30 aB
8.00 aAB 8.33 aA
GBU 68
5.50 aA 5.87 aA
9.13 aA 9.40 aA
Palisade parenchyma (µm) Spongy parenchyma (µm)
GBU 44
47.57 aA 40.03 bB 40.70 bAB 47.23 aA
GBU 48
48.93 aA 49.73 aA 38.40 aB 36.50 aBC
GBU 50
47.47 aA 47.87 aA 40.03 aAB 39.73 aB
GBU 68
43.07 bB 49.27 aA 42.37 aA 35.70 bC
Values followed by different letters, lower case among treatments and capital letters among genotypes differ by
Tukey’s test (P<0.05).
4. Discussion
There were significant differences between genotypes with regard to water vapor gas
exchange (P<0.05). Intra-specific differences were observed in transpiration rates, time
72
intervals and recovery time (Tabs.1 and 2, Figs. 2 and 3). These results have also been
observed in another species. Gomes et al (2004) found significant reductions on transpiration
and stomatal conductance in orange trees after seven days of withholding water. Nogueira
and Silva (2002) observed similar results for Schinopsis brasiliensis, with reductions in E as
soil drought was increased after seven days of withholding water.
Maize plants under water deficit recovered stomatal conductance after just three days
of re-watering (Bergonci and Pereira, 2002). The same behavior was observed in grafted
orange plants cv. ‘Valência’ (Medina and Machado, 1998), in which recovery occurred after
just two days of re-watering. These facts suggest that there is a chemical communication
between the roots and shoots, inducing stomatal movement (Schurr et al., 1992; Tardieu et
al., 1992), which must be triggered by a growth substance, most likely ABA produced in the
roots (Tardieu et al., 1992; Davies et al., 1994, Bergonci and Pereira, 2002). Thomas and
Eamus (1999) found that ABA accumulation in the leaves of Eucalyptus tetrodonta
contributed toward a decrease in stomatal conductance. When plants face periods of water
deficit, ABA synthesis increases in the roots and is transported to the shoot through the
xylem, causing stomatal closure (Taiz and Zeiger, 2002; Gomes et al., 2004). This
hypothesis explains the behavior of the GBU 48 and 50 umbu genotypes. Further research on
this topic should be pursued.
In the present study, the umbu genotypes decreased transpiration in intervals ranging
from 5 to 7 days (Tab. 2) when soil humidity was near the permanent wilting point (Tab. 3).
BGU 68 was more drought-sensitive than the other genotypes. As the plants did not exhibit
reduced leaf water potential at the time (data not shown), reductions in E were a result of the
reduction in soil water content. Similar results were found in grafted orange plants var.
“Valência’, with a decrease in stomatal conductance between the 4
th
and 5
th
days after
withholding water. This result was caused more in response to the low soil moisture rather
than the leaf water potential (Medina and Machado, 1998). Sassaki and Machado (1999)
73
found that a reduction in soil moisture from 16% to 12% induced significant E reductions in
two wheat cultivars, although it did not significantly affect photosynthesis. The authors
suggest that the stomatal aperture responds more quickly to soil water content variations than
to leaf water potential and must be a response to a signal received and emitted by the roots.
How the stomata respond to environmental changes is related to interactions between
relative humidity, transpiration and leaf water potential. A high difference in the vapor
pressure deficit between the leaf and air results in stomatal closure (Thomas and Eamus,
1999; Larcher 2000). However, Thomas et al. (2000) found increases in E when VPD
increased in five woody species from Australia during the rainy season, whereas E remained
unchanged in the dry season despite increases in VPD. Nogueira et al. (2001) observed that
the stomatal behavior in Surinam cherry plants (Malphigia emarginata D.C.) throughout the
water stress period was more dependent on the water potential than of other environmental
factors such as light and relative humidity. In orange plants, Gomes et al. (2004) observed
that decreases in photosynthesis rates, transpiration and stomatal conductance in both
watered and non-watered plants were the result of alterations in climatic changes such as
T
air
, VPD and PAR. Thus, plants respond differently under stress conditions, as observed in
the present study on umbu plants, with the soil water availability certainly the most
important environmental factor.
The stomatal density (SD) reductions in GBU 50 (Tab. 6) may result in better water
loss control, which should explain the longer transpiration time. However, as stomatal
differentiation is a process that occurs during leaf development (Alquini et al., 2004), the
reductions in SD occurred soon after beginning the applied stress (when leaves were young);
maturity was only reached at the end of the experimental period, precisely when gas
exchange recovery was observed. This is in agreement with data in studies by Cominelli et
al. (2005) and Inamullah and Akihiro (2005), who demonstrated the importance of the
stomata in response to water stress. Thus, the initial changes observed in all the genotypes
74
studied should be interpreted as modulative (Larcher, 2000), thereby permitting better water
availability management.
The anatomical alterations in GBU 44 and 50 demonstrate that these genotypes have
higher phenotypic plasticity relative to genotypic expression regarding stomatal
differentiation (Tabs. 6 and 7). Changes in leaf morphology as a response to water stress can
be considerable (Rojas et al. 2005). However, this was not observed in umbu plants, even
with significant data on this species. Reductions in the stomatal index were also rather
limited in the umbu genotypes, observed only in GBU 44 and 50. A reduction in the stomatal
index is an expected response in plants submitted to water stress, as observed in two avocado
cultivars (Chartzoulakis et al., 2002) as well as in Trigonella foenum-graecum L (Ranjitha-
Kumari et al., 1999) and in response to water deficit and high temperature in Leymus
chinensis (Xu and Zhou, 2005).
The variation in stomatal aperture is decisive to the capacity of adaptation of the
genotypes, as the aperture size is an important factor in stress response (Zhu et al. 2005) and
plays a significant role in water-loss control processes by transpiration (Cominelli et al.,
2005). As the survival of plants growing in drought conditions is associated to water
economy, stomata in the leaves perform an important role in restricting water loss by
transpiration (Bosabalidis and Kofidis, 2002). Changes such as an increase in stomata
density and leaf thickness, as demonstrated in Zygophyllum qatarense Hadidi during the dry
season (Sayed, 1996), and a reduction in stomata size (Bosabalidis and Kofidis, 2002), as
observed in two olive cultivars submitted to intermittent drought, are examples of the
adaptations to drought conditions. Studies on two olive cultivars demonstrate that anatomical
changes in response to drought cycles occur in the long term (Chartzoulakis et al., 1999).
Thus, it can be inferred that anatomical aspects of umbu trees may be altered with the
prolongation drought cycles, as is classically expected in plants with phenotypic plasticity in
75
heterogeneous environments (Bradshaw, 1965; Bradshaw and Hardwick, 1989; Bussotti et
al., 1995).
The anatomical differences observed in the umbu genotypes do not consistently
support the physiological differences found in the present study. The lower E values found in
GBU 68 led us to expect that this genotype would exhibit lower stomatal density or a
reduction in stomata size. This, however, was not observed (Tab. 6). Similarly, the high
transpiration rates observed in GBU 48 should be explained by a higher stomatal density or
aperture size, which should facilitate stomatal conductance and explain the lower r
s
when
exposed to adequate soil water availability. However, the genotypes that had reductions in
stomata aperture size (GBU 44 and GBU 68) were those that were capable of recovering
transpiration rates after re-watering. Although there was no correlation between aperture size
and transpiration recovery, these results suggests that morphological changes have an
important physiological implication, likely related to the speed of the guard cell response.
There were differences in tissue proportions between genotypes. Drought induced a
reduction in spongy parenchyma and an increase in palisade parenchyma thickness in GBU
44. These anatomical changes may result in higher photosynthetic efficiency in GBU 44, as
the palisade parenchyma contains the most photosynthetic cells. However, we cannot make
this claim, as photosynthesis was not measured in the present study, but we can affirm that
drought induces different responses in different umbu tree genotypes.
5. Conclusions
Summarizing, stomatal responses to water deficit suggest that stomatal closure is the
first line of defense from desiccation in umbu plant genotypes. The regularity of the stomatal
closure period and the water vapor gas exchange recovery suggest that GBU 68 is the most
drought-sensitive genotype. Anatomical changes induced by intermittent drought
76
demonstrate that the genotypes exhibit markedly different responses to water deficit, but not
enough to explain the physiological differences between them.
6. Acknowledgments
The authors would like to thank the Brazilian Institute for the Semi-Arid Tropics
(Embrapa-CPATSA) for the vegetal material used in the present research, as well as the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial
support. We would also like to thank Dr. Júlio Villar and Anacleto Junior for the physical
soil analysis as well as the Universidade Federal de Minas Gerais for the anatomical
analysis.
7. References
Alquini, Y., Bona, C.; Boeger, M.R. T., Costa, C.G., Barros, C.F. 2004. Epiderme. In:
Appezzato-da-Glória, B., Carmello-Guerreiro, S. M. (Eds), Anatomia Vegetal, Viçosa:
UFV, pp. 87-108.
Bergonci, J.I., Pereira, P.G. 2002. Comportamento do potencial da água na folha e da
condutância estomática do milho em função da fração de água disponível no solo. Rev.
Bras. Agromet. 10, 229-235.
Bosabalidis, A.M., Kofidis, G. 2002. Comparative effects of drought stress on leaf anatomy of
two olive cultivars. Plant Sci. 163, 375-379.
Bradshaw, A.D. 1965. Evolutionary significance of phenotipic plasticity in plants. Advanc.
Genet. 13, 115-155.
Bradshaw, A.D., Hardwick, K. 1989. Evolution and stress – genotipic and phenotipic
components. Bot. J. Linn. Soc. 37, 137-155.
77
Bussotti, F., Bottacci, A., Bartolesi, A., Grossoni, P., Tani, C. 1995. Morpho-anatomical
alterations in leaves colleted from beech trees (Fagus sylvatica L.) in conditions of
natural water stress. Environ. Exp. Bot. 35, 201-213.
Cavalcanti, N.B., Resende, G.M., Brito, L.T.L. 1999. Desenvolvimento do imbuzeiro
(Spondias tuberosa Arr. Cam.) na região semi-árida do Nordeste brasileiro.
Comunicação. Ciên. Agrotec. 23, 212-213.
Chartzoulakis, K., Patakas, A., Bosabalidis, A.M. 1999. Changes in water relations,
photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars.
Environ. Exp. Bot. 42, 113-120.
Charzoulakis, K., Patakas, A., Kofidis, G., Bosabalidis, A., Nastou, A. 2002. Water stress
affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars.
Sci. Hortic. 95, 39-50.
Cominelli, E., Galbiati, M., Vavasseur, A., Sala, T., Vuylsteke, M., Leonardt, N., Dellaporta,
S.L. 2005. A guard cell specific MYB transcription factor regulates stomatal movements
and plant tolerance. Curr. Biol., 15, 1196-1200.
Cutter, E.1986. Anatomia vegetal: Parte I. Células e tecidos. 2ed., Roca, São Paulo.
Davies, W.J., Tardieu, F., Trejo, C.L. 1994. How do chemical signal work in plants that grow
in drying soil?. Plant Physiol. 104, 309-314.
Gomes, M.M.A., Lagôa, A.M.M.A., Medina, C.L., Machado, E.C., Machado, M.A. 2004.
Interactions between leaf water potential, stomatal condutance and abscisic acid
contento of orange trees submitted to drought stress. Braz. J. Plant Physiol. 16, 155-161.
Gucci, R., Massai, R., Xiloyannis, C., Flore, J. A. 1996. The effect of drought and vapour
pressure deficit on gas exchange of young kiwifruit (Actinia deliciosa var. deliciosa)
vines. Ann. Bot. 77, 605-613.
78
Inamullah; Akihiro, I. 2005. Adaptative responses of soybean and cotton to water stress I -
Transpiration changes in relation to stomatal area and stomatal condutance. Plant Prod.
Sci. 8, 16-26.
Johansen, D.A. 1940. Plant Microtechnique. McGraw-Hill, New York.
Kraus, J.E., Arduin, M. 1997. Manual Básico de Métodos em Morfologia Vegetal, v.1.
Seropédica - Editora da Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro.
Larcher, W. 2000. Ecofisiologia Vegetal. RIMA, São Carlos.
Larcher, W. 2003. Physiological Plant Ecology, Ecophysilogy and Stress Physilogy of
Functional groups. Springer-Verlang Berlin Heidelberg.
Lima Filho, J.M.P. 2004. Gas exchange of the umbu tree under semi-arid conditions. Rev.
Bras. Frutic. 26, 206-208.
Medina, C.L., Machado, E. C. 1998. Trocas gasosas e relações hídricas em laranjeira
'valência' enxertada sobre limoeiro 'cravo' e trifoliata e submetida à deficiência hídrica.
Bragantia. 57, 15-22.
Mott, K.A., Michaelson, E. 1991. Amphistomy as an adaptation to high light intensity in
Ambrosia cordifolia (Compositae). Am. J. Bot. 78, 76-79.
Nogueira, R.J.M.C., Barbosa, D. C. A., Moraes, J. A. P. V. 1998. Trocas gasosas e relações
hídricas em plantas jovens envasadas de três espécies da caatinga, submetidas à
deficiência de água. Phyton. 62, 37-46.
Nogueira, R.J.M.C. ; Silva, E. C. 2002. Comportamento estomático em plantas jovens de
Schinopsis brasiliensis Engl.cultivadas sob estresse hídrico. Iheringia, Ser. Bot. 57, 31-
38.
Nogueira, R.J.M.C., Moraes, J.A.P.M., Burity, H.A., Bezerra Neto, E. 2001. Alterações na
resistência à difusão de vapor das folhas e relações hídricas em aceroleiras submetidas a
déficit de água. Rev. Bras. Fisiol.Veg. 13, 75-87.
79
Oliveira, V.R., Resende, M.E.V., Nascimento, C.E.S., Drumond, M.A., Santos, C.A.F. 2004.
Genetic variability of provenances and progênies of umbu tree by mixed linear model
methodology (REML/BLUP). Rev. Bras. Frutic. 26, 53-56.
Ranjitha-Kumari, B.D., Settu, A., Asha-Ramadhas, T.K. 1999. Studies on some morpho-
physiological characters in fenugreek (Trigonella foenum-graecum L.) to moisture
stress. Adv. Plant Sci. 12, 171-176.
Rojas, P.K.; Xavier, A.; Joffre, R.; Fleck, I. 2005. Leaf morphology, photochemistry and
water status changes in resprouting Quercus ilex during drought. Funct. Plant Biol. 32,
117-130.
Santos, C.A.F., Nascimento, C.E.S., Campos, C.O. 1999. Preservação da variabilidade
genética e melhoramento do umbuzeiro. Rev. Bras. Frutic. 21, 104-109.
Sassaki, R. M., Machado, E. C. 1999. Trocas gasosas e condutância estomática em duas
espécies de trigo em diferentes teores de água no solo. Pesq. Agropec. Bras. 34, 571-
1579.
Sayed, O. H. 1996. Adaptation responses of Zygophyllum qatarense Hadidi to stress
conditions in a desert environment. J. Arid Environ. 32, 445-452.
Silva, E.C., Nogueira, R.J.M.C., Azevedo Neto, A.D., Santos, V.F. 2003. Comportamento
estomático e potencial da água da folha em três espécies lenhosas cultivadas sob estresse
hídrico. Acta Bot. Bras. 17, 231-246.
Silva, E.C., Nogueira, R.J.M.C., Azevedo Neto, A.D., Brito, J.Z., Cabral, E.L. 2004. Aspectos
ecofisiológicos de dez espécies em uma área de caatinga no município de Cabaceiras,
Paraíba, Brasil. Iheringia, Ser. Bot. 59, 201-205.
Silva, W., Ferreira, L.R., Silva, A.A., Firmino, L.E. 2000. Taxa transpiratória de mudas de
eucalipto em resposta a níveis de água no solo e à convivência com braquiária. Pesq.
Agropec. Bras. 35, 923-928.
80
Schurr, U., Gollan, T., Shulze, E.D. 1992. Stomatal response to drying soil in reaction to
changes in xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to
abscisic acid imported from xylem sap. Plant, Cell Environ.15, 561-567.
Taiz, L.; Zeiger, E. 2002. Plant Physiology, 3ed., Sinauer Associates Inc., Massachusetts.
Tardieu, F., Zhang, J., Katerji, N., Bethenod, O., Palmer, S., Davies, W.J. 1992. Xylem ABA
controls the stomatal conductance of field-grow maize as a function of the predawn leaf
water potential. Plant, Cell Environ.15, 193-197.
Thomas, D.S., Eamus, D.1999. The influence of predawn leaf water potential on stomatal
responses to atmospheric water content at constant Ci and on stem hydraulic
conductance and foliar ABA concentrations. J. Exp. Bot. 50, 243-251.
Thomas, D.S.,Eamus, D. 2002. Seasonal patterns of xylem sap pH, xylem abscisic acid
concentration, leaf water potential and stomatal conductance of six evergree and
deciduous Australian savanna tree species. Aust. J. Bot. 50, 229-236.
Thomas, D.S., Eamus, D., Shanahan, S. 2000. Influence of season, drought and xylem ABA
on stomatal responses do leaf-to-air vapour pressure difference of trees of the Australian
wet-dry tropics. Aust. J. Bot. 48, 143-151.
Xu, Z. Z., Zhou, G. S. 2005. Effects of water stress and high nocturnal temperature on
photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil. 269,
131-139.
Zhu, R., Macfie, S.M., Ding, Z. 2005. Cadmium induced plant stress investigated sacanning
electrochemical microscopy. J. Exp. Bot. 56,2831-2838.
81
Capítulo 2
Water relations and organic solutes accumulation in four umbu
tree genotypes under intermittent drought
Abstract
Resumo
Introduction
Material and methods
Plant material, growth conditions and experimental design
Leaf water potential measurement
Soil moisture
Biochemical analysis
Statistical analysis
Results and discussion
Conclusions
Acknowledgment
References
Cópia do Manuscrito que será enviado para publicação no Brazilian Journal of Plant
Physiology.
82
Water relations and organic solutes accumulation in four umbu
tree genotypes under intermittent drought
Elizamar Ciríaco da Silva
1*
, Rejane Jurema Mansur Custódio Nogueira
2
, Fernando
Henrique Aguiar
3
, Natoniel Franklin de Melo
4
, Francisco Pinheiro de Araújo
4
.
1
Doutoranda Programa de Pós-Graduação em Botânica, Universidade Federal Rural de
Pernambuco, 52171-030, Recife, PE, Brasil.
2
Departamento de Biologia, Universidade
Federal Rural de Pernambuco, 52171-030, Recife, PE, Brasil.
3
Instituto de Ciências
Biológicas, Universidade Federal de Minas Gerais, MG, Brasil.
4
Embrapa Semi-Árido, P.
O. Box 23, 56300-970, Petrolina, PE, Brasil.
In order to evaluate changes in leaf water potential (Ψ
w
) and solute accumulation induced by
intermittent drought, an experiment was carried out in green house conditions using four
umbu tree genotypes (GBU 44, GBU 48, GBU 50 and GBU 68) and two water treatments
(control and stressed by withholding water), with four replicates. The Ψ
w
was measured in
four-hour intervals during a 24-hour period at the first stomatal closure and at the end of the
experimental period. Carbohydrates, amino acids, protein and proline contents were also
evaluated in leaves and roots. Significant differences were found in most of the studied
parameters. The lower Ψ
w
hour was between 800 h and 1200 h. GBU 44 and GBU 50 reduced
significantly Ψ
w
in stressed plants at 800 h. GBU 68 presented the higher Ψ
w.
The extending
of the stress induced reductions to carbohydrates in the leaves of all genotypes, increases in
amino acids to GBU 44 and 48, and reductions of 40% and 43% to GBU 50 and 68,
respectively; results also showed alterations in proline content. In the roots, increases in
carbohydrates were observed only to GBU 48. Alterations in amino acids, protein, and proline
*
Corresponding author: Tel: +55 81 33206352; +55 81 99988420; fax: +55 81 33206300.
E-mail address: elizaciriaco@gmail.com
83
were verified. Umbu trees presented isohidry behaviour maintaining high leaf water potential
and a great variability in organic solutes accumulation in response to drought with marked
differences among the genotypes.
Key words: carbohydrates, proline, Spondias tuberosa, water potential
Relações hídricas e acúmulo de solutos orgânicos em quatro genótipos de umbuzeiro sob
seca intermitente: Com o objetivo de avaliar as alterações no potencial hídrico foliar e o
acúmulo de solutos compatíveis induzidos pela seca intermitente, foi desenvolvido um
experimento em casa de vegetação utilizando-se quatro genótipos de umbuzeiro (GBU 44,
GBU 48, GBU 50 e GBU 68) e dois regimes hídricos (controle e estresse com suspensão da
irrigação), com quatro repetições. O potencial hídrico foliar (Ψ
w
) foi medido em intervalos de
quatro horas durante 24 horas no momento do primeiro fechamento estomático e no final do
período experimental. Também foram avaliados os teores de carboidratos solúveis totais,
aminoácidos, proteína e prolina nas folhas e nas raízes. Houve diferença significativa entre os
acessos estudados para a maioria dos parâmetros avaliados. O horário de menor Ψ
w
foi entre
8h e 12h. O Ψ
w
das plantas estressadas do GBU 44 e GBU 50 reduziu significativamente às
8h. O acesso GBU 68 apresentou os valores mais elevados de Ψ
w.
O prolongamento do
estresse provocou reduções nos teores de carboidratos nas folhas de todos os acessos. Houve
aumento no teor de aminoácidos nas folhas dos GBUs 44 e 48 e reduções de 40% e 43% para
GBUs 50 e 68, respectivamente. Também foram observadas alterações nos teores de prolina.
Nas raízes, houve aumento nos teores de carboidratos apenas no GBU 48. Foram verificadas
alterações nos teores de aminoácidos, proteína e prolina. O umbuzeiro apresenta
comportamento isoídrico, mantendo altos valores de potencial hídrico foliar e uma grande
variação no acúmulo de solutos em resposta à seca, com marcada diferença genotípica.
Palavras-chave: carboidratos, potencial hídrico, prolina, Spondias tuberosa.
84
INTRODUCTION
Drought is a worldwide problem that adversely affects yield and crop quality
(Chartzoulakis et al, 1999; Chartzoulakis et al., 2002; Souza et al., 2005; Hong-Bo et al,
2006). Reductions in the soil moisture as a result of withholding water lead straightly to
changes in the plants physical environment, which affect subsequently the physiological and
biochemical processes (Sarker et al., 2005; Sircelj et al., 2005).
Plant drought-response is characterized by fundamental changes in the cell water
relations (Pimentel, 2004). Reductions in cell volume as well as increases in solute
accumulation and protoplasm dehydration are consequences of water deficiency (Nogueira et
al, 2005). Thus, a convenient way to express the water deficiency in tissue, particularly in
leaves, is the measurement of leaf water potential (Slatyer, 1967).
Some species can adapt to water deficiency by modifying the solute level inside the
cells; thus, turgor, stomatal aperture, and physiological activities can be maintained under low
leaf water potential (Chartzoulakis et al., 2002; Zhu et al., 2005). This mechanism, known as
osmotic adjustment, contributes to desiccation-tolerance and it is defined as the ability to
accumulate osmotically active solutes in response to drought (Quezada et al., 1999; Pagter et
al., 2005). However, the ability to accumulate osmotically active substances differs among
species (Jones et al, 1980; Zhu et al., 2005).
It is well known that the osmotic regulators include many important molecules such as
potassium, soluble sugar, amino acids, proline and betaine. These molecules, which have low
molecular weights, are important plant physiological indicators used to evaluate the ability to
adjust osmotically and the drought-resistance of many genotypes (Hong-Bo et al., 2006). The
main function of organic solutes is relative to protein stabilization, protein-complex and
membranes when plants are submitted to environmental stresses (Bohnert and Shen, 1999).
85
Drought affects the metabolism of carbohydrates, which act as compatible solutes as
much as antioxidant, increasing in response of water stress (Sircelj et al., 2005). However,
Zhu et al. (2005) demonstrated that in wheat soluble sugar and inorganic ions contributed
principally to osmotic adjustment in the stage of seedling while proline and betaine
accumulation had an important role in the subsequent stages, mostly as an osmoprotector
when the soil was dry enough. Thus, for both different species and physiological
developmental stages, plants response to drought must to be different.
Amino acids are another compound group affected by drought. The adaptable meaning
concerning amino acids accumulation during stress period is still uncertain; however, research
indicates that amino acids principal may be in osmotic adjustment (Sircelj et al., 2005).
Besides its contribution on osmotic adjustment, proline performs an important role in
the membrane stabilization and free radical scavenging (Ashraf and Foolad, 2007). A relation
between a higher proline accumulation and drought-tolerance has been found in plants or
genotypes considered drought-tolerant (Quezada et al., 1999; Nogueira et al., 2001; Silva et
al, 2004; Zhu et al., 2005).
The umbu tree (Spondias tuberosa Arruda) is a native species found in Brazilian dry
lands (Caatinga), which shows a great phenotypic variation between its canopy and the weight
of its fruits. Some genotypes produce fruits weighing 20 g, while another genotype can
produce fruits weighing 120 g, called “giant umbu”(Santos et al., 1999). Among the 78
genotypes existent in the Active Germplasm Bank of Umbu Tree (GBU) located on the
Brazilian Research Institute to the Semi Arid Tropic Embrapa/CPATSA (Oliveira et al.,
2004), the genotypes GBUs 44, 48, 50 and 68 are classified as giant umbu because the
medium weight of the fruits of 86,7 g, 75,30 g, 85,0 g and 96,7 g, respectively (Santos et al.
1999).
Some works accomplished by Lima Filho (2001, 2004), demonstrate that the water
balance of umbu tree under drought conditions should be maintained through the utilization of
86
the water storage in the roots (xylopodium) and a low transpiration rate. His results also
showed that during the rainy season, water balance should be mediated by an osmotic
adjustment.
Literature containing physiological information about these genotypes is still scarce.
Thus, this work was carried out in order to test the hypothesis that the ability to overcome
drought differs among genotypes and that this ability should be associated with maintaining
leaf turgor by reducing water potential combined to the nature of compatible solutes involved.
Therefore, the aim of this work was to evaluate alterations in leaf water potential and
compatible solutes accumulation induced by intermittent drought in four umbu tree
genotypes.
MATERIAL AND METHODS
Plant material, growth conditions and experimental design:
The experiment was carried out in green house conditions at the Laboratório de
Fisiologia Vegetal, belonging to the Department of Biology at the Universidade Federal Rural
de Pernambuco, from November to December 2005. Four six-month-old grafting umbu
genotypes (Spondias tuberose Arr. Cam.) produced by cleft graft were used. The plants were
cultivated in vases containing 8 kg Argisoil from CPATSA Petrolina, Pernambuco, Brazil.
The physical properties were sandy-loam texture, composed of 71% sand, 17% clay and 12%
silt and soil moisture at field capacity (0.3 atm) 9.97% and at the wilting point (15 atm)
4.01%. The chemical soil analysis was done at the Laboratory of Soil Fertility of the
Universidade Federal Rural de Pernambuco. The soil contained: 41 mg/dm
3
of P, 0.20
cmol
c
/dm
3
of Na
+
, 0.33 cmol
c
/dm
3
of K
+
, 7.15 cmol
c
/dm of Ca
+2
+ Mg
+2
, 5.15 cmol
c
/dm
3
of
Ca
+2
, and 0.05 cmol
c
/dm
3
of Al
+3
.
87
The experiment used a randomized experimental design, in a factorial 4X2,
corresponding to four umbu genotypes (GBU 44, GBU 48, GBU 50 and GBU 68) and two
water treatments (control watered daily until begin the free drainage, and stressed by
withholding water and re-watered when plants presented stomatal closure). Four replicates
were performed. The plant transpiration was measured daily between 900 h and 1000 h with a
steady state porometer Li-1600 (LI-COR, Inc. Lincoln, NE, USA), to verify stomatal closure
(data unpublished). Climatic conditions during the experimental period are shown in Figure 1.
The re-watering intervals-days of the stressed plants are found in Table 1.
Leaf water potential measurement:
When stressed plants presented the first stomatal closure, a time course of leaf water
potential (Ψ
w
) was accomplished using a pressure chamber model 3035 (Soil Moisture
Equipment Corp, Santa Barbara, CA, USA) during 24-hours with four hours-intervals. Mature
and full expanded leaves located above the medium part were sampled, wrapped in plastic
film, and kept in a cold recipient. After harvesting, the measurements were performed in the
laboratory of plant physiology. At the end of the experimental period, the same procedure was
followed to measure Ψ
w
again.
Soil moisture:
After water potential measurements and before irrigation, soil samples were taken
from three vases of each treatment and genotype for determining soil moisture, a total of 24
samples. The soil moisture was estimated according to equation: θ = (WSW DSW)/DSW x
100, where θ = soil moisture; PSU= wet soil weight; DSW= dry soil weight. Soil moisture
characteristic curve was performed at the Laboratório de Física do Solo of the Universidade
Federal Rural de Pernambuco, by Buchner Funnel method (Haines, 1930).
88
Biochemical analysis:
The same leaves used to water potential measurements at 8h were collected without
the central vein and frozen to determine total soluble carbohydrates, free amino acids, soluble
protein, and free praline and sample of roots (xylopodium) were taken in the end of the
experimental period. The extract was prepared by grinding about 2 g of fresh leaves and 5g of
fresh roots (xylopodium) with 4 mL (for leaves) and 10 mL (for roots) of sodium and
potassium buffer 0.1 M for 10 minutes. The homogenate was filtered in nylon mesh and
centrifuged in a refrigerated centrifuge at 3,000 x g for 15 minutes and the supernatant was
frozen to perform the analysis. Total soluble carbohydrates were determined for colorimetric
technique (490 nm) by phenol-sulfuric acid, according to Dubois et al. (1956), using D(+)-
glucose as standard. Total free amino acid was determined by reaction with ninidrin (570 nm)
using L-leucine as standard (Yemm and Cocking, 1955). For determining soluble protein
content (595 nm) a protein-dye binding method was performed using bovine serum albumin
as standard (Bradford, 1976). Free proline was determined by Bates et al (1973) method using
a spectrophotometer in a wavelength of 520 nm, ninidrin as specific reagent, and proline as
standard.
Statistical analysis:
Data were submitted to analysis of variance (ANOVA) and the means were compared
by Tukey’s multiple range test (P<0.05).
89
T
air
(°C)
30
32
34
36
Days
0 5 10 15 20 25 30
PAR (
µ
µ
µ
µ
mol m
-2
s
-1
)
0
200
400
600
VPD (kPa)
0
1
2
3
4
5
Figure 1. Air temperature (T
air
), vapor pressure deficit (VPD), and photossyntheticaly active
radiation (PAR) taken daily during the experimental period, between 900 h and 1000 h, in
greenhouse conditions.
Table 1. Re-watering intervals (days) of four grafted umbu trees genotypes relative to
stomatal closure.
Watering days-intervals
Genotypes
1
st
watering
2
sn
watering
3
rd
watering
4
th
watering
5
th
watering
Mean
GBU 44 5 6 5 5 5 5.2
GBU 48 5 7 7 5 - 6
GBU 50 5 8 7 6 - 6.5
GBU 68 4 5 6 5 4 4.8
90
RESULTS AND DISCUSSION
During water-withholding period, the soil moisture content decreased from 34.23% to
8.14% for occasion of the first stomatal closure (Table. 2), and from 30.7% to 3% after 31
days of treatment, value considered lower than permanent wilting point to this soil, which
correspond to 4.0% (-1.5MPa), as mentioned above in the material and method topic.
Table 2. Percent soil moisture on a weight basis of four umbu tree genotypes grown under
intermittent drought. The first samples were taken before perform re-watering in stressed
plants for occasion of the water potential measurements, when plants presented stomatal
closure. The second sample collection corresponds to the last evaluation after 31 treatment
days (harvest).
Soil moisture (%)
1
st
. Sample 2
sn
. Sample
Treatment Treatment
Genotypes
Control Stressed Control Stressed
GBU 44 15.76
5.76
17.35
1.89
GBU 48 19.34
6.07
16.52
1.69
GBU 50 18.69
8.98
17.37
2.31
GBU 68 17.55
4.60
18.81
3.89
Significant differences in leaf water potential (Ψ
w
) were observed among genotypes
(P<0.01). GBU 68 showed the highest value of Ψ
w
while GBU 50 showed the lowest.
However, statistic analysis did not show significant differences between treatments (Table. 3).
91
Table 3. Daily average of leaf water potential (Ψ
w
) of four umbu trees genotypes grown in
greenhouse conditions under intermittent drought. Data was taken for occasion of the first
stomatal closure and after 31 treatment days. The first stomatal closure occurred after four
days of withholding water to genotype GBU 68 and after five days to GBU 44, 48 and 50.
Genotype
Ψ
ΨΨ
Ψw (MPa)
1º stomatal closure
Ψ
ΨΨ
Ψw (MPa)
After 31 treatment days
GBU 44 -0.44bA -0.48bA
GBU 48 -0.37bA -0.33aA
GBU 50 -0.59cA -0.55cA
GBU 68 -0.27aA -0.34aA
Treatments
Control -0.40aA -0.38aA
Stressed -0.44aA -0.47aA
Values followed by different letters, lower case among treatments and among genotypes, and upper case between
period, do not significantly differ by Tukey test (P<0.05).
In general, the hour of lower Ψ
w
was between 800 h and 1200 h for most genotypes
(Figure 2). Differences between treatments to GBU 44 and GBU 68 were not observed during
the 24-hour period when stressed plants presented the first stomatal closure.
The stressed plants of the GBU 48 reduced Ψ
w
at 800 h. However, there was no
difference between treatments to the further hours. GBU 50 significantly reduced Ψ
w
at 800 h
(P<0.01), recovering its Ψ
w
in the subsequent hours, while the control plants showed a Ψ
w
reduction at 1200 h (Figure 2).
92
Hours
4 8 12 16 20 24
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
Hours
4 8 12 16 20 24
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
BGU 44
BGU 48
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
BGU 50
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
Control
Stressed
BGU 68
aA
aA
aB
aB
aA
aBC
aA
aA
aA
aA
aA
aA
aA
aA
aA
bAB
aA
aB
aA
aA
aA
aA
aA
aA
aA
aA
aAB
bB
aA
bC
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
Figura 2. Daily course of leaf water potential (Ψ
w
) of four umbu tree genotypes growing in
green house conditions under intermittent drought by withholding water after four (genotype
GBU 68) and five days (the remained genotypes). Values followed by different letters, lower
case between treatments and upper case among hours, do not significantly differ by Tukey’s
test (P<0.05).
Different behavior relative to leaf water potential was verified after 31 days in
genotypes under intermittent drought. The genotypes GBU 44 and GBU 50 reduced
significantly Ψ
w
at 800 h, in comparison to control plants. This behavior was not observed to
GBU 48 and GBU 68 (Figure 3).
93
Hours
4 8 12 16 20 24
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
Hours
4 8 12 16 20 24
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
BGU 44
BGU 48
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
BGU 50
Ψ
Ψ
Ψ
Ψ
w (MPa)
-1,5
-1,0
-0,5
0,0
Control
Stressed
BGU 68
aA
aA
aA
bC
aA
aB
aA
bBC
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
bB
aA
bB
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aA
aAB
aA
bBC
aA
aA
aA
aA
Figure 3. Daily course of leaf water potential (Ψ
w
) of four umbu tree genotypes growing in
green house conditions after 31days under intermittent drought by withholding water. Plants
were re-watered in function of stomatal closure. Values followed by different letters, lower
case between treatments and upper case among hours, do not significantly differ by Tukey’s
test (P<0.05).
In the hottest hour (1200 h) control plants of GBU 50 reduced Ψ
w
, while the stressed
plants recovered Ψ
w,
following the same pattern observed in the first evaluation (Figures 2
and 3). GBU 68 showed a different pattern again, waning Ψ
w
of the stressed plants at 1200 h
culminating with the lower values at 1600 h. Even though, the values of Ψ
w
in this genotype
94
are still higher in comparison with the GBU 44 and 50. Reductions in Ψ
w
at 1600 h were also
observed to GBU 44, showing subsequent recovering.
Field observations accomplished by Lima Filho (2001) demonstrate that the lowest Ψ
w
in umbu tree was at 800 h (-0.97 MPa) during dry season, corroborating the results found in
this work. However, the author did not observe Ψ
w
recovering during the daytime, which
differs of our results. This difference should be attributed to the cultivation conditions. Once
on the field, the environmental factors; i.e. radiation, vapor pressure deficit, and the speed of
the wind, exert a bigger impact on the plants than in greenhouse conditions. In this last case,
the smaller volume of the soil to be explored also becomes a stress factor.
Some authors have reported that the measurement of pre-dawn leaf water potential
(Ψ
pd
) is more sensitive than other hours because it does estimate the maximum value of water
potential on the root zone and it does not depend of the short-term climatic changes (Améglio
et al., 1999; Sircelj et al., 2005). If predawn transpiration does not occur, the water potential
gradient on the plant disappears, and the Ψ
pd
can be taken to represent the water potential in
the soil explored by the roots (Améglio et al., 1999). It was observed in two eucalyptus
species and in three woody native species of Ethiopia in response of water deficit. The
difference between Ψ
pd
values in plants cultivated under 25% of field capacity (FC) and the
control ones (100% FC) was arround 1.0 MPa (Gindaba et al., 2005).
The fact that umbu trees still show high leaf water potential, even with soil moisture
below 4%, equivalent to -15 kPa (Tab. 1) supports the hypothesis that the water stored in the
xylopodium is responsible for maintaining the water status combined with stomatal closure
(Lima Filho, 2001, 2004) as the first defense line against desiccation in this species. The
higher Ψ
pd
with lower soil moisture content suggest that the measurements of Ψ
pd
is not
appropriate to estimate soil water potential in umbu plants and probably to other plant species
with similar root system architecture.
95
The water loss by transpiration in the higher evaporative demand hour may cause
reductions on the leaf water potential; reduction is apparent even in plants grown under good
water conditions, once the leaf water potential results in the interaction of the atmospheric
evaporative demand with the soil water potential (Silva et al., 2003) .
Thus, the roots does not absorb water at the same speed in which the water is lost to
the atmosphere, because the water is passively moved throughout the roots in response of a
water potential gradient created by transpiration (Steudle and Peterson, 1998). This transient
water deficit on the higher transpiration demand hour could explain the temporary Ψ
w
reductions in the control plants of the genotype GBU 50 at midday (Fig. 2 and 3).
Reductions on leaf water potential at midday in well-irrigated plants were found in
two eucalyptus species, with value of Ψ
pd
around -0.4 MPa and of -0.8 MPa at midday.
However, the difference between Ψ
w
of well irrigated plants and the ones under severe stress
(25% FC) at midday was of 1.4 MPa to Eucalyptus globules and of 1.14 MPa to E.
camaldulensis (Gindaba et al., 2005).
The high values of Ψ
w
found in umbu plants with little variations throughout the day
and between treatments suggest that this specie has isohydric behaviour (Tardieu and
Simonneau, 1998), because its rigid stomatal control reduced the transpiration at midday
(Lima Filho, 2004). According to the same author the umbu tree exhibits two peaks of
transpiration (at 800 h and 1400 h) in the field. This information should support the genotypes
GBU 50 and GBU 68 behavior, which reduced the Ψ
w
at 800 h and 1400 h, respectively
(Figure 3).
The initial drought period induced reductions in the soluble carbohydrates content
(CH) only in genotype GBU 50 (Table 4). Under good water availability conditions, this
genotype significantly differed of the others, showing the higher CH in the leaves. There
were reductions in CH content with the drought cycle prolongation (Table 4).
96
Sircelj et al (2005) observed significant increases of CH mainly on sorbitol content in
apple tree cultivated after 10, 15 and 20 days of withholding water (considered moderate
stress treatment). However, at 23 days of treatment (considered severe stress), a fall in the
sorbitol contents was observed of about 22% and 23% for the two studied cultivars,
suggesting depletion in the sorbitol levels when plants were submitted to severe stress. The
reductions in CH content in umbu plants suggest that sugars are not the main solute
responsible for reducing water potential in this species, although it has an important role in
the osmotic adjustment.
Table 4. Soluble carbohydrate contents in the leaves of four umbu tree genotypes growing
under intermittent drought. The first harvest was done when the first stomatal closure
occurred (4
th
day to GBU 68 and 5
th
day to the remained genotypes) and the second harvest
was performed after 31 days of treatments at 800 h.
Carbohydrates (µ
µµ
µmol.gFW
-1
)
1
st
harvest
2
nd
harvest
Genotypes
Control Stressed
Control Stressed
GBU 44 151.16 aB 127.00 aA 124.46 aA 94.84 bA
GBU 48 153.82 aB 136.10 aA 134.30 aA 87.33 bA
GBU 50 224.12 aA 126.65 bA 158.50 aA 95.85 bA
GBU 68 127.68 aB 144.52 aA 148.04 aA 99.50 bA
Values followed by different letters, lower case among treatments and upper case among genotypes, do not
significantly differ by Tukey test (P<0.05).
There was a significant difference among genotypes to amino acid content (AA)
(P<0.01). The genotypes GBU 44 and 48 reduced about 40% and 43% respectively in
response of the initial reduction in the soil moisture (Table 5). At the end of the experimental
period the genotype GBU 44 stayed showing increases in the AA and GBU 50 showed
97
reductions in it. The remained genotypes did not show significant differences between
treatments (P<0.05) (Table 5).
Table 5. Free amino acids contents in the leaves of four umbu tree genotypes growing under
intermittent drought. The first harvest was done when the first stomatal closure occurred (4
th
day to GBU 68 and 5
th
day to the remained genotypes) and the second harvest was performed
after 31 days of treatments at 800 h.
Amino acids (µ
µµ
µmol.gFW
-1
)
1
st
harvest
2
nd
harvest
Genotypes
Control Stressed
Control Stressed
GBU 44 6,84 bA 8,65 aA 5,13 bB 8,17 aA
GBU 48 6,86 bA 8,26 aA 6,97 aAB 7,92 aA
GBU 50 8,65 aA 5,20 bB 8,40 aA 5,65 bA
GBU 68 7,09 aA 4,00 bB 5,08 aB 6,09 aA
Values followed by different letters, lower case among treatments and upper case among genotypes, do not
significantly differ by Tukey test (P<0.05).
Increases in free amino acid level have been observed in the plants submitted to water
deficit (Rabe, 1990; Sirclj et al., 2005). Alterations in the AA content were verified in two
apple tree cultivars under severe water deficit, increasing more than 40% in comparison with
the control plants (Sircelj et al., 2005).
There were not significant differences among genotypes and between treatments
relative to protein content in the leaves (Table 6), indicating that there was not proteolysis in
response to drought cycles imposed during the stress period. These results suggest that the
increase in the AA content in the genotype GBU 44 and 48 occurred through synthesis and
not because protein degradation in response to drought.
There was no significant difference among genotypes to proline content in plants
grown in good soil water availability (Table 7).
98
Among the genotypes, GBU 48 showed a significant increase of proline in the leaves
at the first evaluation (72%). The drought cycle prolongation induced accumulation of proline
in the leaves in the most stressed plants, except to GBU (Table 7). In percentile term there
were increases of 52%, 49.3% and 49.4% to GBU 44, 48 and 68, respectively.
Proline is broadly found in high plants and it has been often accumulated in response
to environmental stresses (Ashraf and Foolad, 2007). A significant increase in proline content
was reported in leaves of zarzamora (Rubus spp.) when plants were submitted to withholding
of water (Quezada et al., 1999). The authors observed two-folds more proline in stressed
plants (1.81 mg.g
-1
MS) than in control ones (0.83 mg.g
-1
MS). Nogueira et al. (2001) verified
high values of proline in stressed plants by withholding water of Surinam cherry until 38-
folds than in daily-irrigated plants.
Table 6. Total soluble protein content in leaves of four umbu tree genotypes growing under
intermittent drought. The first harvest was done when the first stomatal closure occurred (4
th
day to GBU 68 and 5
th
day to the remained genotypes) and the second harvest was performed
after 31 days of treatments at 800 h.
Protein (µ
µµ
µmol.gMF
-1
)
1
st
harvest
2
nd
harvest
Genotypes
Control Stressed
Control Stressed
GBU 44
163.38 aA 216.91 aA
77.04 aA 88.32 aA
GBU 48
158.00 aA 171.91 aA
76.25 aA 82.03 aA
GBU 50
231.26 aA 259.41 aA
117.86 aA 109.99 aA
GBU 68
145.06 aA 121.55 aA
76.37 aA 85.04 aA
Values followed by different letters, lower case among treatments and upper case among genotypes do not
significantly differ by Tukey test (P<0.05).
99
Table 7. Free proline content in leaves of four umbu tree genotypes growing under
intermittent drought. The first harvest was done when the first stomatal closure occurred (4
th
day to GBU 68 and 5
th
day to the remained genotypes) and the second harvest was performed
after 31 days of treatments at 800 h.
Proline (µ
µµ
µmol.gMF
-1
)
1
st
harvest
2
nd
harvest
Genotypes
Control Stressed
Control Stressed
GBU 44
12.09 aA 10.61 aB
5.44 bA 8.54 aA
GBU 48
12.86 bA 22.38 aA
4.97 bA 7.74 aAB
GBU 50
11.23 aA 10.44 aB
5.44 aA 6.01 aB
GBU 68
6.86 aA 5,59 aB
5.99 bA 9.15 aA
Values followed by different letters, lower case among treatments and upper case among genotypes, do not
significantly differ by Tukey test (P<0.05).
The organic solutes accumulation in the roots did not follow the same patter found in
the leaves. The intermittent drought induced increases in the carbohydrate content in the roots
only to genotype GBU 48 (Table 8). Contrary, there were reductions in CH to GBU 68. This
last genotype was the only one that showed the higher AA in response to stress, increasing
2.5-fold in comparison to control. The remained genotypes remained unchanged.
There were increases in the protein content in the roots of stressed plants to GBU 44
(Table 8). The genotype GBU 48 stayed unchanged and genotypes GBU 50 and 68 reduced
protein content. This proteolysis could be responsible by increasing AA content to GBU 68,
but the same did not occur with GBU 50.
Proline content in the roots (xylopodium) differs significantly among genotypes GBU
48 and GBU 44 and 50 under control conditions (Table 8). Under stress conditions, the
100
genotype GBU 68 showed the higher proline content in the roots in comparison with control
plants. Stressed plants of GBU 68 increased about 3-fold more proline in response to drought
than control plants. As roots are in contact with the soil, it is also the first organ that suffers
the impacts of the soil moisture changes. Thus, the accumulation of active organic solutes is
important for maintaining the water inflow inside the cells and the transport to the shoot.
According Taiz and Zeiger (2004), the osmotic adjustment develops slowly in
response to the tissue dehydration. Leaves capable to osmotic adjust can to maintain its turgor
more effectively under lower water potential than the ones without this capacity. The turgor
maintenance makes possible the continuity of cell elongation and facilitates higher stomatal
conductance under lower water potential, suggesting that the osmotic adjustment is a type of
acclimatization, which increases tolerance to dehydration. Certainly, the substances
accumulated during the stress period did not contribute to maintaining the turgor in all umbu
tree genotypes, like the case of proline in the leaves of the most genotypes studied and in the
roots of the GBU 68. However, in quantitative terms, the values of proline content are not too
representative when compared with carbohydrates, which represent about 50% of the total
osmoticaly active solutes in plants (Ashraf and Harris, 2004), and this solute was reduced in
response to water stress. Thus, in the growth conditions of the present work, osmotic
adjustment by solutes accumulation is not evident in umbu plants.
101
Table 8. Total soluble carbohydrates, free amino acids, total soluble protein and free proline
contents in the roots (xylopodium) of four umbu tree genotype under intermittent drought
after 31 treatment days.
Genotypes Control Stress
Carbohydrates (µ
µµ
µmol.gMF
-1
)
GBU 44 126.72 aAB 128.65 aA
GBU 48 118.71 bB 127.84 aA
GBU 50 123.4 aAB 122.89 aA
GBU 68 132.85 aA 108.09 bB
Amino acids (µ
µµ
µmol.gMF
-1
)
GBU 44 1.03 aA 1.81 aAB
GBU 48 1.76 aA 1.31 aAB
GBU 50 1.10 aA 1.20 aB
GBU 68 0.97 bA 2.39 aA
Protein (µ
µµ
µmol.gMF
-1
)
GBU 44 54.31 bA 66.41 aA
GBU 48 52.81 aA 60.59 aAB
GBU 50 57.84 aA 48.29 bB
GBU 68 52.46 aA 35.68 bC
Proline (µ
µµ
µmol.gMF
-1
)
GBU 44 0.85 aB 1.11 aB
GBU 48 2.10 aA 1.54 aB
GBU 50 0.88 bB 1.43 aB
GBU 68 1.14 bAB 3.49 aA
Values followed by different letters, lower case among treatments and upper case among genotypes do not
significantly differ by Tukey test (P<0.05).
CONCLUSIONS
Umbu trees presented isohidry behaviour maintaining high leaf water potential and a
great variability in organic solutes accumulation in response to drought with marked
differences among the genotypes. The maintenance of the high Ψ
w
values throughout the day
102
in the highest transpiration demand hour with decreases in sugar contents and just small
proline accumulation in response to drought in the most of the genotypes evaluated, suggest
that the maintenance of turgor in the umbu tree genotypes is relative to water storage in the
xylopodium and not to decreases in the water potential caused by solutes accumulation.
ACKNOWLEDGMENT
The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES) by financial support, Dr. Júlio Villar and Anacleto Junior from the
Laboratório de Física do Solo by soil analysis, and Michael Kalani Kauwe by English
corrections.
REFERENCES
Améglio T, Archer P, Cohen M, Valancogne C, Daudet FA, Dayau S, Cruiziat P (1999)
Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant
Soil. 207:155-167.
Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants.
Plant Sci. 166: 3-16.
Ashraf M, Foolad M R (2007) Roles of glycine betaine and proline in improving plant
abiotic stress resistance. Environ. Exp. Bot. 59:206-216.
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress
studies. Plant Soil. 39:205-207.
Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci. Hort. 78:237-260.
103
Bradford MM (1976) A rapid and sensitive method for the quantification of microgram
quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem.
72:246-254.
Chartzoulakis K, Patakas A, Bosabalidis AM (1999) Changes in water relations,
photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars.
Environ. Exp. Bot. 42:113-120.
Charzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects
leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci.
Hort. 95:39-50.
Dubois M, Gilles KA, Hamilton, JK, Rebers PA, Smith F (1956) Colorimetric method for
determination of sugars and related substances. Anal. Chem. 28:350-356.
Gindaba J, Rozanov A, Negash L (2005) Photosynthetic gas exchange, growth and biomass
allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture
deficit. Forest Ecol. Manag. 205:127-138.
Haines WB (1930) Studies in the physical properties of soil. V. The hysteresis effect in
capillary properties, and the modes of moisture distribution associated therewith. J. Agric.
Sci. 10:96-105.
Hong-Bo, F, Xiao-Yan, C, Li-Ye, C., Xi-Ling, Z., Gang, W, Yong-Bing, Y, Chang-Xing, Z,
Zan-Min, H. (2006) Investigation on the relationship of proline with wheat anti-drought
under soil water deficits. Coll. Surf. B. 53:113-119.
Jones, M.M., C.B. Osmond, and N.C. Turner. 1980. Accumulation of solutes in leaves of
sorghum and sunflower in response to water deficit. Aust. J. Plant Physiol. 7:193–205.
Lima Filho JMP (2001) Internal water relations of the umbu tree under semi-arid conditions.
Rev. Brás. Frutic. 23:518-521.
Lima Filho JMP (2004) Gas exchange of the umbu tree under semi-arid conditions. Rev. Bras.
Frutic. 26:206-208.
104
Nogueira RJMC, Moraes JAPM, Burity HÁ, Bezerra Neto E (2001) Alterações na resistência
à difusão de vapor das folhas e relações hídricas em aceroleiras submetidas a déficit de
água. Rev. Bras. Fisiol. Veg. 13:75-87.
Nogueira RJMC, Albuquerque MB, Silva EC (2005) Aspectos ecofisiológicos da tolerância à
seca em plantas da caatinga. In: Nogueira RJMC, Araújo EL, Willadino LG, Cavalcante
UMT. Estresses ambientais: danos e benefícios em plantas, Imprensa Universitária da
UFRPE, Recife.
Oliveira VR, Resende MEV, Nascimento CES, Drumond MA, Santos CAF (2004) Genetic
variability of provenances and progenies of umbu tree by mixed linear model
methodology (REML/BLUP). Rev. Bras. Frutic. 26: 53-56.
Pagter M, Bragato C, Brix H (2005) Tolerance and physiological responses of Phragmites
australis to water stress. Aquatic Bot. 81:285-299.
Pimentel C (2004) A Relação da Planta com a Água. Seropédica, Rio de Janeiro.
Quezada RAP, Ontiveros JLR, Hernández VAG (1999) Transpiracion, potencial drico y
prolina em zarzamora bajo déficit hídrico. Terra. 17:125-130.
Rabe E (1990) Stress physiology: the functional significance of the accumulation of nitrogen-
containing compounds. J. Hortic. Sci. 65:231-243.
Santos CAF, Nascimento CES, Oliveira MC (1999) Recursos genéticos do umbuzeiro:
preservação, utilização e abordagem metodológica. In: Queiróz MA, Goedert CO, Ramos
SRR (eds). Recursos genéticos e melhoramento de plantas do Nordeste brasileiro (on-
line). Versão 1.0. Petrolina-PE. EMBRAPA Semi-Árido/Brasília-DF: Embrapa Recursos
Genéticos e Biotecnologia. Nov, 1999. Disponível em:
http://www.cpatsa.embrapa.br/livrorg/umbuzeiro.doc. Acesso em 24 ago. 2003.
Sarker BC, Hara M, Uemura M (2005) Proline synthesis, physiological responses and
biomass yield of eggplants during and after repetitive soil moisture stress. Sci.
Hort.103:387-402.
105
Silva EC, Nogueira RJMC, Azevedo Neto AD, Santos VF (2003) Comportamento estomático
e potencial da água da folha em três espécies lenhosas cultivadas sob estresse hídrico.
Acta Bot. Bras. 17:231-246.
Silva EC, Nogueira RJMC, Azevedo Neto AD, Brito JZ, Cabral EL (2004) Aspectos
ecofisiológicos de dez espécies em uma área de caatinga no município de Cabaceiras,
Paraíba, Brasil. Iheringia, Sér. Bot. 59:201-205.
Sircelj H, Tausz M, Grill D, Batic F (2005) Biochemical responses in leaves of two apple tree
cultivars subjected to progressing drought. J. Plant Physiol. 162:1308-1318.
Slatyer RO (1967) Plant-water relationships, Academic, New York.
Souza CR, Maroco, JP, Santos TP, Rodríguez ML, Lopes, C, Pereira JS, Chaves, MM (2005)
Control of stomatal aperture and carbon uptake by deficit irrigation in two gravepines
cultivars. Agricult. Ecosys. Environ. 106:261-274.
Steudle E, Peterson CA (1998) How does water get through roots? J. Exp. Bot. 49:775-788.
Taiz L, Zeiger E (2004) Plant Physiology, 3
rd
ed., Sinauer Associates Inc., Massachusetts.
Tardieu F, Simonneau T (1998) Variability among species of stomatal control under
fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric
behaviours. J. Exp. Bot. 49:419-432.
Yemm EW, Cocking EC (1955) Determination of amino acids with ninhydrin. Analyst,
80:209-213.
Zhu X, Gong H, Chen G, Wang S, Zhang C (2005) Different solute levels in two spring wheat
cultivars induced by progressive field water stress at different developmental stages. J.
Arid Environ. 62:1-14.
106
Capítulo 3
PHYSIOLOGICAL RESPONSES TO SALT STRESS IN YOUNG UMBU
PLANTS
Abstract
1. Introduction
2. Material and methods
2.1 Plant material, growth, and treatment conditions
2.2 Growth measurement
2.3 Transpiration, diffusive resistance, and water potential measurements
2.4 Na+, K+, Cl-, amino acid, and soluble carbohydrate contents
2.5 Experimental design and statistical analysis
3. Results
3.1 Growth
3.2 Transpiration, diffusive resistance, and water potential
3.3 Na
+
, Cl
-
, K
+
, carbohydrates, and amino acids
4. Discussion
Acknowledgment
References
Artigo publicado na revista Environmental and Experimental Botany, v.63, p.147–157, 2008.
Disponível em: http://www.sciencedirect.com/science/journal/00988472
107
PHYSIOLOGICAL RESPONSES TO SALT STRESS IN YOUNG UMBU
PLANTS
*
Elizamar Ciríaco da Silva
a†
, Rejane Jurema Mansur Custódio Nogueira
b
, Francisco
Pinheiro de Araújo
c
, Natoniel Franklin de Melo
c
, André Dias de Azevedo Neto
b
.
a
Laboratório de Fisiologia Vegetal,Universidade Federal Rural de Pernambuco, 52171-030, Recife,
Pernambuco, Brazil
a,b
Departamento de Biologia, Universidade Federal Rural de Pernambuco, 52171-030, Recife, Pernambuco,
Brazil
c
Embrapa Semi-Árido, P. O. Box 23, 56300-000, Petrolina, PE, Brazil.
Abstract
Soil salinity affects plant growth and development due to harmful ion effects and water stress
caused by reduced osmotic potential in the soil solution. In order to evaluate the effects of salt
stress in young umbu plants, research was performed in green house conditions at the
Laboratory of Plant Physiology at Federal Rural University of Pernambuco, Brazil. Growth,
stomatal behaviour, water relations, and both inorganic and organic solutes were studied
aiming for a better understanding of the responses of umbu plants to increasing salinity. Plants
were grown in washed sand with Hoagland and Arnon nutrient solution with 0, 25, 50, 75,
and 100 mM NaCl. Growth, leaf water potential, transpiration, and diffusive resistance were
evaluated. Na
+
, K
+
, Cl
-
, soluble carbohydrates, and free amino acid contents were measured in
several plant organs. Most variables were affected with salinity above 50 mM NaCl showing
decreases in: number of leaves, plant height, stems diameter, and dry masses, and increases in
root to shoot ratio. Reductions in Ψ
pd
were observed in plants grown under 75 and 100 mM
NaCl. All salt levels above zero increased Na
+
and Cl
-
contents in leaves. However, K
+
content was not affected. Na
+
and Cl
-
in stems and roots reached saturation in treatments
above 50 mM NaCl. Organic solute accumulation in response to salt stress was not observed
in umbu plants. These results suggest that umbu plants tolerate salt levels up to 50 mM NaCl
without showing significant physio-morphological alterations.
Key words: Spondias tuberosa; water potential; transpiration; organic solutes; sodium;
chloride.
*
Part of the doctorate thesis of the first author
Corresponding author: Tel: +55 81 30520124; +55 81 99988420; fax: +55 81 33206300.
E-mail address: elizaciriaco@gmail.com
108
1. Introduction
Soil salinization is a serious problem in the entire world and it has grown substantially
causing loss in crop productivity. It has been estimated that about 954 million hectares of land
around the world are already salinised and 4.5% of these lands are located in Brazil (Dias et
al., 2003). Although the information about the saline areas in Brazil is not well defined, it is
estimated that 20-25 percent of the irrigated areas near rivers and intermittent streams face
salinity and/or drainage problems. Irrigated perimeters in the Northeastern Brazil are
approximately 23,000 ha and 25% are already salt affected (FAO, 2006).
Salinity reduces plant growth due to osmotic and ionic effects on soil solution
(Marschner, 1990; Munns, 2002). Short-term effects include reduction on growth by salt due
to osmotic effects, which reduces cell expansion. Long-term effects include excessive salt
absorption, which causes plants to suffer ionic stress, leading to premature leaf aging
following a reduction in the available photosynthetic area to maintain growth (Munns, 2002).
In both long and short-term, reductions on growth are generally attributed to low
photosynthetic rates due both stomatal and non-stomatal limitations.
Stomatal closure is likely the first plant defence against desiccation and an important
factor to control carbon fixation. Non-stomatal limitations on photosynthesis have been
attributed to reductions in the carboxylation efficiency (Bethke and Drew, 1992; Robinson et.
al., 1997). Thus, independent of the limitation type, salinity affects growth and can alter leaf
water potential, stomatal conductance, and transpiration (Sultana et al., 1999; Parida and Das,
2005).
Salt stress tolerance in plants is a complex phenomenon that may involve
developmental changes as well as physiological and biochemical processes (Delauney and
Verma, 1993; Hare and Cress, 1997). In halophytes, salt tolerance is a result of inorganic ion
accumulation, mainly Na
+
and Cl
-
, which are compartmentalized in the vacuole. Whilst
organic solutes accumulate in cytoplasm balancing water potential through several cellular
compartments (Greenway and Munns, 1980; Marschner, 1990; Robinson et al., 1997; Serraj
and Sinclair, 2002). In addition to their role in cell water relations, organic solutes
accumulation may also contribute to the maintenance of ionic homeostasis and stabilization of
some macromolecules and organelles such as proteins, protein complexes and membranes
(Bohnert and Shen, 1999; Bray et al., 2000).
Umbu tree (Spondias tuberosa Arr. Cam.) is a xerophytic tree belonging to the
Anacardiaceae which produces fruit edible to humans and animals. It is from the semi-arid
109
region of the Brazilian Northeast. The tuberous roots (xylopodium) help to adapt it to the
climate due to their ability to store water, mineral salts, and organic solutes essential to its
survival during dry seasons (Epstein, 1998; Duarte et al., 2004).
The effects of salt stress on umbu tree physiology have been little studied. Neves et al.
(2004) classified the umbu tree as moderately tolerant to salinity using the percentage
reductions on dry mass as an evaluation standard. Considering the increase of salinization on
arable lands and that the umbu tree is a native species in arid environments, this study was
carried out to test the hypothesis that salinity induces changes in the ionic and osmotic
relations in salt-stressed umbu plants, with consequences in the gas exchanges, growth, and
solutes accumulation. Thus, this study may contribute for a better understanding of the
responses of umbu plants to increasing salinity and improve knowledge of the physiology and
ecology of this important species and perhaps other drought tolerant species.
2. Material and methods
2.1 Plant material, growth, and treatment conditions:
Research was carried out in greenhouse conditions at the Laboratory of Plant
Physiology of Federal Rural University of Pernambuco, Brazil, between July and September,
2004. Umbu seeds coming from Embrapa – CPATSA, Petrolina, Pernambuco state were sown
in washed sand trays and watered daily. Thirty days after emergence, uniform, 1-month-old
seedlings, of 13 cm height, four leaves, and 0.2 cm stem diameter were transplanted to pots
containing 8 kg of washed sand. Plants were irrigated daily with full strength Hoagland’s
nutrient solution (Hoagland and Arnon, 1950) for 30 days prior to starting salt treatments.
After this period, a stress period was imposed in which plants of all treatments were irrigated
daily until the free drainage with full strength Hoagland’s nutrient solution with 0, 25, 50, 75
or 100 mM NaCl for 36 days.
2.2 Growth measurement:
Each week, shoot length, the number of leaves, and stem diameter were measured. At
the end of the experimental period, plants were carefully removed from the substrate, the
roots were washed with distilled water, and plants were partitioned in different organs. Sigma
Scan program SPSS Inc was used to determine total leaf area. After drying at 65°C in an oven
until constant dry weight, mass of leaves, stem, and root dry was determined. These data were
used to calculate biomass allocation to leaves, stem and roots as well as root to shoot ratio
(R/Sh) as described by Benincasa (1988).
110
2.3 Transpiration, diffusive resistance, and water potential measurements:
Transpiration (E) and diffusive resistance (r
s
) were measured using a steady-state
porometer, model LI-1600 (LI-COR, Inc. Lincoln, NE, USA), which set the null point near
humidity in the greenhouse. As the porometer gave us the values of E in µg cm
-2
s
-1
, the
values were converted to mmol m
-2
s
-1
. Two mature and fully-expanded leaves located 5 to 7
leaves from the shoot tip on each plant were sampled. The measurements were carried out
over one day (8-16 h at 2h intervals) each week. Photosynthetic active radiation (PAR) varied
from 14.8 to 776.9 µmol m
-2
s
-1
, air temperature (T
air
) varied from 25.5 to 33.7°C and vapour
pressure deficit (VPD) from 1.42 to 2.96 kPa, respectively, exhibiting peaks at midday. At the
end of the experimental period, the same leaves used for transpiration measurement were
sampled to determine pre-dawn water potential using a model 3035 pressure chamber (Soil
Moisture Equipment Corp, Santa Barbara, CA, USA).
2.4 Na
+
, K
+
, Cl
-
, amino acid, and soluble carbohydrate contents:
The extracts used for determination of sodium, potassium, chloride, amino acids, and
soluble carbohydrates contents were prepared by grinding 0.5 mg of dry mass tissue with 10
mL of distilled water at 25°C for 10 minutes. The homogenate was centrifuged at 3,000 × g
for 15 minutes, and the supernatant filtered through qualitative filter paper. An aliquot of
filtrate was used for Na
+
and K
+
determination by flame photometry (Sarruge and Haag,
1974) and Cl
-
by precipitation titration with silver nitrate by Mohr’s method (Azevedo Neto
and Tabosa, 2001). Soluble carbohydrates were determined according to Dubois et al. (1956),
using D(+)-glucose as standard. For free amino acid determination, 0.5 mL of 10%
trichloroacetic acid was added to an aliquot of 0.5 mL of the water extract and the mixture
was kept at 25°C for an hour. This mixture was then centrifuged at 12,000 × g for 5 minutes,
and the supernatant used for amino acid determination (Yemm and Cocking, 1955), using L-
leucine as standard.
2.5 Experimental design and statistical analysis:
The experimental design was completely randomized with five salt levels and six
replicates. Data were submitted to analysis of variance (ANOVA) and the means compared by
Tukey’s multiple range test (P< 0.05).
111
3. Results
3.1 Growth
Salt stress induced significant differences on plant growth during the experimental
period. After 15 stress days, decreases in plant height were observed in plants grown with 75
and 100 mM NaCl (P<0.01) (Fig. 1A). At the end of the stress period (36 days), only plants
submitted to 25 mM NaCl did not show significant differences compared to control plants.
The means values of plant height were 58.4 cm, 54.6 cm, 52.4 cm, 49.9 cm, and 48.4 cm for
treatments of 0, 25, 50, 75, and 100 mM NaCl respectively.
The number of leaves was more sensitive than plant height, showing a significant
reduction (P<0.01) seven days after the beginning of the treatments (Fig.1B). After 36 days
the mean values of number of leaves were respectively 9.7, 7.7, 8.4, 6.2, and 5.8 to 0, 25, 50,
75, and 100 mM NaCl. Thus, salinity reduced number of leaves at all NaCl levels. It was
especially visible in plants submitted to 75 and 100 mM of NaCl (37% and 40%,
respectively).
Stem diameter was less sensitive to NaCl levels than plant height and number of
leaves. The means values of stem diameter at the end of the experimental period were 0.79 cm
(control), 0.80 cm (25 mM), 0.75 cm (50 mM), 0.63 cm (75 mM), and 0.58 cm (100 mM) as
shown in Figure 1C. Significant reductions in stems diameter were verified only in plants
submitted to 75 and 100 mM of NaCl (Fig 1C). This represents 20% and 26%, respectively, in
comparison with control plants.
Salt stress resulted in considerable decreases in leaves, stem, and total dry masses
verified in NaCl levels of 75 and 100 mM. These reductions were approximately 39 and
47%; 46 and 52%; 31 and 34%, respectively (Figs 2A, 2B e 2D). Contrasting these results,
root dry masses increased 45% in plants submitted to 25 mM NaCl, decreasing to the same
control values in the other treatments (Fig. 2C). Root to shoot ratio (R/Sh) increased with salt
stress, having been more visible in plants under 100 mM NaCl (93%) as shown in Figure 2E.
112
X Data
1 8 15 22 29 36
Height (cm plant
-1
)
0
20
40
60
0 mM
25 mM
50 mM
75 mM
100 mM
X Data
1 8 15 22 29 36
Number of leaves plant
-1
0
40
80
120
Days after treatment
1 8 15 22 29 36
Stem diameter (cm)
0.0
0.2
0.4
0.6
0.8
A
B
C
Fig.1. Plant height, number of leaves, and stem diameter of young umbu plants cultivated at
increasing NaCl levels. Means of six replicates ± SD are shown.
113
Níveis de NaCl
0 25 50 75 100
Leaves dry mass (g)
0
3
6
9
Nivéis de NaCl
0 25 50 75 100
Steam dry mass (g)
0
3
6
9
0 25 50 75 100
Roor dry mass (g)
0
3
6
9
0 25 50 75 100
Total dry mass (g)
0
5
10
15
NaCl levels (mM)
0 25 50 75 100
Root to Shoot ratio
0.0
0.3
0.6
0.9
1.2
0 25 50 75 100
Leaf area (cm²)
0
300
600
900
1200
A
B
C
D
E
F
a
a
a
b
b
a
a
ab
bc
c
b
a
ab
b
b
a
a
a
b
b
c
abc
bc
ab
a
a
ab
a
b
b
Fig. 2. Leaves (A), stem (B), root (C), and total dry masses (D), root to shoot ratio (E) and
leaf area (F) of young umbu plants after 36 days at increasing salt levels. Means of six
replicates ± SD are shown. Different letters denote statistical difference by Tukey’s test (P<
0.05) among treatments.
Leaf area reduced as salt concentration increased (Fig. 2F). It occurred in plants
submitted to severe levels of NaCl at 75 and 100 mM, these reductions being 46% and 55%,
respectively, compared with control plants.
114
According to Table 1, specific leaf area (SLA) and leaf area ratio (LAR) were not
affected by salinity irrespective of the considered treatment.
Biomass allocation varied with the NaCl levels applied and with the plant organs
(Fig.3). Thus, level of 100mM NaCl increased biomass allocation to roots by 45% and
decreased stems by 25% and leaves by 20% when compared with control plants.
Table 1. Specific leaf area (SLA) and leaf area ratio (LAR) of young umbu plants under
increasing NaCl levels after 36 days of stress. Means of six replicates ± SD are shown.
NaCl levels Specific leaf area
(cm
2
/g LDM)
Leaf area ratio
(cm
2
/g TDM)
0 mM
211.07 ± 21.94a 75.22 ± 13.92a
25 mM
159.22 ± 66.34a 49.13 ± 20.68a
50 mM
211.28 ± 47.91a 71.50 ± 15.89a
75 mM
187.88 ± 43.60a 58.14 ± 16.29a
100 mM
180.46 ± 26.79a 50.25 ± 7.55a
Values followed by different letters differ significantly according Tukey’s multiple range tests at P< 0.05
NaCl levels (mM)
0 25 50 75 100
Biomass alocation (%)
0
25
50
75
100
a
ab ab ab b
a
ab b b
b
b a
ab a a
Fig.3. Biomass allocation to roots ( ), stem ( ) and leaves ( ) in young umbu plants after
36 days at increasing salt levels. Different letters denote statistical difference by Tukey’s test
(P< 0.05) among treatments.
3.2 Transpiration, diffusive resistance, and water potential
Young umbu plants showed a peak of transpiration at 12 h (noon) in all assessments
(Figs. 4A, 4C, 4E, and 4G). However, transpiration rates (E) were lower at 21 and 28 days
115
than observed in the beginning of the experimental period (Figs. 4E and 4G). Irrespective of
the evaluation day, salinity reduced E in plants grown under 75 and 100 mM NaCl. In
addition, the lowest values of E were observed at 16h. Plants submitted to 100 mM NaCl in
nutrient solution showed the smaller values of E at 28 treatment days when compared with the
other treatments, independent of the time of assessment (Fig. 4G).
Salinity did not induce stomatal closure during the experimental period. However,
increases in r
s
became more conspicuous at 28 days of treatment and the highest value of r
s
was observed at 4pm, particularly in plants under 75 and 100 mM NaCl (Figs. 4B, 4D, 4F e
4H).
Pre-dawn water potential in plants submitted to 25 and 50 mM NaCl remained
unchanged, while plants grown under 75 and 100 mM NaCl treatments showed reduced Ψ
pd
(-
0.96 and -0.89 MPa, respectively) in comparison to control plants.
3.3 Na
+
, Cl
-
, K
+
, carbohydrates, and amino acids
Na
+
content in leaves increased linearly with increases in NaCl levels, reaching the
highest value in plants submitted to 100 mM NaCl (Fig.6). Na
+
content in the stem and roots
increased in plants submitted to 25 mM NaCl, however remained relatively stable at the other
salt levels. Comparing the different plant organs when plants were submitted to 100 mM
NaCl, Na
+
content in leaves was about 3 and 2-fold higher than in stem and roots,
respectively.
Cl
-
content in leaves increased linearly up to levels of 75 mM NaCl. In the stem and
roots, Cl
-
increased also up to 50 mM NaCl. However, differences among salt levels above 50
mM were not observed (Fig.6). The chloride content in the leaves was about 2 and 1.5 fold
higher than in stem and roots at the highest salt level. Chloride content was substantially
higher than sodium in all organs.
Salinity did not significantly affect K
+
contents in the leaves, stems and roots (P<0.01)
(Fig. 7). Na
+
/K
+
ratio increased linearly in leaves with increases in NaCl levels (Fig.7). In
stems and roots, the Na
+
/K
+
ratio was significantly lower for the 0 NaCl treatment than all the
higher treatments which did not differ.
116
Horas de avaliação
8 10 12 14 16
0.0
1.5
3.0
4.5
6.0
7 days
Horas de avaliação
8 10 12 14 16
0.0
1.5
3.0
4.5
6.0
14 days
8 10 12 14 16
E (mmol m
-2
s
-1
)
0.0
1.5
3.0
4.5
6.0
21 days
Time (hours)
8 10 12 14 16
0.0
1.5
3.0
4.5
6.0
28 days
8 10 12 14 16
0
5
10
15
20
25
0
5
10
15
20
25
r
s
(s.cm
-1
)
0
5
10
15
20
25
8 10 12 14 16
0
5
10
15
20
25
A
B
C
D
E F
G
H
00 mM NaCl
25 mM NaCl
50 mM NaCl
75 mM NaCl
100mM NaCl
Fig. 4. Daily course of transpiration (E) and diffusive resistance (r
s
) in young umbu plants
cultivated at increasing NaCl levels. Measurements were accomplished after 7 (A and B), 15
(C and D), 21 (E and F), and 28 (G and H) days of salt stress. Means of six replicates ± SD
are shown.
117
NaCl levels (mM)
0 25 50 75 100
Ψ
Ψ
Ψ
Ψ
pd
(MPa)
-1.2
-0.9
-0.6
-0.3
0.0
a
a
a
b
b
Fig. 5. Pre-dawn leaf water potential (Ψ
pd
) of young umbu plants cultivated under increasing
NaCl levels. Means of six replicates ± SD are shown. Different letters denote statistical
difference by Tukey’s test (P< 0.05) among treatments.
The carbohydrate content in leaves showed a small but significant increase (18%) in
plants grown above 50 mM NaCl (P<0.01) (Fig. 8). In stems, carbohydrate contents increased
40% in plants submitted to 25 mM NaCl. However, it returned to the same as the control
level in the other treatments. In roots, a reduction of 32% in the soluble carbohydrate content
was observed at salt levels of 50, 75, and 100 mM NaCl.
In relation to the amino acid content of leaves, there was a decrease of 53% in the
highest NaCl level when compared with control plants (Fig. 8). In contrast amino acid content
increased nearly 110% in stems of plants grown under higher salt levels (75 and 100 mM
NaCl). In the roots, significant differences in free amino acid content were not observed as a
result of NaCl levels applied.
Under salt stress, carbohydrate content in leaves and roots was respectively 3 and 87-
fold higher than amino acid content.
118
0 25 50 75 100
0
30
60
90
120
Leaves
A
0 25 50 75 100
Na
+
(mmol g
-1
DM)
0
30
60
90
120
Stem
C
NaCl levels (mM)
0 25 50 75 100
0
30
60
90
120
Roots
E
0 25 50 75 100
0
200
400
600
800
0 25 50 75 100
Cl
-
(mmol g
-1
DM)
0
200
400
600
800
0 25 50 75 100
0
200
400
600
800
B
D
F
d
c
bc
ab
a
c
b
b
a
a
b
a
a
a
a
c
b
a
a
a
c
b
a
ab
ab
c
b
a
a
a
Fig. 6. Sodium (Na
+
) and chloride (Cl
-
) contents in leaves (A and B), stem (C and D), and
roots (E and F) in young umbu plants cultivated under increasing NaCl levels. DM = dry
mass. Means of six replicates ± SD are shown. Different letters denote statistical difference by
Tukey’s test (P< 0.05) among treatments.
119
0
30
60
90
K
+
(
µ
µ
µ
µ
mol g
-1
DM)
0
30
60
90
NaCl levels (mM)
0 25 50 75 100
0
30
60
90
0 25 50 75 100
0.0
0.5
1.0
1.5
0 25 50 75 100
Na
+
/K
+
0.0
0.5
1.0
1.5
Leaves
Stem
Roots
0 25 50 75 100
0.0
0.5
1.0
1.5
A
B
C
D
E
F
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
c
ab
ab
a
b
b
a
a
a
ab
d
c
c
ab
a
Fig. 7. Potassium content (K
+
) and sodium/potassium ratio (Na
+
/K
+
) in leaves (A and B), stem
(C and D), and roots (E and F) in young umbu plants cultivated under increasing NaCl levels.
DM = dry mass. Means of six replicates ± SD are shown. Different letters denote statistical
difference by Tukey’s test (P< 0.05) among treatments.
120
0 25 50 75 100
0
150
300
450
600
X Data
0 25 50 75 100
Carbohydrates (
µ
µ
µ
µ
mol g
-1
DM)
0
150
300
450
600
NaCl levels (mM)
0 25 50 75 100
400
800
1200
1600
0 25 50 75 100
0
100
200
300
400
0 25 50 75 100
Amino acids (
µ
µ
µ
µ
mol g
-1
DM)
0
20
40
60
80
0 25 50 75 100
0
20
40
60
80
Leaves
Stem
Roots
A
B
C
D
E F
b
b
a
ab
a
ab
a
ab
b
c
bc
a
c
b
b
b
b
b
a
a
a
a
b
b
b
a
b
ab
ab
a
Fig. 8. Soluble carbohydrates and free amino acids content in leaves (A and B), stem (C and
D), and roots (E and F) in young umbu plants cultivated under increasing NaCl levels. DM =
dry mass. Means of six replicates ± SD are shown. Different letters denote statistical
difference by Tukey’s test (P< 0.05) among treatments.
121
4. Discussion
Salinity inhibits plant growth for two reasons: first, water-deficit and second due to
salt-specific or ion-excess effects (Munns et al., 2006). Different plant species have
developed different mechanisms to cope with these effects (Munns, 2002). In this work
reduction in plant height, number of leaves, and stem diameter in stressed plants were
observed (Fig.1A, 1B, and 1C). However, growth inhibition was not verified during the
experimental period. Stem diameter was less affected by salt stress than plant height and
number of leaves, corroborating the results obtained by Neves et al (2004) in umbu plants.
Reductions in stem diameter were also observed in avocado (Bernstein et al., 2001). Seedlings
of Leucaena leucocephala showed reduced shoot growth by 60% when submitted to 100 mM
NaCl, while seedlings of Prosopis juliflora were reduced just 15% under the same salt
conditions (Viégas et al., 2003).
Salt tolerance has usually been assessed as the percentage biomass production in saline
versus control conditions over a prolonged period of time (Munns, 2002). Plants submitted to
high salinity (75 and 100 mM NaCl) decreased both leaf and stem dry masses (Figs. 2A and
2B). Contrasting with these results, root dry mass increased in plants grown in the lowest
NaCl level (25mM) while plants submitted to 50, 75, and 100 mM NaCl did not differ from
control plants (Fig.2C). Several researchers have shown that shoot growth is more sensitive to
salinity than root growth (Shalhevet et al., 1995; Azevedo Neto and Tabosa, 2000; Bernstein
et al., 2001). Our results demonstrate also that the shoot of young umbu plants is more
sensitive to salinity than the root system (Fig. 2E). According to Munns (1993), this
sensitivity could be explained due to an imbalance among cations as a result of the complex
interaction in the xylem transport system. Alternatively, when compared with shoots, this
phenomenon could be associated to both a faster osmotic adjustment and a slower turgor loss
in the roots (Shalhevet et al., 1995).
Leaf area (LA) was the most sensitive growth parameter in response to high salt levels
in the nutrient solution (75 mM and 100 mM NaCl) (Fig. 2F). For example, in young guava
plants leaf area was reduced by 92% compared to control when plants were submitted to 150
mM NaCl (Távora et al, 2001). The same was observed for mangabeira plants (Hancornia
speciosa Gomes) which showed a 47% reduction in leaf area when cultivated in sand with
125 mM NaCl (Albuquerque, 2003). Leaf area is a function of leaf size. Considering that leaf
area was more affected than number of leaves, our results suggest that salinity affected also
cell elongation ratio, therefore decreasing leaf size.
122
The increases in salinity did not significantly affect specific leaf area (SLA) and leaf
area ratio (LAR) (Table 1) suggesting that the effects of salt stress on leaf area was as intense
as the effect on dry mass yield. Similar results were found in maize by Azevedo Neto and
Tabosa (2000). The contrary was found in mangabeira plants where LAR increased 41%
when NaCl levels increased (Albuquerque, 2003).
The increasing of biomass allocation to roots to the detriment of the shoot induced a
raise in R/Sh ratio (Figs. 2E and 3). These results differ from those found by Neves et al.
(2004) in young umbu plants in which the authors verified reductions in R/Sh with the
increases in NaCl levels in the medium. In contrast, other authors found similar results with
other crops as to those obtained in this work (Azevedo Neto and Tabosa 2000; Bernstein et
al., 2001; Chartzoulakis et al., 2002), while in other research, R/Sh remained unchanged
(Albuquerque, 2003).
Stomatal closure was not observed with the increase of NaCl in nutrient solution. In
stressed plants, however, significant reductions in transpiration rate were verified, primarily in
high evaporative demand hours (Figs. 4A, C, E, G). Decline in transpiration rates usually
occurs in both halophytes and glycophytes when salinity of the root zone increases. Short-
term results indicate that the reduction in E occurs due to decrease in water potential in roots.
Long-term results indicate that high salt concentrations are associated with the inhibition of
photosynthesis caused by the accumulation of salts in the mesophyll and increases in
intercellular CO
2
concentration which reduces stomatal apertures (Robinson et al., 1997).
The regulation in the transpiration rate has an important role in controlling ion
accumulation in the shoot because salt transport occurs via transpiration flow (Robinson et al.,
1997). Lima Filho (2004) observed that umbu trees exhibit two peaks of transpiration during
the daytime, at 10h and 16h under field conditions. This shows that even in good soil with
appropriate humidity conditions, umbu trees exert strict control over the water loss through
stomata by restricting transpiration at high evaporative demand hours, assuring a significant
water economy (Lima Filho and Silva, 1998). We found no information about gas exchange
in umbu tree within a saline environment in the literature. Hence our results are the first report
on this topic.
Salinity reduces water potential in guava (Távora et al., 2001), avocado (Chartzoulakis
et al., 2002), Barbados cherry (Nogueira et al., 1998a; Gurgel et al., 2003), mangabeira tree
(Albuquerque, 2003), maize (Azevedo Neto et al., 2004), and sugar apple (Nogueira et al,
2004). However, information about the effects of salt stress on Ψ
pd
in umbu tree was not
found in the literature. Plants cultivated under low and moderate salinity (25 and 50 mM
NaCl), maintained high values of Ψ
pd
, while plants under high NaCl levels (75 and 100 mM)
123
exhibit low values of Ψ
pd
(Fig. 5). These results suggest that salt-induced water stress led to
non-recovering of water potential in the more stressed plants. It is well known that salt stress
reduces hydraulic conductivity in roots, resulting in decreases of water flow from root to
shoot. Thus, there is an alteration in water relations even in osmotically adjusted plants
(O’Leary, 1969; Prisco, 1980).
The association between osmotic and ionic effects (ionic toxicity, nutritional
deficiency and/or imbalance) has been reported as being the main reason of the growth
reduction under salt stress (Yahya, 1998, Neves et al., 2004). Our results showed an increase
in tissue Na
+
and Cl
-
when salinity increased. However this increase was more conspicuous in
leaves than in roots (Figs. 6A, B, E, and F). The stabilization in Na
+
and Cl
-
contents verified
in moderate and high salinity in the roots suggests saturation in the sodium and chloride
retention mechanism in this organ (Figs. 6E and F). Greater Na
+
and Cl
-
accumulation in roots
than shoot has been considered a physiological trait indicator of salt-tolerance in plants
(Viégas et al., 2003). Studying four forest species, these authors verified that salt sensitivity
was correlated with a lower Na
+
and Cl
-
retention in roots. Additional support of this
hypothesis is provided by some olive genotypes, moderately salt tolerant species, for which
Na
+
and Cl
-
accumulation in roots was greater than in leaves (Chartzoulakis et al., 2002).
The maintenance of K
+
content in both leaves and roots of stressed umbu plants (Figs.
7A and 7E) were reported also for other forest species (Viégas et al., 2003), suggesting that
the absorption and transport processes were not affected by competition between this ion and
Na
+
as shown by Azevedo Neto and Tabosa, (2000b) and Azevedo Neto et al. (2004).
Although salinity did not affect K
+
content, increases of Na
+
content in leaves and
roots substantially raised Na
+
/K
+
ratio in these organs (Figs. 7A, B, E, and F). Na
+
/K
+
ratios
equal to or smaller than 0.6 are necessary for an optimal metabolic efficiency in non-
halophyte plants (Greenway and Munns, 1980). High Na
+
concentration can induce K
+
deficiency inhibiting the activity of enzymes that require K
+
. Thus, the interaction between
relative K
+
and Na
+
concentration has been considered a key factor in determining salt
tolerance in plants (Willadino and Câmara, 2005). In this work, Na
+
/K
+
ratios above 1.0 were
found in the leaves (Fig. 7A), with values of 1.4 and 1.5 in plants submitted to 75 and 100
mM NaCl, respectively. These results suggest that the reduction in growth can be, at least in
part, related to metabolic disorders induced by salt.
Soluble carbohydrates and free amino acids have been mentioned as important
compounds in osmoregulation in plants under water and salt stresses (Hare et al., 1998).
Accumulation of these compatible solutes reduces osmotic potential in the cytoplasm and
contributes to maintaining water homeostasis among several cellular compartments (Sairam
124
and Tyagi, 2004). Among all organic compounds, soluble carbohydrates represent about 50%
of the total osmotically active organic solutes (Ashraf and Harris, 2004). However, salinity
may increase carbohydrates in some plant species (Lacerda et al, 2003, Silva et al, 2003) or
decrease in others (Agastian et al., 2000). In this work, carbohydrate content increased 18% in
leaves (Fig. 8A) and decreased 32% in roots (Fig. 8E) when plants were grown at 50 mM
NaCl and higher. In stems, substantial differences in soluble carbohydrates were not verified
(Fig. 8C). The greater carbohydrate accumulation in leaves and the reduction in roots under
stressed conditions may be associated with decreases in this compound exported from leaves
to roots. It is interesting to observe that even in stressed conditions, soluble carbohydrate
content was three fold higher in leaves, contributing therefore to water status maintenance in
roots.
Free amino acid accumulation in plants under salt stress has often been attributed to
alterations in biosynthesis and degradation processes of amino acids and proteins (Dhindsa
and Cleland, 1975; Ranieri et al, 1989; Roy-Macauley et al, 1992). Considering that salinity
significantly decreased the free amino acid content in leaves (Fig. 8B), but did not alter
content in roots (Fig. 8F), our results could be related to an increase in amino acid degradation
or inhibition in synthesis jointly with reductions in degradation or increases in protein
synthesis. Considering that soluble carbohydrate contents in leaves and roots were much
higher than free amino acids, our results suggest a greater participation of carbohydrates than
amino acids in maintaining water relations in both leaves and roots of umbu plants.
Summarizing, salt stress did not significantly affect the initial growth, transpiration,
diffusive resistance, or leaf water potential of umbu plants grown in salt levels up to 50 mM
NaCl. The low Na
+
and Cl
-
retention capacity in stem and roots may be responsible for the
high ion levels observed in the leaves. The organic solute accumulation at the salt levels
studied was not shown to be a physiological trait in response to salt stress in umbu plants.
These results suggest that young umbu plants tolerate salinity levels until 50mM NaCl
without showing significant physio-morphologic alterations in the initial developmental
phase.
Acknowledgement
We thank the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES)
for financial support and Michael Kalani Kauwe (BYU) and Timothy Ashley Heard (CSIRO)
for correcting the English manuscript.
125
References
Agastian, P., Kingsley, S. J., Vivekanandan, M. 2000. Effect of salinity on photosynthesis and
biochemical characteristics in mulberry genotypes. Photosynthetica. 38, 287-290.
Albuquerque, M. B. 2003. Efeito do estresse hídrico e salino na germinação, crescimento
inicial e relações hídricas da mangabeira (Hancornia speciosa Gomes). Dissertação de
Mestrado em Botânica, UFRPE, Recife. 78p.
Ashraf, M., Harris, P. J. C., 2004. Potential biochemical indicators of salinity tolerance in
plants. Plant Sci. 166, 3-16.
Azevedo Neto, A. D., Tabosa, J. N., 2000. Estresse salino em plântulas de milho: Parte I
Análise do crescimento. Rev. Bras. Eng. Agr. Amb. 1, 159-164.
Azevedo Neto, A. D., Tabosa, J. N., 2001. Comparação de metodologias para análise química
de cloreto em tecido vegetal. Pesq. Agropec. Pernamb. 12, 67-71.
Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., Lacerda, C. F., Silva, J. V.; Costa, P. H.
A.; Gomes-Filho, E., 2004. Effects of salt stress on plant growth, stomatal response and
solute accumulation of different maize genotypes. Braz. J. Plant Physiol. 16, 31-34.
Benincasa, M. M. P., 1988. Análise de crescimento de plantas. FUNEP, Jaboticabal.
Bernstain, N., Ioffe, M., Zilberstaine, M., 2001. Salt-stress effects on avocado rootstock
growth. I. Establishing critera for determination of shoot growth sensitivity on the stress.
Plant Soil. 233, 1-11.
Bethke, P.C., Drew, M.C., 1992. Somatal and non-stomatal components to inhibition of
photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl
salinity. Plant Physiol. 99, 219-226.
Bohnert, H. J., Shen, B., 1999. Transformation and compatible solutes. Sci. Hortic. 78, 237-
260.
Bray, E. A., Bailey-Serres, J., Weretilnyk, E., 2000. Responses to abiotic stresses. In:
Buchana B. B., Gruissem, W., Jones, R. L. (eds.), Biochemistry and Molecular Biology of
Plants, ASPP, Rockville. pp. 1158-1203.
Chartzoulakis, K., Loupassaki, M., Bertaki, M., Androulakis, I., 2002. Effects of NaCl salinity
on growth, ion content and CO
2
assimilation rate of six olive cultivars. Sci. Hortic. 96,
235-247.
Delauney, A. J., Verma, D. P. S., 1993. Proline biosynthesis and osmorregulation in plants.
Plant J. 4, 215-223.
Dhindsa, R. S., Cleland, R. E., 1975. Water stress and protein synthesis. Plant Physiol. 55,
781-788.
126
Dias, N. S., Gheyi, H. R., Duarte, S. N., 2003. Prevenção, manejo e recuperação dos solos
afetados por sais. Série Didática nº 13. ESALQ/USP/LER, Piracicaba.
Duarte, M. E. M. D., Mata, M. E. R. M. C., Nascimento, J. P. T., Silveira Junior, V., 2004.
The concentration kinectics of cooked umbu. In: Drying 2004 Proceedings of the 14th
International Drying Symposium (IDS 2004), São Paulo, Brazil. pp. 1971-1976.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. Colorimetric method for
determination of sugars and related substances. Anal. Chem. 28, 350-356.
Epstein, L., 1998. A riqueza do umbuzeiro. Rev. Bahia Agric. 2, 31-34.
FAO- Food and Agriculture Organization of the United Nations. 2006. Extent and Causes of
Salt-affected Soils in Participating Countries. Available in:
http://www.fao.org/ag/agl/agll/spush/topic2.htm. Acessed in 08 July 2006.
Greenway, H., Munns, R., 1980. Mechanism of salt tolerance in nonhalophytes. Annu. Rev.
Plant Physiol. 31, 149-190.
Gurgel, M. T., Fernandes, P. D., Santos, F. J. S., Gheyi, H. R., Bezerra, I. L., Nobre, R. G.,
2003. Estresse salino na germinação e formação de porta-enxerto de aceroleira. Rev. Bras.
Eng. Agric. Amb. 7, 31-36.
Hare, P. D., Cress, W. A., 1997. Metabolic implications of stress-induced proline
accumulation in plants. Plant Growth Regul. 21, 79-102.
Hare, P. D., Cress, W. A., Van Staden, J., 1998. Dissecting the roles of osmolyte
accumulation during stress. Plant Cell Environ. 21, 535-553.
Hoagland, D.R., Arnon, D.I., 1950. The water-culture method for growing plants without
soil. (CAES. Circular, 347). California Agricultural Experiment Station, Califórnia . 32p.
Lacerda, C. F., Cambraia, J., Oliva, M. A. O., Ruiz, H. A., Prisco, J. T., 2003. Solute
accumulation and distribution during shoot and leaf development in two sorghum
genotypes under salt stress. Environ. Exp. Bot. 49, 107-120.
Lima Filho, J. M. P., 2001. Internal water relations of the umbu tree under semi-arid
conditions. Rev. Bras. Frutic. 23, 518-521.
Lima Filho, J. M. P., 2004. Gas exchange of the umbu tree under semi-arid conditions. Rev.
Bras. Frutic. 26, 206-208.
Lima Filho, J. M. P., Silva, C. M. M. S., 1998. Aspectos fisiológicos do umbuzeiro. Pesq.
Agropec. Bras. Brasília. 23, 1091-1094.
Marschner, H., 1990. Mineral nutrition of high plants. Academic Press, London.
Munns, R., 1993. Physiological process limiting plant growth in saline soils: some dogmas
and hypotheses. Plant Cell Environ. 16, 15-24.
127
Munns, R., 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25,
239-250.
Munns, R., James, R. A., Läuchli, A.,2006. Approaches to increasing the salt tolerance of
wheat and other cereals. J. Exp. Bot. 57, 1025-1043.
Neves, O. S. C., Carvalho, J. G., Rodrigues, C. R., 2004. Crescimento e nutrição mineral de
mudas de umbuzeiro (Spondias tuberosa Arr. Cam.) submetidas a níveis de salinidade em
solução nutritiva. Ciênc. Agrotec. 28, 997-1006.
Nogueira, R. J. M. C., Aloufa, M. A. I., Albuquerque, M. B., 2004. Stomatic behaviour and
leaf waterpotential in young plants of Annona squamosa submitted to saline stress. Fruits.
59, 209-214.
Nogueira, R. J. M. C., Burity, H. A., Moraes, J. A. P., 1998a. Transpiração e potencial hídrico
foliar em aceroleiras (Malpighia emarginata DC) cultivadas na zona semi-árida de
Pernambuco. Ciênc. Rural. 3, 75-81.
O’Leary, J. W., 1994. Adaptative components of salt tolerance. Handbook of plant and crop
physiology (M.Pessarakli –ed.). Marcel Dekker, Inc., New York. pp. 577-585.
Parida, A. K., Das, A. B., 2005. Salt tolerance and salinity effects on plants: a review.
Ecotoxicol. Environ. Safety. 60, 324-349.
Prisco, J. T., 1980. Alguns aspectos da fisiologia do ‘stress’ salino. Rev. Bras. Bot. 3, 85-94.
Ranieri, A., Bernardi, R., Lanese, P., Soldatini, G. F., 1989. Changes in free amino acid
content and protein pattern of maize seedlings under water stress. Environ. Exp. Bot. 29,
351-357.
Robinson, M. F., Véry, A.A., Sanders, D., Mansfield, T. A., 1997. How can stomata
contribute to salt tolerance? Ann. Bot. 80, 387-393.
Roy-Macauley, H., Zuily-Fodil, Y., Kidric, M., Thi, A. T. P., Da Silva, J. V., 1992. Effect of
drought stress on proteolytic activities in Phaseolus and Vigna leaves from sensitive and
resistant plants. Physiol. Plantarum. 85, 90-96.
Sairan, R. K., Tyagi, A., 2004. Physiology and molecular biology of salinity stress tolerance
in plants. Curr. Sci. 86, 407-421.
Sarruge, J. R. S., Haag, H. P., 1974. Análises químicas em plantas, USP-ESALQ, Piracicaba.
Serraj, R., Sinclair, T. R., 2002. Osmolyte accumulation: can it really help increase crop yield
under drought conditions? Plant Cell Environment. 25, 333-341.
Silva, J. V., Lacerda, C. F., Costa, P. H. A., Enéas Filho, J., Gomes Filho, E., Prisco, J. T.,
2003. Physiological responses of NaCl stressed cowpea plants grown in nutrient solution
supplemented with CaCl
2
. Braz. J. Plant Physiol. 15, 99-105.
128
Shalhevet, J., Huck, M. G., Schroeder. B. P., 1995. Root and shoot growth responses to
salinity in maize and soybean. Agron. J. 87, 512-516.
Sultana, N., Ikeda, T., Itoh, R., 1999. Effect of NaCl salinity on photosynthesis and dry matter
accumulation in developing rice grains. Environ. Exp. Bot. 42, 211-220.
Távora, F. J. A. F., Ferreira, R. G., Hernandez, F. F. F., 2001. Crescimento e relações hídricas
em plantas de goiabeira submetidas a estresse salino com NaCl. Rev Bras. Frutic. 23, 441-
446.
Viégas, R. A., Queiroz, J. E., Silva, L. M. M., Silveira, J. A. G., Rocha, I. M. A., Viégas, P. R.
A., 2003. Plant growth, accumulation and solute partitining of four Forest species under
salt stress. Rev. Bras. Eng. Agric. Amb. 7, 258-262.
Willadino, L. G., Câmara, T. R., 2005. Aspectos fisiológicos do estresse salino em plantas. In:
Nogueira, R. J. M. C., Araújo, E. L., Willadino, L. G., Cavalcante, U. M. T. (Eds.)
Estresses ambientais: danos e benefícios em plantas. UFRPE, Imprensa Universitária,
Recife. pp.118-126.
Yemm, E. W., Cocking, E. C., 1955. Determination of amino acids with ninhydrin. Analyst.
80, 209-213.
129
Considerações finais
O estudo das respostas fisiológicas do umbuzeiro quando submetido tanto à seca como
à salinidade dos solos, ainda é escasso, principalmente quando se trata de uma espécie com
grande variabilidade quanto às características de interesse agronômico.
As respostas do umbuzeiro à seca encontradas nesta pesquisa comprovam que a
manutenção da turgescência foliar se dá pelas reservas de água e substâncias orgânicas
armazenadas nos xilopódios, reforçado por um rígido controle estomático para evitar as
perdas de água pela transpiração. Embora diferenças significativas tenham sido encontradas
entre os genótipos estudados, o fechamento estomático, em função do grau de dessecamento
do solo, mostrou-se um mecanismo de defesa eficiente, que mantém uma regularidade nessa
resposta quando o ciclo de seca se repete. No entanto, as modificações anatômicas que
ocorreram ainda não respondem, de maneira clara, às diferenças fisiológicas encontradas,
merecendo que outras investigações sejam feitas a esse respeito.
Surpreendentemente, o umbuzeiro mantém altos valores de potencial hídrico ao longo
do dia. A redução do Ψ
w
ocorreu apenas temporariamente para alguns genótipos, como o
BGU 50, não mostrando uma resposta ao déficit hídrico, e sim uma modificação modulativa,
provavelmente em função de uma maior perda de água por transpiração durante o período das
8 às 12 horas. Esse comportamento permitiu classificar o umbuzeiro com uma espécie
isoídrica.
A seca estimula o acúmulo de substâncias orgânicas no citossol como um mecanismo
de defesa, mas essa resposta é muito variável nos genótipos de umbuzeiro. O acúmulo de
açúcares, tão amplamente relatado na literatura por colaborar com mais de 50% dos solutos
envolvidos no ajustamento osmótico de várias espécies, não foi observado no umbuzeiro, nem
sob condições de seca nem de salinidade. Apenas observou-se reduções de açúcares em níveis
de salinidade acima de 50mM e em alguns genótipos sob déficit hídrico.
A prolina, também conhecida por aumentar sua concentração em grandes proporções
nas plantas submetidas a estresses abióticos, foi a substância mais acumulada em condições
de seca em plantas jovens de umbuzeiro. No entanto, quantitativamente representou uma
mínima fração do total de solutos analisados. Houve variação também no teor de aminoácidos
de alguns acessos sob condições de seca e em níveis acima de 50 mM NaCl. Neste caso, o
acúmulo de substâncias orgânicas de baixo peso molecular, embora contribua para a
manutenção do status hídrico da planta, não pode ser indicado como um marcador fisiológico
de tolerância à seca ou salinidade no umbuzeiro.
130
A manutenção de elevados valores de potencial drico em condições de seca, mesmo
quando ocorre o fechamento estomático, leva a crer que os estômatos respondem a algum
sinal hormonal enviado das raízes à medida que o ambiente radicular fica mais seco. É
provável que o ácido abscísico (ABA) seja responsável por esse rígido controle estomático no
umbuzeiro. Investigações a esse respeito são necessárias para compreender os mecanismos de
restrição das perdas de vapor dágua no horário de maior demanda evaporativa, mesmo em
condições dricas favoráveis, e a redução gradativa do grau de abertura dos estômatos com
um alto potencial hídrico.
O crescimento, as relações hídricas e as trocas gasosas do umbuzeiro não foram
afetadas significativamente em veis de NaCl de até 50mM, o que permitiria indicá-lo como
uma espécie que tolera níveis moderados de salinidade no solo. Contudo, para se indicar o
umbuzeiro como uma espécie que pode ser cultivada em solos moderadamente salinos, é
necessário que se desenvolvam estudos em campo, ficando aqui abertas novas alternativas
para futuras pesquisas.
131
Anexos
ANEXO 1. Normas para publicação na revista Environmental and Experimental Botany
ENVIRONMENTAL AND EXPERIMENTAL BOTANY
Guide for Authors
Environmental and Experimental Botany publishes research papers on the physical, chemical
and biological mechanisms and processes that relate the performance of plants to their abiotic
and biotic environment. The experimental approaches should compare structural,
physiological and/or ecological responses of genotypes, ecotypes, cultivars and/or ecological
responses of genotypes, ecotypes, cultivars and/or assemblages of species.
Areas covered by the journal include: (1) Plant/soil interactions in the range of chemical and
physical soil diversity; (2) Plant/water interactions concerning quality and quantity of water
supply; (3) Responses of plants to radiation ranging from UV-B to infrared; (4)
Plant/atmosphere relations, especially changing atmospheric chemistry; (5) Plant/plant,
plant/microorganism, and/or plant/animal interactions emphasising the role of secondary
metabolites, and (6) New methods for experimental approaches.
The experimental approaches should compare the structural, physiological and ecological
responses of genotypes, ecotypes or assembly of species. Other models than plants are
welcome if they interact with plants or provide knowledge which could be useful for plant
science. Similarly in vitro studies may be described if they can be extrapolated to the whole
plant. Each submitted manuscript should be based on an explicitly elaborated mechanical
hypothesis.
Submission of manuscripts
Papers for consideration should be submitted online through http://ees.elsevier.com/eeb/
Submission of an article implies that the work described has not been published previously
(except in the form of an abstract or as part of a published lecture or academic thesis), that it
is not under consideration for publication elsewhere, that its publication is approved by all
authors and tacitly or explicitly by the responsible authorities where the work was carried out,
and that, if accepted, it will not be published elsewhere in the same form, in English or in any
other language, without the written consent of the Publisher.
Upon acceptance of an article, authors will be asked to transfer copyright (for more
information on copyright see http://www.elsevier.com/authors). This transfer will ensure
the widest possible dissemination of information. If excerpts from other copyrighted works
are included, the author(s) must obtain written permission from the copyright owners and
credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these
cases: contact ELSEVIER, Global Rights Department, P.O. Box 800, Oxford, OX5 1DX, UK;
phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]
Types of contribution
1. Original full papers (Regular Papers)
2. Review articles
Original papers should report the results of original research. The material should not have
132
been previously published elsewhere, except in a preliminary form.
Reviews should cover a subject of active current interest. They are written on invitation or
after initial contact with the Editor-in-Chief.
Enquiries
Authors can keep track on the progress of their accepted article, and set up e-mail alerts
informing them of changes to their manuscript's status, by using the "Track a Paper" feature
of Elsevier's http://www.elsevier.com/authors. For privacy, information on each article is
password-protected. The author should key in the "Our Reference" code (which is in the letter
of acknowledgement sent by the publisher on receipt of the accepted article) and the name of
the corresponding author. In case of problems or questions, authors may contact the Author
Service Department, E-mail: [email protected].
Preparation of manuscripts
1. Manuscripts should be written in English. Authors whose native language is not English are
strongly advised to have their manuscripts checked by an English-speaking colleague prior to
submission.
2.The manuscript must be accompanied by a covering letter detailing what you are submitting
(type of contribution, title, authors' names and affiliation, etc.). Please also indicate the author
to whom we should address our correspondence in the case of multiple authors and include a
contact address, telephone/fax numbers and E-mail address. Authors are requested to submit,
with their manuscripts, the names, addresses and E-mail addresses of five potential referees
(outside the country of origin of the authors) with their e-mail) who may or may not be
contacted.
3. Manuscripts in general should be organized in the following order: Title (should be clear,
descriptive and not too long)
Name(s) of (co-)author(s)
Complete postal address(es) of affiliations
Full telephone, Fax No. and E-mail address of the corresponding author
Present address(es) of author(s) if applicable
Complete correspondence address and E-mail address to which the proofs should be sent as a
footnote indicated with an asterisk
Abstract followed by keywords (indexing terms), normally 3-6 items
Introduction
Material studied, area descriptions, methods, techniques
Results
Discussion
Conclusion
Acknowledgments and any additional information concerning research grants, etc.
References
Tables
Figure captions
Authors in Japan please note
Upon request, Elsevier Japan will provide authors with a list of people who can check and if
necessary improve the English of their paper (before submission). Please contact our Tokyo
office:
Elsevier Japan
9-15, Higashi-Azabu 1-chome
133
Minato-ku, Tokyo 106-0044
Japan
Tel:(+81) 3-5561-5032
Fax: (+81)3-5561-5045
Abstracts
The abstract should be clear, descriptive and not longer than 400 words.
Tables
1. Authors should take notice of the limitations set by the size and lay-out of the journal.
Large tables should be avoided. Reversing columns and rows will often reduce the
dimensions of a table.
2. If many data are to be presented, an attempt should be made to divide them over two or
more tables.
3. Tables should be numbered according to their sequence in the text. The text should include
references to all tables.
4. Each table should be typewritten on a separate page of the manuscript. Tables should never
be included in the text.
5. Each table should have a brief and self-explanatory title.
6. Column headings should be brief, but sufficiently explanatory. Standard abbreviations of
units of measurement should be added between parentheses.
7. Vertical lines should not be used to separate columns. Leave some extra space between the
columns instead.
8. Any explanation essential to the understanding of the table should be given as a footnote at
the bottom of the table.
Electronic Artwork
A detailed guide on electronic artwork is available on our website:
http://www.elsevier.com/artworkinstructions
You are urged to visit this site; some excerpts from the detailed information are given here
Formats
Regardless of the application used, when your electronic artwork is finalised, please "save as"
or convert the images to one of the following formats (Note the resolution requirements for
line drawings, halftones, and line/halftone combinations given below.):
EPS: Vector drawings. Embed the font or save the text as "graphics".
TIFF: Colour or greyscale photographs (halftones): always use a minimum of 300 dpi.
TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.
TIFF: Combinations bitmapped line/half-tone (colour or greyscale): a minimum of 500 dpi is
required.
134
DOC, XLS or PPT: If your electronic artwork is created in any of these Microsoft Office
applications please supply "as is".
Please do not:
• Supply embedded graphics in your wordprocessor (spreadsheet, presentation) document;
• Supply files that are optimised for screen use(like GIF,BMP,PIC,WPG) the resolution is too
low ;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.
Colour Reproduction
If, together with your accepted article, you submit usable colour figures then Elsevier will
ensure, at no additional charge, that these figures will appear in colour on the web (e.g.,
ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced
in colour in the printed version. For colour reproduction in print, you will receive information
regarding the costs from Elsevier after receipt of your accepted article. For further
information on the preparation of electronic artwork, please see
http://www.elsevier.com/artworkinstructions. References
Note: Authors are strongly encouraged to check the accuracy of each reference against its
original source.
1. All publications cited in the text should be presented in a list of references following the
text of the manuscript. The manuscript should be carefully checked to ensure that the spelling
of author's names and dates are exactly the same in the text as in the reference list.
2. In the text refer to the author's name (without initial) and year of publication, followed - if
necessary - by a short reference to appropriate pages. Examples: "Since Peterson (1988) has
shown that..." "This is in agreement with results obtained later (Kramer,1989, pp. 12-16)".
3. If reference is made in the text to a publication written by more than two authors the name
of the first author should be used followed by "et al.". This indication, however, should never
be used in the list of references. In this list names of first author and co-authors should be
mentioned.
4. References cited together in the text should be arranged chronologically. The list of
references should be arranged alphabetically on authors' names, and chronologically per
author. If an author's name in the list is also mentioned with co-authors the following order
should be used: publications of the single author, arranged according to publication dates --
publications of the same author with one co-author -- publications of the author with more
than one co-author. Publications by the same author(s) in the same year should be listed as
1994a, 1994b, etc.
5. Use the following system for arranging your references, please note the proper position of
the punctuation:
a.For periodicals
Chettri, M.K., Sawidis, T., Zachariadis, G.A., Stratis, J.A., 1997. Uptake of heavy metals by
living and dead Cladonia thalli. Environ. Exp. Bot.37, 39-42.
b. For edited symposia, special issues, etc., published in a periodical
135
Rice, K., 1992. Theory and conceptual issues. In: Gall, G.A.E., Staton, M. (Eds.), Integrating
Conservation Biology and Agricultural Production. Agriculture, Ecosystems and Environment
42, 9-26.
c.For books
Gaugh, Jr., H.G., 1992. Statistical Analysis of Regional Field Trials. Elsevier, Amsterdam.
d.For multi-author books
DeLacy, I.H., Cooper, M., Lawrence, P.K., 1990. Pattern analysis over years of regional
variety trials: relationship among sites. In: Kang, M.S. (Ed.), Genotype by Environment
Interaction and Plant Breeding. Louisiana State University, Baton Rouge, LA, pp. 189-213.
6.Abbreviate the titles of periodicals mentioned in the list of references according to the
Bibliographic Guide for Editors & Authors (The Chemical Abstracts Service, The Ohio State
University, Columbus, OH 43210, USA).
7.In the case of publications in any language other than English, the original title is to be
retained. However, the titles of publications in non-Roman alphabets should be transliterated,
and a notation such as "(in Russian)" or "(in Greek, with English abstract)" should be added.
8.Work accepted for publication but not yet published should be referred to as "in press".
9.References concerning unpublished data and "personal communications" should not be cited
in the reference list but may be mentioned in the text.
Formulae
1.Leave ample space around formulae in the manuscript.
2.Subscripts and superscripts should be clear.
3. Greek letters and other non-Roman or handwritten symbols should be explained in the
margin where they are first used. Take special care to show clearly the difference between
zero (0) and the letter O, and between one (1) and the letter l.
4. Give the meaning of all symbols immediately after the equation in which they are first
used.
5. For simple fractions use the solidus (/) instead of a horizontal line.
6. Equations should be numbered serially at the right-hand side in parentheses. In general only
equations explicitly referred to in the text need be numbered.
7. The use of fractional powers instead of root signs is recommended. Also powers of e are
often more conveniently denoted by exp.
8. Levels of statistical significance which can be mentioned without further explanation are
*P <0.05, **P <0.01 and ***P <0.001.
9. In chemical formulae, valence of ions should be given as, e.g., Ca2+, not as Ca++.
10. Isotope numbers should precede the symbols, e.g.,
18
O.
136
11. The repeated writing of chemical formulae in the text is to be avoided where reasonably
possible; instead, the name of the compound should be given in full. Exceptions may be made
in the case of a very long name occurring very frequently or in the case of a compound being
described as the end product of a gravimetric determination (e.g., phosphate as P
2
O
5
).
Footnotes
1. Footnotes should only be used if absolutely essential. In most cases it should be possible to
incorporate the information in normal text.
2. If used, they should be numbered in the text, indicated by superscript numbers, and kept as
short as possible.
Nomenclature
1. Authors and editors are, by general agreement, obliged to accept the rules governing
biological nomenclature, as laid down in the International Code of Botanical Nomenclature,
the International Code of Nomenclature of Bacteria, and the International Code of Zoological
Nomenclature.
2. All biotica (crops, plants, insects, birds, mammals, etc.) should be identified by their
scientific names when the English term is first used,with the exception of common domestic
animals. The authority of a species should only be given in the Materials and Methods
section.
3. All biocides and other organic compounds must be identified by their Geneva names when
first used in the text. Active ingredients of all formulations should be likewise identified.
4. For chemical nomenclature, the conventions of the International Union of Pure and
Applied Chemistry and the official recommendations of the IUPAC-IUB Combined
Commission on Biochemical Nomenclature should be followed.
Supplementary data
Elsevier now accepts electronic supplementary material to support and enhance your scientific
research. Supplementary files offer the author additional possibilities to publish supporting
applications, movies, animation sequences, high-resolution images, background datasets,
sound clips and more. Supplementary files supplied will be published online alongside the
electronic version of your article in Elsevier web products, including ScienceDirect:
http://www.sciencedirect.com. In order to ensure that your submitted material is directly
usable, please ensure that data is provided in one of our recommended file formats. Authors
should submit the material in electronic format together with the article and supply a concise
and descriptive caption for each file. For more detailed instructions please visit
http://www.elsevier.com/authors.
Offprints
The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail
or, alternatively, 25 free offprints for regular papers 100 free offprints will be given to authors
of a Review article. The PDF file is a watermarked version of the published article and
includes a cover sheet with the journal cover image and a disclaimer outlining the terms and
conditions of use.
Environmental and Experimental Botany has no page charges.
Revised: September 2005
137
ANEXO 2. Normas para publicação no Brazilian Journal of Plant Physiology
Brazilian Journal of Plant Physiology - BJPP (ISSN 0103-3131) é o periódico oficial da
Sociedade Brasileira de Fisiologia Vegetal e voltado para a publicação de trabalhos
científicos originais nas várias áreas da Fisiologia Vegetal. BJPP publica trabalhos regulares,
comunicações, minirrevisões e minirrevisões brasileiras. Essas minirrevisões são publicadas
mediante convite, mas autores também podem consultar o Editor-Chefe para o envio de um
artigo. Minirrevisões Brasileiras devem versar, preferentemente, sobre a fisiologia de plantas
de ecossistemas tropicais naturais. BJPP publica artigos nas seguintes áreas de conhecimento:
Processos Bioquímicos (Metabolismo primário e secundário, e bioquímica)
Fotobiologia e Processos Fotossintéticos
Regulação Gênica, Transformação, Biologia Celular e Molecular
Nutrição Mineral de Plantas
Desenvolvimento, Crescimento e Diferenciação (Fisiologia de sementes, hormônios
vegetais e morfogênese)
Fisiologia Pós-Colheita
Ecofisiologia/Fisiologia da Produção e Fisiologia do Estresse
Interações Planta-Microrganismos e Planta-Insetos
Instrumentação em Fisiologia Vegetal
BJPP somente publica trabalhos na língua inglesa, escritos de forma clara, concisa e fluente.
Recomenda-se que o texto seja revisado por alguém fluente em inglês e familiarizado com
terminologia e textos científicos. Os artigos enviados para publicação devem apresentar
resultados novos e significantes. Isso é particularmente importante para trabalhos na área de
Cultura de Células, Tecidos e Órgãos Vegetais, que devem basear-se em dados que
contribuam para a compreensão da fisiologia de plantas. Simples experimentação sobre a
aplicação de métodos já existentes não será considerada para publicação, tampouco trabalhos
originados de experimentos do tipo dose-resposta, sem discussão com base fisiológica.
Submissão e revisão
A submissão de um manuscrito ao Editor-Chefe necessariamente implica no fato de que o
trabalho não foi publicado ou que está sendo avaliado para publicação em outro periódico.
Submissão de manuscritos de vários autores significa que o autor correspondente obteve a
aprovação de todos os outros co-autores para submeter o manuscrito a BJPP. BJPP considera
que todas as informações contidas em um artigo são de completa responsabilidade dos
autores, inclusive a exatidão dos resultados e as conclusões deles extraíveis. Os autores devem
enviar o manuscrito (em um único arquivo contendo texto como também tabelas, legendas
para figuras e figuras) mediante e-mail para o Editor-Chefe. Solicita-se também aos autores
que submetam um arquivo adicional contendo apenas o "abstract". Arquivos com extensão
pdf ou doc (Word) são preferíveis. Fotografias importantes ou essenciais para a compreensão
dos resultados têm de ter alta qualidade. Ao submeter um manuscrito, o Editor-Chefe
verificará se o trabalho está dentro do escopo de BJPP e se segue as diretrizes do periódico.
Submissões que não respeitarem as diretrizes de BJPP serão devolvidas imediatamente aos
autores para correção, antes de serem enviadas para revisão. Os manuscritos serão enviados a
um Editor Associado, que escolherá revisores baseando-se em suas competências nas várias
áreas especializadas da fisiologia vegetal. Quando da submissão, os autores poderão indicar
até cinco revisores potenciais (com seus respectivos e-mails) com competência reconhecida
na área de pesquisa do manuscrito. Todavia, ao Editor Associado é reservado o direito de não
considerar essas sugestões. Os autores receberão uma carta do Editor-Chefe juntamente com
as avaliações dos revisores. Manuscritos que necessitarem de revisão deverão ser retornados
138
ao Editor-Chefe dentro de 30 dias; caso contrário, serão considerados como submissões
novas. A versão revisada deverá ser enviada via e-mail e deve ser acompanhada de uma carta
em que se responde aos questionamentos dos revisores e do editor. Os autores deverão
justificar claramente quando não concordarem, ou quando não acatarem, um dado
questionamento. Solicita-se aos autores que utilizem o aplicativo "Microsoft Word for
Windows 95-2003" como processador de textos. Manuscritos rejeitados para publicação
somente serão devolvidos aos autores se contiverem comentários importantes dos revisores
que possam contribuir para as pesquisas do autor.
Diretrizes para elaboração do manuscrito
Os autores deverão organizar o manuscrito na seguinte forma:
Manuscrito
Formatar o manuscrito, baseando-se em artigos recentemente publicados em BJPP. As
páginas devem ser numeradas consecutivamente, inclusive figuras e tabelas. As linhas de cada
página deverão ser numeradas para facilitar o trabalho de revisão. Na primeira página, inclua
o título do manuscrito (em negrito, fonte 16, justificado à esquerda, com inicial maiúscula
apenas para a primeira palavra - quando aplicável), os nomes dos autores (em negrito, fonte
12, justificado à esquerda) e afiliação (em itálico, fonte 12, justificado à esquerda). O autor
correspondente deverá ser indicado por um asterisco. O "Abstract" não deve conter mais que
250 palavras. Os autores devem sugerir de três a seis palavras-chave (em ordem alfabética)
que não constem no título. O texto deve ser digitado em espaço duplo, fonte "Times New
Roman" (fonte 12) em apenas um lado do papel, com margens de 3 cm. Os manuscritos
devem ser divididos em Introdução; Materiais e métodos; Resultados; Discussão;
Agradecimentos; Referências; Tabelas; Legenda para figuras; e Figuras. Partes principais
(e.g., Introdução, Resultados etc.) deverão estar em negrito, com letras maiúsculas e separadas
do texto. Dentro dessas partes, subdivisões deverão estar em itálico, com apenas a letra inicial
maiúscula. Apresentação conjunta de "Resultados e Discussão" só será aceita em
circunstâncias excepcionais. A "Discussão" não deve conter repetição da descrição dos
resultados. Nomes científicos deverão ser escritos em itálico. O nome científico completo
(gênero, espécie, autoridade, e cultivar, quando apropriado) deverá ser citado para cada
organismo, após a sua primeira menção. O epiteto genérico deverá ser abreviado após a
primeira menção, desde que não resulte em conflito com abreviaturas para outros gêneros
com a mesma letra inicial. Quando nomes comuns forem utilizados, deverão ser
acompanhados dos respectivos nomes científicos após a primeira menção. Nomes de
equipamentos especializados mencionados em "Material e métodos" deverão ser
acompanhados de detalhes do modelo, fabricante, cidade e país de origem. Os nomes de
enzimas deverão ser acompanhados de seu EC ("Enzyme Comission") após a primeira
menção. Números de zero a nove deverão ser escritos por extenso, a menos que sejam
acompanhados de uma unidade. Acima de dez, números deverão ser escritos com algarismos
arábicos, exceto quando em início de frases. Datas deverão estar na forma "20 May 2006", e
horas, na forma de 1200 h. Citações de literatura, ao longo do texto, deverão aparecer em
ordem cronológica e, então, ordenadas por autor e ano (e.g., Styles, 1978; Meier and Bowling,
1995; Meier et al., 1997; Silva et al., 2004a, b). Não use "et al." em itálico. Sempre insira
espaço entre um numeral e a unidade (por exemplo, 1 mL), com exceções de %, ‰ e oC (e.g.,
1%). Apenas utilize o termo "in press" para artigos já aceitados para publicação, caso
contrário, utilize a expressão "unpublished results". Observações não-publicadas ou
comunicações pessoais devem ser mencionadas no texto (e.g., "T. Carter, personal
communication"; "T. Carter and J. Spanning, unpublished results"). Evite citar teses. Títulos
de periódicos devem ser abreviados de acordo com o "Bibliographic Guide for Editors and
139
Authors - BIOSIS". O último fascículo de cada volume de BJPP contém abreviaturas para a
maioria dos periódicos científicos relacionados à fisiologia vegetal e áreas afins.
Short communications
"Short Communications" poderão ser publicadas, mas sem a intenção de publicação de
resultados preliminares. Devem ser concisas e conter resultados significantes. Não devem ter
mais que 10 páginas digitadas em espaço duplo, incluindo tabelas e figuras. Devem ser
enviadas com a primeira página seguindo as orientações para manuscritos regulares, mas sem
subdivisões. As referências deverão seguir o texto.
Minireviews
Em "Minireviews", os autores são livres para sugerir a estrutura do artigo, mas tabelas e
figuras deverão seguir as diretrizes para a publicação de manuscritos em BJPP. "Minireviews"
serão também avaliadas por revisores. Deverão ser apresentadas concisamente, com foco em
assuntos relevantes de pesquisa em que se evidencie o estado-da-arte das informações
disponíveis, devendo ainda servir de referência para estudos futuros. "Minireviews" deverão
ser apresentadas em espaço duplo, contendo não mais que 20 páginas.
Referências de periódicos
Carelli MLC, Fahl JI, Ramalho JDC (2006) Aspects of nitrogen metabolism in coffee plants.
Braz. J. Plant Physiol. 18:9-21.
Referências de livros
Salisbury FB, Ross CW (1992) Plant Physiology. 4
th
ed. Wadsworth Publishing Company,
Belmont.
Referências de capítulos de livros
Fujiwara K, Kozai T (1995) Physical and microenvironment and its effects. In: Aitken-
Christie A, Kozai T, Smith MAL (eds), Automation and Environmental Control in Plant
Tissue Culture, pp.301-318. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Anais de conferências e resumos publicados
Prisco JT, Pahlich E (1989) Recent advances on the physiology and salt stresses. In: Annals
(or Proceedings/Abstracts) of the II Reunião Brasileira de Fisiologia Vegetal. Piracicaba,
Brazil, pp.23-24.
Teses
Melotto E (1992) Characterization of endogenous pectin oligomers in tomato (Lycopersicon
esculentum Mill) fruit. Davis, University of California. PhD thesis.
Tabelas e Figuras
Figuras e tabelas não devem repetir dados e devem ser reduzidas ao mínimo necessário.
Devem ser numeradas consecutivamente, com números arábicos e, no texto, menções para
tabelas e figuras devem aparecer na forma de "Table 1", "Figure 1", "Figure 1A"...Títulos para
figuras e tabelas deverão estar também em espaço duplo. Utilize a formatação de tabelas
usando células, não utilizando as teclas "tab" ou teclas de espaço para formatação. Utilize
apenas linhas horizontais para a divisão das tabelas. Notas de rodapé para tabelas devem ser
feitas com fonte de tamanho 10 e indicadas por meio de letras sobrescritas minúsculas,
começando com a em cada tabela. Cada tabela e figura deve ser apresentada em página
140
separada do manuscrito, e nunca devem ser incluídas no texto. Títulos de figuras devem ser
digitados em uma página separada, antecedendo às páginas das figuras. Textos e números nas
ordenadas das figuras não devem ser digitados com fonte de tamanho inferior a 10. Todas as
figuras deverão ter tamanho que permita reprodução direta para impressão. Fotografias
eletrônicas devem ser submetidas no tamanho desejado de impressão (85 mm de largura para
uma coluna e até 175 mm para acompanhar a largura da página). BJPP reserva-se ao direito
de reduzir o tamanho das figuras.
Unidades, símbolos e abreviaturas
O Sistema Internacional (SI) de unidades deve ser usado ao longo do manuscrito.
Recomenda-se o livro ("Units, Symbols and Terminology for Plant Physiology", editado por
F.B. Salisbury, Oxford University Press, Oxford) para uma descrição detalhada e útil sobre
unidades, símbolos e terminologia utilizados em fisiologia vegetal e ciências afins.
Resumidamente, use pascal (Pa) para pressão, L para litro, µmol m
-2
s
-1
para irradiância,
becquerel (Bq) para radioatividade, gn (g em itálico) para aceleração devido à gravidade, s
para segundo, min para minuto, h para hora, Da para indicar massa molecular, que é
representada por m (massa molecular relativa de proteínas é o mesmo que peso molecular, Mr,
e não deve ser acompanhado por Da; e.g., a massa molecular relativa Mr = 10,000), y
w
para
potencial hídrico, (y
p
para potencial de pressão, y
s
para potencial osmótico, e y
m
para
potencial mátrico. O último fascículo de cada volume de BJPP contém vários símbolos e
unidades usadas em fisiologia vegetal. Recomendam-se abreviaturas apenas para unidades de
medida, símbolos químicos (e.g., Fe, Na), nomes de substâncias químicas (e.g., ATP, MES,
HEPES, H
2
SO
4
, NaCl, CO
2
), procedimentos corriqueiros (e.g., PCR, PAGE, RFLP),
terminologia molecular (e.g., bp, SDS) ou termos estatísticos (e.g., ANOVA, SD, SE, n, F,
teste t e r
2
). Outras abreviaturas devem ser escritas por extenso após a primeira menção, não
devendo ser utilizadas em início de frases. Abreviações de termos científicos não devem ser
seguidas de ponto. Use o índice menos para indicar "por" (e.g., m
-3
, L
-1
, h
-1
), exceto nos casos
"por planta", "por vaso". O autor poderá fornecer, caso julgue conveniente, uma lista de
abreviaturas, como um Apêndice.
Ilustrações
Fotografias devem ter alta qualidade e incluídas no fim do texto. O número de fotografias
deve ser reduzido ao mínimo. Linhas nas figuras devem ter espessuras uniformes. Texto e
números devem ter dimensões apropriadas.
Provas de imprensa
Autores devem devolver as provas de imprensa de seus manuscritos dentro de três dias após o
recebimento. Não serão aceitas alterações extensas.
Separatas
Os autores receberão um arquivo em formato PDF como separata.
Custos de página
Não há custos para os autores ao publicarem seus manuscritos em BJPP.
141
Envio do manuscrito
Manuscritos devem ser enviados preferentemente por e-mail para:
Fábio M. DaMatta
Brazilian Journal of Plant Physiology, Editor-Chefe
Departamento de Biologia Vegetal
Universidade Federal de Viçosa
36570-000 Viçosa, MG
Brasil
Fax: +55.31.3899.2580
142
Anexo 3. Aceite da revista Environmental and Experimental Botany
Accepted Manuscript
Title: Physiological responses to salt stress in young umbu
plants
Authors: Elizamar Ciríaco da Silva, Rejane Jurema Mansur
Custódio Nogueira, Francisco Pinheiro de Araújo, Natoniel
Franklin de Melo, André Dias de Azevedo Neto
PII: S0098-8472(07)00232-8
DOI: doi:10.1016/j.envexpbot.2007.11.010
Reference: EEB 1850
To appear in: Environmental and Experimental Botany
Received date: 5-2-2007
Revised date: 7-11-2007
Accepted date: 18-11-2007
Please cite this article as: da Silva, E.C., Nogueira, R.J.M.C., de Araújo,
F.P., de Melo, N.F., de Azevedo Neto, A.D., Physiological responses to salt
stress in young umbu plants, Environmental and Experimental Botany (2007),
doi:10.1016/j.envexpbot.2007.11.010
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo