Download PDF
ads:
UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS BIOLÓGICAS
PÓS-GRADUAÇÃO EM GENÉTICA
AVALIAÇÃO DOS EFEITOS CITOGENÉTICOS DA EXPOSIÇÃO
OCUPACIONAL A AGROTÓXICOS EM AGENTES DE SAÚDE
PÚBLICA VINCULADOS À PREFEITURA DE BELO HORIZONTE
Fernanda de Souza Gomes Kehdy
Belo Horizonte-MG
2005
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ii
Fernanda de Souza Gomes Kehdy
AVALIAÇÃO DOS EFEITOS CITOGENÉTICOS DA EXPOSIÇÃO
OCUPACIONAL A AGROTÓXICOS EM AGENTES DE SAÚDE
PÚBLICA VINCULADOS À PREFEITURA DE BELO HORIZONTE
Dissertação apresentada ao Programa de
Pós-Graduação em Genética do
Departamento de Biologia Geral do
Instituto de Ciências Biológicas de
Universidade Federal de Minas Gerais,
como requisito parcial à obtenção do título de
Mestre em Genética
Orientadora: Profª Maria Cristina Lima de Castro
Belo Horizonte
Universidade Federal de Minas Gerais
Instituto de Ciências Biológicas
2005
ads:
iii
Aos meus pais com imenso amor.
iv
AGRADECIMENTOS
À todos os participantes do projeto que concordaram em contribuir para esta pesquisa.
À minha orientadora Profª Maria Cristina Lima de Castro, por ser essencial não na
minha formação profissional como pessoal. Também pelo carinho, paciência, conselhos e
confiança.
À Profª Marisa B. Bonjardin por estar sempre presente com bons conselhos e sugestões.
À Profª Miriam T. P. Lopes do Laboratório de Substâncias anti-tumorais do Departamento
de Farmacologia do ICB, UFMG, por disponibilizar seu laboratório.
À amiga Renata Antonaci, por estabelecer meu contato com a Prefeitura de Belo Horizonte.
Ao Carlos e Francisco do Centro de Controle de Zoonoses da Regional de Venda Nova,
pela boa vontade e por sempre facilitarem nosso trabalho.
À Marlene de Miranda pela imprescindível ajuda na coleta das amostras.
À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de
estudos concedida.
À Marina pelo carinho, boa vontade e paciência com que conduz a secretaria de Pós-
Graduação.
À Juliana e Bruno pela ajuda nas fotografias.
Aos amigos do Departamento Renatinha, Reinaldo, Dani e Lilia, por tornarem minha rotina
divertida.
Aos amigos especiais Savito e Chico, pelo carinho.
Aos amigos Rodrigo e Nessim por tornarem meus dias bem mais engraçados.
Ao grande amigo Miguelito pela amizade, conselhos e contagiante alegria.
Ao querido amigo Ricardo Camelo (Ric) pela amizade e pela imprescindível ajuda durante
toda a realização deste trabalho.
À queridíssima Carolzinha, pela eterna amizade e por estar incondicionalmente presente em
todos os meus momentos.
À minha irmã de cor, Simone (Si), pela amizade e indispensáveis conselhos.
À amiga Erica, companheira desde a graduação.
v
Ao meu namorado Filipe, pela paciência, companheirismo e amor incondicionais.
Ao meu irmão Rafael e minha super-cunhada Aline por estarem sempre por perto.
À minha mãe, Regina, simplesmente por existir.
Ao meu pai, grande homem, que a cada dia me mostra como a vida pode ser simples e feliz.
vi
SUMÁRIO
LISTA DE FIGURAS............................................................................................................1
RESUMO...............................................................................................................................3
INTRODUÇÃO......................................................................................................................4
ARTIGO: Evaluation of the cytogenetic effects of ocupational exposure to pesticides on
sanitary workers in Belo Horizonte, Brazil..........................................................5
ANEXOS...............................................................................................................................30
Figuras.............................................................................................................................31
Termo de consentimento.................................................................................................40
Questionário....................................................................................................................43
Aprovação do Comitê de Ética em Pesquisa da UFMG.................................................46
1
LISTA DE FIGURAS
Figura 1 - Fotomicrografia de linfócito mononucleado típico corado por Giemsa (observado
sob aumento de 1000 X).......................................................................................................36
Figura 2 – Fotomicrografia de linfócito binucleado corado por Giemsa (observado sob
aumento de 1000 X)..............................................................................................................36
Figura 3 - Fotomicrografia de linfócito binucleado corado por Giemsa (observado sob
aumento de 1000 X)..............................................................................................................37
Figura 4 – Fotomicrografia de linfócito binucleado (BC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X).....................................................37
Figura 5 - Fotomicrografia de linfócito binucleado (BC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X).....................................................38
Figura 6 - Fotomicrografia de célula (linfócito) binucleada (BC) contendo micronúcleo
(MN) corado por Giemsa (observado sob aumento de 1000 X)...........................................38
Figura 7 - Fotomicrografia de linfócito binucleado (BC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X).....................................................39
Figura 8 - Fotomicrografia de linfócito binucleado (BC) contendo ponte nucleoplasmática
(NB) corado por Giemsa (observado sob aumento de 1000 X)............................................39
Figura 9 - Fotomicrografia de linfócito trinucleado (TC) típico corado por Giemsa
(observado sob aumento de 1000 X)....................................................................................40
Figura 10 - Fotomicrografia de linfócito trinucleado (TC) corado por Giemsa (observado
sob aumento de 1000 X).......................................................................................................40
2
Figura 11 Fotomicrografia de linfócito trinucleado (TC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X).....................................................41
Figura 12 - Fotomicrografia de linfócito tetranucleado (QC) típico corado por Giemsa
(observado sob aumento de 1000 X).....................................................................................41
Figura 13 - Fotomicrografia de linfócito tetranucleado (QC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X).....................................................42
Figura 14 - Fotomicrografia de linfócito em apoptose corado por Giemsa (observado sob
aumento de 1000 X)..............................................................................................................42
Figura 15 - Fotomicrografia de linfócito em apoptose corado por Giemsa (observado sob
aumento de 1000 X)..............................................................................................................43
Figura 16 - Fotomicrografia de linfócito em necrose corado por Giemsa (observado sob
aumento de 1000 X)..............................................................................................................43
Figura 17 - Fotomicrografia de linfócito em necrose corado por Giemsa (observado sob
aumento de 1000 X)..............................................................................................................44
Figura 18 - Fotomicrografia de linfócito em necrose corado por Giemsa (observado sob
aumento de 1000 X)..............................................................................................................44
3
RESUMO
Agentes sanitários responsáveis pela aplicação de pesticidas para o controle de vetores de
doenças constituem uma população ocupacionalmente exposta a genotóxicos potenciais.
Sendo assim, o objetivo deste estudo foi determinar a relação entre a exposição ocupacional
a pesticidas e a presença de danos citogenéticos. Foram selecionados 59 homens (29
agentes sanitários e 30 indivíduos controle) com idade entre 18-57 anos que viviam e
trabalhavam na mesma região em Belo Horizonte (Brasil). Através do Teste do
Micronúcleo (MN) em linfócitos periféricos, as freqüências de micronúcleos (MN), células
binucleadas micronucleadas (CBMN), pontes nucleoplasmáticas (PN), células apoptóticas
(APOP), células necróticas (NECR) e índice de divisão nuclear (IDN) foram determinados.
A análise de covariância (ANCOVA) revelou freqüências médias significativamente
maiores (p<0,05) de MN (15,81 ± 1,31 vs. 4,71 ± 0,42), CBMN (15,10 ± 1,22 vs. 4,62 ±
0,44), PN (4,59 ± 0,76 vs. 1,00 ± 0,34), NECR (12,07 ± 1,45 vs. 5,17 ± 0,70) no grupo
exposto, em relação aos indivíduos controle respectivamente. Não houve diferença
significativa entre as freqüências de APOP entre os grupos exposto e controle, enquanto o
IDN foi significativamente menor (p<0,05) nos expostos (1,49 ± 0,02 vs. 1,61 ± 0,02).
Houve relação direta da idade dos indivíduos e as freqüências de MN e CBMN. Não foi
observada influência do tempo de exposição ou dos hábitos de fumar e ingerir bebidas
alcoólicas sobre os parâmetros citogenéticos analisados. De acordo com estes resultados, a
exposição ocupacional à pesticidas mostrou efeito genotóxico e citotóxico nos linfócitos
dos agentes sanitários.
4
INTRODUÇÃO
Atualmente, muitas ocupações levam os trabalhadores à exposição a substâncias
químicas que muitas vezes são prejudiciais à saúde dos mesmos. Um exemplo são os
agentes sanitários vinculados ao governo, responsáveis pela aplicação de pesticidas para o
controle de doenças transmitidas por animais. O Serviço de Controle de Zoonoses da
Secretaria Municipal de Belo Horizonte mantém, atualmente, um contingente de 1200
agentes sanitários. Como estes trabalhadores estão expostos a longas jornadas de trabalho
com contato direto e/ou indireto com diversos compostos químicos, cujos efeitos crônicos
são pouco conhecidos, constituem uma população de risco.
Um dos possíveis efeitos da exposição à pesticidas é a genotoxicidade, que
representa um fator de risco primário para a carcinogênese. Tendo em vista que a
manifestação clínica do câncer ocorre muito depois de suas causas estarem estabelecidas, é
possível o monitoramento e intervenção de indivíduos que estejam com algumas destas
causas estabelecidas, mas que ainda não tenham desenvolvido o tumor.
Desta forma, com o intuito de estimar o risco genético da exposição a pesticidas em
agentes sanitários vinculados à Prefeitura de Belo Horizonte, este estudo de
biomonitoramento genotoxicológico foi realizado. que não existem Comissões Internas
de Prevenção de Acidentes (CIPA) na Prefeitura de Belo Horizonte, os resultados obtidos
com o presente estudo poderão fornecer subsídios para implementação das medidas de
proteção e promoção da saúde destes trabalhadores.
5
EVALUATION OF THE CYTOGENETIC EFFECTS OF OCUPATIONAL
EXPOSURE TO PESTICIDES ON SANITARY WORKERS IN BELO
HORIZONTE, BRAZIL
Fernanda S. G. Kehdy
a
, Maria Cristina Lima de Castro
a
a
Laboratório de Genética de Neoplasias e Mutagênese, Departamento de Biologia Geral, Instituto de Ciências
Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil.
ABSTRACT
Sanitary workers responsible for the application of pesticides in the control desease
vectors constitute a population that is exposed to possible genotoxic substances while at
work. Thus, the aim of this study was to determine the relation between the occupational
exposure to these pesticides and the presence of cytogenetic damages. Fifty-nine men were
selected (29 sanitary workers and 30 control individuals) with ages varying between 18-57
years who lived and worked at the same area in Belo Horizonte (Brazil). Through the
cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes the
frequencies of micronuclei/1000 binucleaded cells (MN/1000 BC), binucleated cells with
micronuclei (BCMN)/1000 BC, nucleoplasmic bridges (NB)/1000 BC, apoptotic (APOP)
and necrotic (NECR) cells/ 500 cells and nuclear division index (NDI) were determined for
all individuals. The analysis of covariance (ANCOVA) showed significantly higher (p <
0,05) mean frequencies of MN (15,81 ± 1,31 vs. 4,71 ± 0,42), BCMN (15,10 ± 1,22 vs. 4,62
± 0,44), NB (4,59 ± 0,76 vs. 1,00 ± 0,34), NECR (12,07 ± 1,45 vs. 5,17 ± 0,70) in the
exposed group when compared to the control group. There was no significant difference in
the APOP frequencies beteween both groups, while the NDI was significantly higher (1,49
6
± 0,02 vs. 1,61 ± 0,02) in the control group. Neither the time exposure nor the smoking or
alcohol drinking habits influenced the cytogenetic parameters evaluated. According to these
results, the occupational exposure to pesticides showed genotoxic and cytotoxic effects on
sanitary workers.
Keywords: Pesticide exposure; Biomonitoring; Micronucleus test; Sanitary workers
1. INTRODUCTION
Pesticides compose a group of natural or synthetic chemical substances assigned to
combat plagues that generally attack, harm or transmit illness to living organisms including
humans [1]. Although they may be selective against specific organisms (as bacteria, fungi,
undergrowth and rodent), most of them do not have an absolute selectivity, becoming a
potential risk to the human health [2].
Many studies showed an association between the exposure to pesticides and the
increase of the incidence of some cancers including the non-Hodgkin’s lymphoma [3,4],
the multiple myeloma [5], sarcomas [6,7], the pancreatic [8] and the bladder cancer [9].
This is why lots of scientists have evaluated the genetic risk associated with the exposure.
The genotoxic effects of a pesticide is a primary factor for carcinogenesis, so the
genotoxicologic biomonitoring will become useful in human populations exposed to it [2].
Meanwhile, the results of this kind of biomonitoring obtained until now are ambiguous [10-
14], probably due to different conditions of the populations studied, the specific genotoxic
effect of the different pesticides employed and due to interindividual variability [2].
7
In tropical countries illnesses such as dengue, malaria, yellow fever, leishmaniosis
and leptospirosis, are health care problems once the ambient conditions favour the
development and the proliferation of insects and other vectors [15]. The struggle to
eliminate these animals is a task performed by the government at different levels, with the
promotion of several control measures, including the application of pesticides in areas with
high concentration of cases. The sanitary workers engaged in the application of pesticides
are occupationally exposed to possible potential genotoxics, becoming a cancer risk
population [2].
This work aimed to evaluate the genotoxic effect of the occupational exposure to
pesticides on the population of sanitary workers of Belo Horizonte, Brazil. The
micronucleus (MN) lymphocyte culture test was employed. It consists in a cytogenetic
method that measures breaks (clastogenic effect) and chromosome losses (aneugenic effect)
in binucleated cells [16]. Other cytogenetic parameters such as the nucleoplasmic bridges
(NB), apoptotic (APOP) and necrotic (NECR) cells, and the nuclear division index (NDI)
were analysed [17]. Factors such as age, smoking and alcohol drinking habits were taken
into account because they may influence the expression of the evaluated cytogenetic
parameters [18].
2. MATERIAL AND METHODS
2.1 Subjects
Fifty nine males between 18 and 57 years old agreed to take part in the research,
between August and October 2004. All the participants lived and worked in Belo Horizonte
(Brazil) and they did not present any serious morbidities at the time of the sample
8
collection. The exposed group was composed of 29 sanitary workers working for the City
Hall of Belo Horizonte who were occupationally exposed to several pesticides (Table 1).
The control group was selected from the population which worked next to the exposed
individuals and was composed of 30 volunteers who had never been occupationally
exposed to pesticides.
All the individuals answered a questionnaire, supplying information related to age,
smoking and alcohol drinking habits and, in the case of the exposed group, the duration and
the frequency of exposure and the personal protection equipment (PPE) employed. People
were considered smokers when they usually smoked 15 or more cigarettes per day through
at least one year and people who often drinked any alcoholic beverage two or more times
per week were considered alcohol drinkers. The main characteristics of both groups are
shown in Table 2.
The project was approved by the Committee on Ethics and Research of the Federal
University of Minas Gerais (ETIC 373/04) and all the subjects signed the agreement term.
2.2 Blood sample collection and cell culture
Ten millilitres of peripheral blood was obtained from each subject by vein puncture
using heparinized vacutainers. Mononuclear cells were fractionated in a density gradient
Histopaque
®
(Sigma) and added (10
6
cells/mL) to a RPMI 1640 (Gibco) medium
supplemented with 10% (v/v) foetal bovine serum (Gibco), 2mmol/L of -glutamine
(Gibco), antibiotics (penicillin, 100 U/mL, streptomycin, 100 µg/mL and amphotericine B,
25 µg/mL; Gibco) and 2% (v/v) of phytohaemagglutinin A (Gibco). The cultures were
maintained at 37°C in a 5% CO
2
incubator. After 44 hours cytochalasin B was added to the
culture (6 µg/mL; Sigma) [17].
9
At the end of the cultures (72 hours) the cells were centrifuged at room temperature
and gently dissolved in a cold methanol 70% (v/v): acetic acid (3:1) fixation solution. This
procedure was performed twice. The cellular suspension was dropped in three previously
identified clean slides. The slides were air dried and stained with Giemsa solution (4%
(v/v); Gibco) in Dulbecco`s Phosphate Buffered Saline pH 7,1 (Gibco) for 15 minutes.
2.3 Slides analysis
The slides were blindly analysed in an optic microscope with 1000X lens. For each
individual, 500 lymphocytes were analysed in order to determine the apoptotic cells
(APOP) frequency, the necrotic cells (NECR) frequency and the number of cells with one
to four nuclei, employed in the calculus of nuclear division index (NDI). This index is
determined by the formula NDI = MC+2BC+3TC+4QC/total viable cells, where MC-QC
represents the number of cells with one to four nuclei, respectively. The frequency of the
micronuclei (MN), the micronucleated binucleated cells (BCMN) and the nucleoplasmic
bridges (NB) were determined by counting 1000 binucleated viable cells (BC) with
preserved cytoplasm. BC, MN, NB, APOP and NECR were determined in agreement with
the previously described criteria [19].
2.4 Statistical analysis
In order to evaluate the possible differences between the control group and the
exposed one in relation to age, an unpaired Student’s t test between two means was
performed. In relation to smoking and alcohol drinking habits, the possible differences
between both groups were analysed by a Z test for two independent proportions. The effects
of the exposure, smoking and alcohol drinking habits on the cytogenetic variables (MN,
10
BCMN, NB, APOP and NECR) and on the NDI were evaluated by the analysis of
covariance (ANCOVA) including age and time of exposure as covariates. The statistic
analysis were performed with the STATISTICA software (5.0 for Windows). Differences
were considered statistically significant when p values were under 0.05.
3. RESULTS
The sanitary workers included in this study were exposed to several pesticides. As it
is shown in Table 1, some of these pesticides are mutagenic and/or possibly carcinogenic
composites and belong to the organophosphorate and pyrethroid insecticides and
hidroxicumarinic rodenticides groups. The application of the composites was performed by
spraying (pyrethroids), powder, pelleting bait, paraffin bait (hidroxicumarinic and
indandione) and ultra-low volume nebulization or sand mixed granulated
(organophosphorate). The composites were applied separately and the PPE used was
specific for each composite, except for malathion and temephos whose application was
performed without PPE. The majority of the pesticides are used sporadically. All the
exposed individuals worked for 40 hours a week.
The main characteristics of the population are described on Table 2. The age and the
alcohol drinking habit were similar in both groups. The exposed group had a larger number
of smokers (p < 0.05, Z test). The average pesticide exposure time of the workers was 5.28
+ 0.60 years.
Table 3 summarizes mean values of cytogenetic variables and nuclear division
indexes studied in the groups. The ANCOVA results and the regression coefficients are
11
presented in Table 4 and 5 respectively. The exposed group showed MN frequencies,
BCMN, NB and NECR significantly higher than the control group (p < 0.01) (Table 4).
The Figure 1 shows the MN frequencies in both groups. Although the APOP frequency
difference was not significant, it was higher in the exposed group (Table 4). The exposed
group had significantly lower NDI values (p < 0.01) (Table 4). The regression coefficients
(Table 5) indicated that, from the covariates introduced in the analysis, only the age of the
individuals had a significant influence over the MN and BCMN frequencies (p < 0.01). The
pesticides exposure time did not have an influence over the parameters analysed (Table 5).
Neither the smoking habits nor the alcohol drinking ones influenced the analysed
cytogenetic variables (Table 4).
4. DISCUSSION
With the increase of the global population, new areas are being rough-hewed and
the humans are more exposed to illnesses transmitted by wild vectors [15]. The control of
the increase of infected transmitter animals becomes a central issue in the sanitary
surveillance kept by governments. The use of pesticides has become routine, mainly in
underdeveloped countries, but the genotoxic potential of these substances is yet unknown
[2]. Most of the population that lives in the affected areas and the sanitary workers
responsible for the application are at cytotoxic and genotoxic risks.
The aim of this study was to evaluate if the occupational exposure to pesticides
might cause cytogenetic damage compared to a control group that had never been exposed
to these chemicals. Fifty-nine males (29 occupationally exposed and 30 control subjects)
were included in the study. The age of the subjects and alcohol drinking habits were similar
12
in both groups, but there was a larger number of smokers in the exposed group. In spite of
that, this difference did not influence the results, since through the analysis of covariance
the smoking habit did not have a significant effect on the cytogenetic parameters evaluated.
To evaluate the genetic damages that took place in these subjects the cytokinesis-
block micronucleus assay in human lymphocyte cultures (CBMN assay) was used [20,21].
Through this assay the clastogenic and aneugenic effects were detected since the MN are
originated from chromosomal fragments or from an entire chromosome non-included in the
main nucleus of the descent cell during cellular division [21,22]. Recently, it was proposed
the inclusion of other cytogenetic parameters in the CBMN assay [23]. These parameters
are the presence of nucleoplasmic bridges (indicators of chromosomic rearrangement),
apoptotic and necrotic cells (indicators of cellular viability), and cellular division index
[24,25]. Because this test offers simultaneous information on DNA damage and
cytotoxic/cytostatic effects caused by possible aggressive agents, nowadays it is a simple
and important tool for the monitoring of human population [25].
In this study, the group exposed to pesticides showed a significant higher frequency
of chromosome damage (MN, BCMN and NB) compared with the control group. Some
studies also showed a positive association between the genotoxicity and the occupational
exposure to pesticides [12,26-33], although other studies did not conclude the same
[10,13,14,34,39]. Such disagreement may be explained both by different exposure
conditions (protection measure used and specific genotoxic potential of the substances
used) or by demographic factors and individual habits and genetic features associated
[2,18]. By this way each biomonitoring study is unique and, in order to estimate the effects
of an occupational exposition, each population should be studied separately and the results
should not be generalised.
13
The presence of chromosome damage in the exposed group can be explained by the
genotoxic power of the substance they were exposed to. The pyrethroid group is the most
frequently used in solution through spraying. When applying it the workers make use of
PPE. Of the pyrethroid used by the workers the U. S. Environmental Protection Agency
(EPA) classified only cypermethrin as a possible carcinogen, while the other pyrethroids do
not have mutagenic and/or carcinogenic activity [40]. This reduces the possibility of the
remaining pyrethroids (except cypermethrin) of being responsible for the damage detected.
The organophosphorate group is applied daily in the solid form without using PPE. In
agreement with the EPA classification [40], malathion showed mutagenic activity in the
experimental system, but carcinogenic activity was not observed. Other substances
(hidroxicumarinic and indandione) are sporadically applied with the use of PPE. So far,
most of them haven’t been tested for their mutagenic and carcinogenic effects, and so it is
not possible to say if the exposure to this substances could be considered safe. This
suggests that malathion (organophosphorate) and cypermethrin (pyrethroid) should be the
main pesticides responsible for the chromosome damage found in the exposed workers.
However, it is important to notice that an exposure to a great number of different
compounds makes it difficult to know which agent could be responsible for the observed
cytogenetic damages.
Another aspect that could contribute to the positive association between the
observed cytogenetic damage and pesticide exposure is that most of the biomonitoring
studies in occupational exposed populations are done with individuals that used a mix of
several chemical compounds [14,38,39,41-43]. In this study, the pesticides are applied
separately and probably in higher concentrations than those found in the mixtures and these
concentrations may present a higher genotoxic potential.
14
In spite of the use of the protection equipment in the application by of most
products, it was observed an induction of chromosome damage caused by the pesticide
exposure. These findings can be explained by the ineffectiveness or inappropriate use of the
protection measures. Another explanation could be the fact that malathion
organophosphorate may be the main responsible substance for the chromosome damage
found, because it was applied without PPE.
The cytotoxicity was higher in the sanitary workers than in the control group, since
the frequency of necrotic cells was significantly higher in the exposed group. One
possibility is the existence of two substance groups: a genotoxic group that causes
chromosome damage without killing the cells and a cytotoxic group that causes cell
necrosis. The fact is that the surviving cells are perpetuating important mutations proved by
the increased frequencies of MN, BCMN and NB.
There was not a significant difference in the APOP frequencies between the
exposed and the control groups. This suggests that the damages to DNA caused by the
exposure were not sufficient to cause apoptosis, but they caused MN and NB [24].
The reduction in the NDI found in the exposed group, according to other studies
[39,41], corroborates the hypothesis that cells with DNA damage delay the cell cycle in
order to repair the damage and avoid the fixation of mutations during replication [25].
However, the fact that MN, BCMN and NB frequencies having been higher in the exposed
group, show that the repair may not be efficient to correct the induced mutations caused by
exposure. Another hypothesis is that the chemicals have cytotoxic properties that affect the
cell proliferation kinetics [35,44].
Of the analysed variables that could influence the cytogenetic parameters evaluated,
only the age was positively related to MN and BCMN frequencies. These results agree with
15
many other studies that showed an increase of spontaneous MN frequency with the age
[18,45-47]. This effect has been attributed to an increase of aneuploidy mainly of the X and
Y chromosomes [48].
It was not observed an association between the cytogenetic parameters frequency
and the time of exposure of the workers to the pesticides. This observation differs from the
results found by other authors. Bolognesi (2002) [42] found a positive relation between the
MN incidence and the pesticide exposure duration when individuals were exposed for more
than 10 years, suggesting that chromosome damage is accumulated during continued
exposure to pesticides. The lack of association between the cytogenetic parameter evaluated
and time of exposure in the present study could be explained by the slight variation in the
exposure time. In this study, exposure time was from 1,5 to 18 years and only one
individual was exposed for more than 10 years.
The smoking habit did not influence the cytogenetic parameters evaluated. In the
biomonitoring studies of populations occupationally exposed to genotoxic agents, the
smoking habit influence on the MN frequency is controversial. Few studies showed an
association between those variables [49,50], while most of the studies did not find any
association at all [14,38,39,41,42,51]. A possible explanation is that the damage caused by
tobacco could kill the cells in culture or delay the cell cycle making it impossible the
analysis of the MN [52]. However, it was not found an influence of smoking habit on
APOP/NECR frequncies and neither on NDI. Another possibility is that the number of
smokers in the control group was small (6 individuals) and could constitute a non-
representative sample.
Like the smoking habit, the alcohol drinking habit did not influence the parameters
evaluated. Data in literature showed positive, preventive or no effects [47,49,53,54] of
16
alcohol drinking habit on MN frequency. Normally these effects happen as a consequence
of the relation between alcohol drinking habit and other variables, such as age [38].
Concluding, the occupational exposure to pesticides by sanitary workers in Belo
Horizonte showed a genotoxic and cytotoxic effects, measured by higher frequencies of
MN, BCMN, NB and necrotic cells when compared with the control group. The reduced
NDI in the exposed group suggests a possible adaptive response to a chronic exposure to
pesticides. The age factor presented a direct relation with the MN frequency while the
smoking and drinking habits did not influence the cytogenetic parameters evaluated.
These results evidence a genetic hazard related to occupational pesticide exposure
and therefore the need for educational programs to stimulate the correct use of the PPE
and/or implement new protection measures for the sanitary workers.
ACKNOWLEDGEMENTS
We are very thankful to the volunteers who participated in the study, to Laboratório
de Substâncias Antitumorais and to Marlene de Miranda for collecting blood samples. This
study was supported by CAPES.
REFERENCES
[1] J.H. Kolaczinski, C.F. Curtis, Chronic illnes as a result of low-level exposure to
synthetic pyrethroid insecticides: a review of the debate, Food Chem. Toxicol. 42
(2004) 697-706.
17
[2] C. Bolognesi, Genotoxicity of pesticides: a review of human biomonitoring studies,
Mutat. Res. 543 (2003) 251-272.
[3] L. Hardell, M. Eriksson, A case-control study of non-Hodgkin lynphoma and
exposure to pesticides, Cancer 85 (1999) 1353-1360.
[4] T. Zheng, S.H. Zahm, K.P. Cantor, D.D. Weisenburger,Y. Zhang, A. Blair,
Agricultural exposure to carbamate pesticides and risk of non-Hodgkin lymphoma,
J. Occup. Environ. Med. 43 (2001) 641-649.
[5] S.A. Khuder, A.B. Mutgi, Meta-analysis of multiple myeloma and farming, Am. J.
Ind. Med. 32 (1997) 510-516.
[6] M. Kogevinas, T. Kauppinen, R. Winkelmann, Soft tissue sarcoma and non-
Hodgkin’s lymphoma in workers exposed to phenoxy herbicides, chlorophenols and
dioxins: to nested case-control studies, Epidemiology 6 (1995) 396-402.
[7] A. Blair, D.J. Grauman, J.H. Lubin, J.F. Jr. Fraumeni, Lung cancer and other causes
of death among lisenced pesticide applicators, J. Natl. Cancer Inst. 71 (1983) 31-37.
[8] B.T. Ji, D.T. Silverman, P.A. Stewart, Occupational exposure to pesticides and
pancreatic cancer, Am. J. Ind. Med. 39 (2001) 92-99.
[9] V.K. Shukla, A.N. Rastogi, T.K. Adukia, R.B. Raizada, D.C. Reddy, S. Singh,
Organochlorine pesticides in carcinoma of the gallbladder: a case-control study,
Eur. J. Cancer Prev. 10 (2001) 153-156.
[10] R. Scarpato, L. Migliore, G. Angotzi, A. Fedi, L. Migli, N. Loprieno, Cytogenetic
monitoring of a group of Italian floriculturists: no evidence of DNA damage related
to pesticide exposure, Mutat. Res. 367 (1996) 73-82.
18
[11] W. Venegas, Y. Zapata, E. Carbonell, R. Marcos, Micronuclei analysis in
lymphocytes of pesticide sprayers from Concepción (Chile), Teratog. Carcinog.
Mutagen. 18 (1998) 123-129.
[12] S. Gomez-Arroyo, Y. Diaz-Sanches, M.A. Meneses-Perez, R. Villalobos-Pietrini, J.
De Leon-Rodriguez, Cytogenetic biomonitoring in a Mexican floriculture worker
group exposed to pesticides, Mutat. Res. 466 (2000) 117-124.
[13] L.P.G D’Arce, I.M. Colus, Cytogenetic and molecular biomonitoring of agricultural
workers exposed to pesticides in Brazil. Teratog. Carcinog. Mutagen. 29 (2000)
161-170.
[14] L. Lucero, S. Pastor, S. Suárez, R. Durban, C. Gómez, T. Parrón, A. Creus, R.
Marcos, Cytogenetic biomonitoring of Spanish greenhouse workers exposed to
pesticides: micronuclei analysis in peripherical blood lymphocytes and bucal
epithelial cells, Mutat. Res. 464 (2000) 255-262.
[15] D.P. Neves, T. Filippis, Parasitologia Básica, Ed. Coopemed, Belo Horizonte, 2003,
134 pp.
[16] M. Fenech, The cytokinesis-block micronucleus technique: a detailed description of
the method and its application to genotoxicity studies in human populations, Mutat.
Res. 285 (1993) 35-44.
[17] M. Fenech, The in vitro micronucleus technique, Mutat. Res. 455 (2000) 81-95.
[18] M. Fenech, Important variables that influence base-line micronucleus frequency in
cytokinesis-blocked lymphocytes-a biomaker for DNA damage in human
populations, Mutat. Res. 404 (1998) 155-165.
[19] M. Fenech, W.P. Chang, M. Kirsch-Volders, N. Holland, S. Bonassi, E. Zeiger,
HUMM project: detailed description of the scoring criteria for the cytokinesis-block
19
micronucleus assay using isolated human lymphocyte cultures, Mutat. Res. 534
(2003) 65-75.
[20] M. Fenech, A.A. Morley, Measurement of micronuclei in human lymphocytes,
Mutat. Res. 148 (1985) 29-36.
[21] M. Fenech, The advantages and disadvantages of the cytokinesis-block
micronucleus method, Mutat. Res. 392 (1997) 11-18.
[22] M. Kirsch-Volders, A. Elhajouji, E. Cundari, P. Van Hummelen, The in vitro
micronucleus test: a multi-endpoint assay to detect simultaneously mitotic delay,
apoptosis, chromosome breakage, chromosome loss and non-disjunction, Mutat.
Res. 392 (1997) 19-30.
[23] P. Thomas, K. Umegaki, M. Fenech, Nucleoplasmic bridges are a sensitive measure
of chromosome rearrangement in the cytokinesis-block micronucleus assay,
Mutagenesis, 18 (2003) 187-194.
[24] M. Fenech, J. Crott, J. Turner, S. Brown, Necrosis, apoptosis, cytostasis and DNA
damage in human lymphocytes measured simultaneously within the cytokinesis-
block micronucleus assay: description of the method and results for hydrogen
peroxide, Mutagenesis 14 (1999) 605-612.
[25] M. Kirsch-Volders, M. Fenech, Inclusion of micronuclei in non-divided
mononuclear lymphocytes and necrosis/apoptosis may provide a more
comprehensive cytokinesis block micronucleus assay for biomonitoring purposes,
Mutagenesis 16 (2001) 51-58.
[26] M. De Ferrari, M. Artuso, S. Bonassi, S. Bonatti, Z. Cavalieri, D. Pescatore, E.
Marchini, V. Pisano, A. Abbondandolo, Cytogenetic biomonitoring of an Italian
population exposed to pesticides: chromosome aberration and sister chromatid
20
exchange analysis in peripheral blood lymphocytes, Mutat. Res. 260 (1991) 105-
113.
[27] A. Kourakis, M. Mouratidou, G. Kokkinos, A. Barbouti, A. Kotsis, D. Mourelatos,
J. Dozi-Vassiliades, Frequencies of chromosomal aberrations in pesticide sprayers
working in plastic green houses, Mutat. Res. 279 (1992) 145-148.
[28] A. Kourakis, M. Mouratidou, A. Barbouti, M. Dimikiotou, Cytogenetic effects of
occupational exposure in the peripheral blood lymphocytes of pesticide sprayers,
Carcinogenesis 17 (1996) 99-101.
[29] E. Carbonell, N. Xamena, A. Creus, R. Marcos, Cytogenetic biomonitoring in a
Spanish group of agricultural workers exposed to pesticides, Mutagenesis 8 (1993)
511-517.
[30] V. Garaj-Vrhovak, D. Zeljezic, Chromosomal aberrations and frequency of
micronuclei in workers employed in pesticide production, Biologia 54 (1999) 707-
712.
[31] G.C.M. Falck, A. Hirvonen, R. Scarpato, S.T. Saarikoski, L. Migliore, H. Norppa,
Micronuclei in blood lymphocytes and genetic polymorphism for GSTM1, GSTT1
and NAT2 in pesticide-exposed greehouse workers, Mutat. Res. 441 (1999) 225-
237.
[32] J. Shaham, Z. Kaufman, R. Gurvich, Z. Levi, Frequence of sister chromatid
exchange among greenhouse farmers exposed to pesticides, Mutat. Res. 491 (2001)
71-80.
[33] D. Zeljezic, V. Garaj-Vrhovac, Chromosomal aberrations and single cell gel
electrophoresis (Comet) assay in the longitudinal risk assessment of occupational
exposure to pesticides, Mutagenesis 16 (2001) 359-363.
21
[34] S. Gomez-Arroyo, N. Noriega-Aldana, A. Osorio, F. Galicia, S. Ling, R,
Villalobos-Pietrini, Sister-chromatid exchange analysis in a rural population in
Mexico exposed to pesticides, Mutat. Res. 281 (1992) 173-179.
[35] R. Pasquini, G. Scassellati-Sforzolini, G. Angeli, C. Fatigoni, S. Monarca, L.
Beneventi, A.M. Di Giulio, F.A. Bauleo, Cytogenetic biomonitoring of pesticide-
exposed farmers in central Italy, J. Environ. Pathol. Toxicol. Oncol. 15 (1996) 29-
39.
[36] R. Scarpato, L. Migliore, A. Hirvonen G. Falck, H. Norppa, Cytogenetic monitoring
of occupational exposure to pesticides: charcterization of GSTM1, GSTT1 and
NAT2 genotypes, Environ. Mol. Mutagen. 27 (1996) 263-269.
[37] H.G. Davies, S.M. Kennedy, K. Teschke, P.J.E. Quintana, Cytogenetic analysis of
South Asian berry pickers in British Columbia using the micronucleus assay in
peripherical limphocytes, Mutat. Res. 416 (1998) 101-113.
[38] S. Pastor, S. Gutierrez, A. Creus, A. Cebulska-Wasilewska, R. Marcos, Micronuclei
in peripheral blood lymphocytes and bucal epithelial cells of Polish farmers exposed
to pesticides, Mutat. Res. 495 (2001) 147-152.
[39] S. Pastor, S. Gutierrez, A. Creus, N. Xamena, S. Piperakis, R. Marcos, Cytogenetic
analysis of Greek farmers using the micronucleus assay in peripheral lymphocytes
and buccal cells, Mutagenesis 16 (2001) 539-545.
[40] U. S. Environmental Protection Agency (EPA), EXTOXNET Pesticide Information
Profiles [available on the internet at http://extoxnet.orst.edu/pips/ghindex.html].
[41] S. Pastor, L. Lucero, S. Gutiérrez, R. Durbán, C. Gómez, T. Parrón, A. Creus, R.
Marcos, A follow-up study on micronucleus frequency in Spansh agricultural
workers exposed to pesticides, Mutagenesis 17 (2002) 79-82.
22
[42] C. Bolognesi, E. Perroni, E. Landini, Micronucleus monitoring of a floriculturist
population from western Liguria, Italy, Mutagenesis 17 (5) (2002) 391-397.
[43] S. Pastor, A. Creus, T. Parrón, A. Cebulska-Wasilewska, C. Siffel, S. Piperakis, R.
Marcos, Biomonitoring of four European populations occupationally exposed to
pesticides: use of micronuclei as biomarkers, Mutagenesis 18 (3) (2003) 249-258.
[44] D.S. Rupa, O.S. Reddi, Clastogenic effect of pesticides in peripheral lymphocytes
of cottom-field workers, Mutat. Res. 261 (1991) 177-180.
[45] M. Fenech, A.A. Morley, Cytokynesis-block micronucleus method in human
lymphocites: effect of in vivo ageing and low dose X-irradiation, Mutat. Res. 161
(1986) 193-198.
[46] M.J. Ramsey, D.H. Moore, J.F. Briner, D.A. Lee, L.A. Olsen, J.R. Senft, J.D.
Tucker, The effect of age and lifestyle factors on the accumulation of cytogenetic
damage as measured by chromosome painting, Mutat. Res. 338 (1995) 95-106.
[47] R. Barale, L. Chelotti, T. Davini, S. Del Ry, M.G. Andreassi, M. Ballardin, M.
Bulleri, J. He, S. Baldacci, F. Di Pede, F. Gemignani, S. Landi, Sister chromatid
exchanges and micronucleus frequency in human lymphocytes of 1650 subjects in
an Italian population. Part II. Contribution of sex, age, life style, Environ. Mol.
Mutagen. 31 (1998) 228-242.
[48] H. Norppa, G.C.M. Falck, What do human micronuclei contain?, Mutagenesis 18
(2003) 221-233.
[49] A.D. da Cruz, A.G. McArthur, C.C. Silva, M.P. Curado, B.W. Glickman, Human
micronucleus counts are correlated with age, smoking and cesium-137 dose in
Goiania (Brazil) radiological accident, Mutat. Res. 313 (1994) 57-68.
23
[50] C. Di Giorgio, M.P. De Méo, M. Laget, H. Guiraud, A. Botta, G. Duménil, The
micronucleus assay in human lymphocites: screening for inter-individual variability
and application to biomonitoring, Carcinogenesis 15 (1994) 313-317.
[51] C. Bolognesi, M. Parrini, S. Bonassi, G. Ianello, A. Salanitto, Cytogenetic analysis
of a human population exposed to pesticides, Mutat. Res. 285 (1993) 239-249.
[52] S. Bonassi, M. Neri, C. Lando, M. Ceppi, Y. Lin, W.P. Chang, N. Holland, M.
Kirsch-Volders, E. Zeiger, M. Fenech, Effect of smoking habit on the frequency of
micronuclei in human lymphocytes: results from the Human MicroNucleus project,
Mutat. Res. 543 (2003) 155-166.
[53] E. Castelli, P. Hrelia, F. Maffei, C. Fimognari, F.G. Foschi, F. Caputo, G. Cantelli-
Forti, G.F. Stefanini, G. Gasbarrini, Indicators of genetic damage in alcoholics:
reversibility after alcohol abstinence, Hepatogastroenterology 46 (1999) 1664-1668.
[54] J. Surralléz, K. Autio, L. Nylund, H. Jarventaus, H. Norppa, T. Veidebaum, M.
Sorsa, K. Peltonen, Molecular cytogenetic analysis of buccal cells and lymphocytes
from benzene-exposed workers, Carcinogenesis 18 (1997) 817-823.
24
Table 1
Pesticides used by the sanitary workers, with indication of their frequency of use, mutagenicity (M) and
carcinogenicity (C) experimental data
a
, personal protection equipment (PPE) used and application way.
I, inseticide; R, rodenticide; PYR, pyrethroid; OP, organophosphorate; HC, hidroxicumarinic; IND, indandione.
Dly, daily; Ep, during epidemics; Sly, sporadically.
a
Environmental Protection Agency (EPA) classification: -, no observed effect; +, positive effect; Pos., possibly
carcinogenic; NA, not available.
Type
Product Group Freq. use CAS # M C PPE Application
I
α-cypermethrin
PYR Dly 69865-74-0 - Pos.
Mask, gloves and overalls Spraying
I cypermethrin PYR Dly 52315-07-8 - Pos.
Mask, gloves and overalls Spraying
I deltamethrin PYR Dly 52918-63-5 - - Mask, gloves and overalls Spraying
I temephos OP Dly 3383-96-8 - - No protection Sand mixed granulated
I
malathion
OP Dly 121-75-5 + - No protection Sand mixed granulated
I fenithrothion OP Ep 122-14-5 - - Impermeable overalls,
mask and gloves
Ultra- low nebulization
R brodifacum HC Sly 56073-10-0 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R coumachlor HC Sly 81-82-3 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R coumafuryl HC Sly 117-52-2 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R coumatetralyl HC Sly 5836-29-3 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R difethialone HC Sly 104653-34-1 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R flocoumafen HC Sly 90035-08-8 - - Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R difenacoum HC Sly 56073-07-5 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R bromadiolone HC Sly 28772-56-7 - NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R diphacinone IND Sly 82-66-6 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
R pindone IND Sly 83-26-1 NA NA Rubber gloves and surgical
mask
Powder, pelleting bait,
paraphine bait
25
Table 2
Characteristics of the groups studied
a
No statistical difference between both groups (t-test).
b
p< 0,05 (Z-test), compared with control group.
c
No statistical difference between both groups (Z-test).
Characteristics Control Exposed
Number of subjects 30 29
Age (years) (mean ± SE)
Range (years)
29.17 ± 1.64
18-49
30.31 ± 1.48
a
21-57
Smoking habit
Smokers (n, %)
Non-smokers (n, %)
6 (20.00)
24 (80.00)
14 (48.28)
b
15 (51.72)
Drinking habit
Yes (n, %)
No (n, %)
19 (63.33)
11 (36.67)
15 (51.72)
c
14 (48.28)
Years of pesticide exposure (mean ± SE)
Range (years)
- 5.28 ± 0.60
1.50-18
26
Table 3
Mean values (±SE) of the cytogenetic variables analysed in the groups studied
MN, micronuclei in 1000 binucleated cells; BCMN, binucleated cells
with micronuclei in 1000 binucleated cells; NB, nucleoplasmic bridges
in 1000 binucleated cells; APOP, apoptotic cells in 500 viable cells;
NECR, necrotic cells in 500 viable cells; NDI, nuclear division index.
Variables Control Exposed
MN 4.71 ± 0.42 15.81 ± 1.31
BCMN 4.62 ± 0.44 15.10 ± 1.22
NB 1.00 ± 0.34 4.59 ± 0.76
APOP 11.81 ± 1.20 18.40 ± 2.60
NECR 5.17 ± 0.70 12.07 ± 1.45
NDI 1.61 ± 0.02 1.49 ± 0.02
27
Table 4
Summary of the effects for each cytogenetic variable analysed (ANCOVA)
Variables MS Effect MS Error F (df 1.0) p
MN
Exposure
Smoking habit
Drinking habit
615.38
58.94
0.00
17.19
17.19
17.19
35.81
3.43
0.00
<0.01
0.07
0.99
BCMN
Exposure
Smoking habit
Drinking habit
513.52
47.33
0.03
16.30
16.30
16.30
31.50
2.90
0.00
<0.01
0.09
0.96
NB
Exposure
Smoking habit
Drinking habit
30.20
4.74
1.96
9.82
9.82
9.82
3.08
0.48
0.20
0.04
0.49
0.66
APOP
Exposure
Smoking habit
Drinking habit
187.65
0.01
0.55
113.31
113.31
113.31
1.66
0.00
0.00
0.20
0.99
0.94
NECR
Exposure
Smoking habit
Drinking habit
348.12
109.88
6.12
33.33
33.33
33.33
10.44
3.30
0.18
<0.01
0.07
0.67
NDI
Exposure
Smoking habit
Drinking habit
0.11
0.00
0.04
0.01
0.01
0.01
8.89
0.11
3.18
<0.01
0.74
0.08
MN, micronuclei; BCMN, binucleated cells with micronuclei; NB, nucleoplasmic bridges; APOP,
apoptotic cells; NECR, necrotic cells; NDI, nuclear division index.
28
Table 5
Regression coefficients for the covariates introduced in the ANCOVA analysis
Covariates
β ± SE
t p
MN
Age
Years of exposure
0.58 ± 0.08
-0.19 ± 0.26
4.86
-1.58
<0.01
0.12
BCMN
Age
Years of exposure
0.57 ± 0.07
-0.15 ± 0.26
4.77
-1.27
<0.01
0.21
NB
Age
Years of exposure
-0.04 ± 0.06
0.18 ± 0.20
-0.28
1.29
0.78
0.20
APOP
Age
Years of exposure
-0.23 ± 0.20
-0.07 ± 0.68
-1.61
-0.51
0.11
0.61
NECR
Age
Years of exposure
-0.06 ± 0.11
-0.25 ± 0.37
-0.40
-1.75
0.69
0.09
NDI
Age
Years of exposure
0.22 ± 0.00
0.06 ± 0.00
1.54
0.45
0.13
0.65
MN, micronuclei; BCMN, binucleated cells with micronuclei; NB, nucleoplasmic
bridges; APOP, apoptotic cells; NECR, necrotic cells; NDI, nuclear division index.
29
Fig. 1. Micronuclei frequencies in 1000 binucleated cells (MN/1000 BC) in exposed
and control groups.
MN/1000 BC
0
4
8
12
16
20
24
28
Exposed Control
Mean+SD
Mean-SD
Mean+SE
Mean-SE
Mean
30
ANEXOS
31
Figuras
Figura 1 - Fotomicrografia de linfócito mononucleado típico corado por Giemsa (observado
sob aumento de 1000 X).
Figura 2 – Fotomicrografia de linfócito binucleado corado por Giemsa (observado sob
aumento de 1000 X).
32
Figura 3 - Fotomicrografia de linfócito binucleado corado por Giemsa (observado sob
aumento de 1000 X).
Figura 4 – Fotomicrografia de linfócito binucleado (BC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X). A seta indica o micronúcleo.
33
Figura 5 - Fotomicrografia de linfócito binucleado (BC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X). A seta indica o micronúcleo.
Figura 6 - Fotomicrografia de célula (linfócito) binucleada (BC) contendo micronúcleo
(MN) corado por Giemsa (observado sob aumento de 1000 X). A seta indica o
micronúcleo.
34
Figura 7 - Fotomicrografia de linfócito binucleado (BC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X). A seta indica o micronúcleo.
Figura 8 - Fotomicrografia de linfócito binucleado (BC) contendo ponte nucleoplasmática
(NB) corado por Giemsa (observado sob aumento de 1000 X). A seta indica a ponte
nucleoplasmática.
35
Figura 9 - Fotomicrografia de linfócito trinucleado (TC) típico corado por Giemsa
(observado sob aumento de 1000 X).
Figura 10 - Fotomicrografia de linfócito trinucleado (TC) corado por Giemsa (observado
sob aumento de 1000 X).
36
Figura 11 Fotomicrografia de linfócito trinucleado (TC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X).
Figura 12 - Fotomicrografia de linfócito tetranucleado (QC) típico corado por Giemsa
(observado sob aumento de 1000 X).
37
Figura 13 - Fotomicrografia de linfócito tetranucleado (QC) contendo micronúcleo (MN)
corado por Giemsa (observado sob aumento de 1000 X).
Figura 14 - Fotomicrografia de linfócito em apoptose corado por Giemsa (observado sob
aumento de 1000 X).
38
Figura 15 - Fotomicrografia de linfócito em apoptose corado por Giemsa (observado sob
aumento de 1000 X).
Figura 16 - Fotomicrografia de linfócito em necrose corado por Giemsa (observado sob
aumento de 1000 X).
39
Figura 17 - Fotomicrografia de linfócito em necrose corado por Giemsa (observado sob
aumento de 1000 X).
Figura 18 - Fotomicrografia de linfócito em necrose corado por Giemsa (observado sob
aumento de 1000 X).
40
Termo de Consentimento
UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS BIOLÓGICAS
TERMO DE CONSENTIMENTO
Aos funcionários da FUNASA e do Centro de Controle de Zoonozes da Regional
Venda Nova da Prefeitura Municipal de Belo Horizonte
O projeto “Avaliação dos efeitos genotóxicos da exposição ocupacional a pesticidas
sobre agentes sanitários da Fundação Nacional de Saúde do Estado de Minas Gerais e do
Centro de Controle de Zoonoses da Regional Venda Nova da Prefeitura Municipal de Belo
Horizonte” tem como objetivo avaliar os efeitos prejudiciais da exposição ocupacional a
pesticidas em agentes sanitários vinculados a FUNASA e ao Centro de Controle de Zoonoses
da Regional Venda Nova da Prefeitura de Belo Horizonte. Esta avaliação será feita através da
análise da frequência de danos genéticos em células de sangue destes trabalhadores. Nossos
esforços se concentram no sentido de fornecer aos serviços de vigilância a saúde subsídios
para implementação das medidas de proteção a estes trabalhadores.
Para a realização deste estudo contamos com a colaboração de funcionários da
FUNASA e do Centro de Controle de Zoonoses que têm ou tiveram exposição ocupacional
a pesticidas. Para as análises a serem realizadas, serão coletados 10 ml de sangue dos
colaboradores com seringa descartável e estéril, NÃO ACARRETANDO RISCOS À
SAÚDE DO COLABORADOR.
O material coletado será transportado pelos responsáveis pela pesquisa para o
Laboratório de Genética de Neoplasias e Mutagênese do Departamento de Biologia Geral
do Instituto de Ciências Biológicas da UFMG, onde será efetuada a manipulação do
mesmo, sob responsabilidade da Profª Maria Cristina Lima de Castro.
Lembramos ainda que os colaboradores não terão suas identidades reveladas e que
todas as informações fornecidas e os resultados obtidos serão mantidos em absoluto sigilo,
sendo utilizados apenas para divulgação em reuniões e revistas científicas.
As pessoas que concordarem em colaborar com a pesquisa deverão assinar este
termo de consentimento e fornecer, através de um questionário a ser aplicado, algumas
informações a respeito de seu trabalho e de alguns hábitos.
Maria Cristina Lima de Castro (orientadora) Comitê de Ética em Pesquisa da UFMG
Av. Antônio Carlos, 6627 – Pampulha COEP
CEP 31270-901- Belo Horizonte- MG Av. Antônio Carlos, 6627 – Pampulha
Instituto de Ciências Biológicas - Diretoria Reitoria 7° andar
Tel: (31) 3499-2527 Tel: (31) 3499-4027
Fernanda de Souza Gomes Kehdy (pesquisador responsável)
Instituto de Ciências Biológicas - Bloco E3 sala 179 Tel: (31) 3499-2596
41
UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS BIOLÓGICAS
TERMO DE CONSENTIMENTO
Aos colaboradores voluntários do projeto
O projeto “Avaliação dos efeitos genotóxicos da exposição ocupacional a pesticidas
sobre agentes sanitários da Fundação Nacional de Saúde do Estado de Minas Gerais e do
Centro de Controle de Zoonoses da Regional Venda Nova da Prefeitura Municipal de Belo
Horizonte” tem como objetivo avaliar os efeitos prejudiciais da exposição ocupacional a
pesticidas em agentes sanitários vinculados a FUNASA e ao Centro de Controle de
Zoonoses da Regional Venda Nova da Prefeitura de Belo Horizonte. Esta avaliação se
feita através da análise da frequência de danos genéticos em células de sangue destes
trabalhadores. Nossos esforços se concentram no sentido de fornecer aos serviços de
vigilância a saúde subsídios para implementação das medidas de proteção a estes
trabalhadores.
No entanto, para a realização deste estudo precisamos, além da colaboração dos
agentes sanitários, da colaboração de doadores voluntários sem história de exposição a
pesticidas.para constituírem o grupo controle. Os danos genéticos encontrados no grupo
controle servirão como referência para serem comparados com os encontrados nos agentes
sanitários ocupacionalmente expostos a pesticidas.
Para as análises a serem realizadas, serão coletados 10 ml de sangue dos
colaboradores com seringa descartável e estéril, NÃO ACARRETANDO RISCOS À
SAÚDE DO COLABORADOR.
O material coletado será transportado pelos responsáveis pela pesquisa para o
Laboratório de Genética de Neoplasias e Mutagênese do Departamento de Biologia Geral
do Instituto de Ciências Biológicas da UFMG, onde será efetuada a manipulação do
mesmo, sob responsabilidade da Profª Maria Cristina Lima de Castro.
Lembramos ainda que os colaboradores não terão suas identidades reveladas e que
todas as informações fornecidas e os resultados obtidos serão mantidos em absoluto sigilo,
sendo utilizados apenas para divulgação em reuniões e revistas científicas.
As pessoas que concordarem em colaborar com a pesquisa deverão assinar este
termo de consentimento e fornecer, através de um questionário a ser aplicado, algumas
informações a respeito de seu trabalho e de alguns hábitos.
Maria Cristina Lima de Castro (orientadora) Comitê de Ética em Pesquisa da UFMG
Av. Antônio Carlos, 6627 – Pampulha COEP
CEP 31270-901- Belo Horizonte- MG Av. Antônio Carlos, 6627 – Pampulha
Instituto de Ciências Biológicas - Diretoria Reitoria 7° andar
Tel: (31) 3499-2527 Tel: (31) 3499-4027
Fernanda de Souza Gomes Kehdy (pesquisador responsável)
Av. Antônio Carlos, 6627 – Pampulha
CEP 31270-901- Belo Horizonte- MG
Instituto de Ciências Biológicas - Bloco E3 sala 179 Tel: (31) 3499-2596
42
DECLARAÇÃO DE CONCORDÂNCIA
Eu,______________________________________________________________________,
nascido em ______________ de _________________________ de ___________________
documento (tipo e número)___________________________________________________
endereço__________________________________________________________________
_________________________________________________________________________
concordo em participar da pesquisa de “Avaliação dos efeitos genotóxicos da exposição
ocupacional a pesticidas sobre agentes sanitários da Fundação Nacional de Saúde do Estado
de Minas Gerais e do Centro de Controle de Zoonoses da Regional Venda Nova da
Prefeitura Municipal de Belo Horizonte” desenvolvida na Universidade Federal de Minas
Gerais. Para isto concordo, sem nenhum pagamento, em doar uma amostra de 10 ml de
sangue periférico e autorizo o uso deste material para trabalhos científicos.
Belo Horizonte ________ de ______________de _________.
_____________________________________________________
Assinatura do participante
_____________________________________________________
Maria Cristina Lima de Castro (pesquisador responsável)
__________________________________________________
Testemunha
43
Questionário
UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS BIOLÓGICAS
QUESTIONÁRIO
Data: ______/______/______
Caso nº ______
Idade_______ anos
1) Exposição ocupacional a pesticidas?
Não
Sim
A quais pesticidas está ocupacionalmente exposto?
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
Há quanto tempo exerce esta função?
___________ anos
Com que freqüência está ocupacionalmente exposto?
mais de 1 vez por semana ( _______ dias por semana)
1 vez por semana
de 15 em 15 dias
1 vez por mês
Equipamentos de proteção individual utilizados:
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
_________________________________________________________________________
2) Hábito de fumar cigarro industrializado?
Não
Fumou mas parou
Parou há quanto tempo? ______ meses ______ anos
44
UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS BIOLÓGICAS
Fumou durante quanto tempo? ______ meses ______ anos
Número de cigarros consumidos por dia:
de 1 a 5 por dia
de 6 a 10 por dia
de 11 a 15 por dia
de 16 a 20 por dia
de 21 a 30 por dia
mais de 30 por dia
Sim
Há quanto tempo? ______ meses ______ anos
Número de cigarros consumidos por dia?
de 1 a 5 por dia
de 6 a 10 por dia
de 11 a 15 por dia
de 16 a 20 por dia
de 21 a 30 por dia
mais de 30 por dia
3) Hábito de ingerir bebidas alcoólicas?
Não
Parou de beber
Há quanto tempo? ______ meses ______ anos
Com que frequência bebia?
diariamente
4 a 6 vezes por semana
3 a 5 vezes por semana
1 a 2 vezes por semana
2 a 3 vezes por mês
1 vez por mês
menos de 1 vez por mês
45
UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS BIOLÓGICAS
Sim
Há quanto tempo? _______ meses _______ anos
Com que frequência bebe?
diariamente
4 a 6 vezes por semana
3 a 5 vezes por semana
1 a 2 vezes por semana
2 a 3 vezes por mês
1 vez por mês
menos de 1 vez por mês
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo