Download PDF
ads:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE ENGENHARIA ELÉTRICA
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
ALEXANDRE HUGO DA SILVEIRA
AVALIAÇÃO DO POTENCIAL DE CONSERVAÇÃO DE ENERGIA NO
SETOR HOSPITALAR DA REGIÃO SUL DO BRASIL
Porto Alegre
Maio de 2008
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ALEXANDRE HUGO DA SILVEIRA
AVALIAÇÃO DO POTENCIAL DE CONSERVAÇÃO DE ENERGIA NO
SETOR HOSPITALAR DA REGIÃO SUL DO BRASIL
Dissertação apresentada para obtenção do grau
de Mestre, pelo Programa de Pós-graduação
em Engenharia Elétrica da Faculdade de
Engenharia Elétrica da Pontifícia Universidade
Católica do Rio Grande do Sul.
Orientador: Prof. Dr. Luís Alberto Pereira
Porto Alegre
Maio de 2008
ads:
ALEXANDRE HUGO DA SILVEIRA
AVALIAÇÃO DO POTENCIAL DE CONSERVAÇÃO DE ENERGIA NO
SETOR HOSPITALAR DA REGIÃO SUL DO BRASIL
Dissertação apresentada para obtenção do grau
de Mestre, pelo Programa de Pós-graduação
em Engenharia Elétrica da Faculdade de
Engenharia Elétrica da Pontifícia Universidade
Católica do Rio Grande do Sul.
Aprovada em 10 de Março de 2008.
BANCA EXAMINADORA:
_________________________________________
Prof. Dr. Luís Alberto Pereira
_________________________________________
Prof. Dr. José Wagner Maciel Kaehler
_________________________________________
Prof. Dr. Rubem Dutra Ribeiro Fagundes
ii
AGRADECIMENTOS
Agradeço primeiramente a Deus por todos os dias de perfeita saúde durante o curso de
Mestrado; à minha família, mãe Albertina Silveira, pai Eraldo Silveira, irmãs Carmen e tia
Silveira, cunhado Nísio Lisakowsk por todo o incentivo; à minha namorada Mozara Gentilini
por todo amor e compreensão e também à sua família. Gostaria também de agradecer ao meu
amigo e colega Everton Cortelini, aos colegas de mestrado Fábio, Marcos, Marlon, Arthur,
aos acadêmicos Diego e Maicon, ao Eng. Lothar Hoppe e ao Prof. Odilón Pavón Duarte do
Grupo de Eficiência Energética e demais colegas, em especial a Bibiana Petry que muito me
ajudou nesta dissertação.
Agradeço especialmente aos “mestres”; Prof. Dr. José Wagner Maciel Kaehler que
muito contribuiu na elaboração deste trabalho e com quem muito aprendi desde os tempos da
monografia de conclusão do curso de Engenharia Elétrica até o fim dos dois anos de
Mestrado. E finalmente, ao Orientador Prof. Dr. Luís Alberto Pereira por toda sua atenção e
por todos os conhecimentos adquiridos sem os quais esta dissertação não seria possível.
iii
“Algo que aprendi em uma longa vida: toda nossa ciência, medida contra a realidade, é
primitiva e infantil - e ainda assim, é a coisa mais preciosa que temos.”
Albert Einstein
iv
Resumo da Dissertação apresentada a PUCRS como parte dos requisitos necessários para
obtenção do grau de Mestre em Engenharia Elétrica.
AVALIAÇÃO DO POTENCIAL DE CONSERVAÇÃO DE ENERGIA NO SETOR
HOSPITALAR DA REGIÃO SUL DO BRASIL
ALEXANDRE HUGO DA SILVEIRA
Janeiro/2008
Orientador: Prof. Dr. Luís Alberto Pereira
Área de Concentração: Sistemas de Energia
Linha de Pesquisa: Planejamento e Gestão de Sistemas de Energia
Palavras-chave: Conservação de Energia, Setor Hospitalar, Mitigação de Gases do Efeito
Estufa.
Este trabalho teve como objetivo avaliar o potencial de economia de energia no Setor
Hospitalar da Região Sul do Brasil, bem como os impactos quanto à mitigação de dióx do Br0511(i)-9.23piuf-47.8723(l)rRbo de r.6383(a)-f13.4472(m)122.80892( )-.40381(ho )-58.5106 da-47.8723(ob)-2.80892(m)3.447296(a)-13.4472(3.21279( )-d7.82718(c)-10762(qui)1.81.88 0.36 -234(d3.4459(a)7.83068(.)- )-218.085(12.0434(a)é )-207.447(E)-6.0204(f)361789(n)1 )-218.085(.40251(os)i)1.81.88 0.21279(a)-2.80852( )]-9.23579(óu)10.6383(e)õe.4025161renosquu4.61789( )-86.17(ne)7166(s)309gq8.84(uf10.6383(e)]TJ281.88 0e10.6409(e)7.80762(i)1.6 -234(d3.4459(a)7.83068(.)-2.80762(ã)--9.23319( )-58.5106(dd2.80762(o )-218.085(10.6383(e)].1.40511( )-37281.885e)7.82938923.21279()-15.4 -12.96 Td[(obt)-9.281.88 0t0.6383(e) Td[(obt)-n.64 -12.96 Td[(E)-6.02105(s)6.309gqpi)1.21279(Xa47.8723(l).23445.745-2.81021( )9.23449(s)6.0217(a)-2.2.0421( )-15.02516Xa47.8723()]TJ335.(o )-4740381( )-n.64 -122( )-uTJ335.(o )-4740381( )-m3.21279(r)3.245.745-nc)-2.80892(z3.21279(a)-2.80899(r)3.21019(i)1.40762(qu2.80852( )]TJ12.96 T-10762(qui)1245.745-h)1.40511(pa)p0.6383(a)7.83068(ç)-a.80852( )]TJ12.96 T-10762(qu)1.40511( )-37.45.745-c.6383(e)]a.80852( )]d)-58.5106(S)2..45.745-2.80892(:)1a47.8723()]l.6383(m)1.40535.(o )-47.234(os)-0.6383(m)1.40545.745-.40762(qu2.80852( )]uTJ356.(:)1d.31915( )-218.085(S)13.234(os)13.4459(o nó.23319(55.8383(a)-13.21279( )-58.8.085(S44 0 Td[(a).40545.745-1.40511(a)-2.80762(l)1279(r)3.211.40511(l)g2.0434(a)é )1279()-1t234(do )-.234(do )-c )1279()-1Td[(E)-6.02105(s)6.355.83pi)153384(uf)-186.17(d)le)7.82938)10.6383(r)bo)-.40381(ho )1279( )-d79.222.-3.p9.23449(s)6-3.21279(r79.239.279e)-2.807(ã)-2.80892(o:up79.222.-3.d9.23449(s)69.222.-3..40251(t)-9.3.4472(m)i7.8723(da-47381(e)-2.80892o )-ê.40511(a)-2-9.23319( )-58.5106(d)10.6409(e)9.239.279e10.6383(i)1.403319(a)-2.80762( )-58.5106(n2.0434(c)-13.4459(a)75.31916( )]TJ12.96 TL0.6409(e)9.222.-3.d)10.6409(e)9.239.279e2.80762(i)U3.4485(r)3-186.17(c)-2.80762(om)1.40511(o .1.40511( )-37239.279e.21279( )]Tl.6383(m)1é )-207.447m.83068( )-58.222.-3.d2.80762(ã)-.40762(qu.23319(o8.23319(g)1Td[(E)-6.,)40511( )-37239.279e79.239.279e3.4459(a)7.83068(.)- )-218.085(ba10.6409(e)7.80762(i)h79.239.279eut234(do )-.24 -12.96 l234(do )-.234(do )-z279(r)3.21Td[(E)-6.ud[(E)-6.02105(s)6.3o8.23pi)1.40381(tda47.8723(l)d(.6383(a)-2.80762(U)9d79.264.89)-15.9574(L)1)9.23319(A)T)0381(O)1.40381( )-S7.82938(jU.40381( )-S75.9574(P)13.64.89)-9.23449(s)69.2762(U)9d79.2762(U)9I83068(.)--4.61789(i)G.40511(U)-1.0762(qu.1.40511( )-37264.89)-O21279( )]T2.81021(r)13.8464.89 e
v
Abstract of Dissertation presented to PUCRS as one of the requirements to obtain Masters
Degree in Electrical Engineering.
EVALUATION OF THE POTENTIAL ENERGY CONSERVATION IN HOSPITALS
OF THE SOUTH REGION OF BRAZIL
ALEXANDRE HUGO DA SILVEIRA
April/2008
Supervisor: Prof. Dr. Luís Alberto Pereira
Concentration Field: Energy Systems
Line of Research: Planning and Management of Energy Systems
Keywords: Energy Conservation, Hospital Sector.
This study aimed to assess the potential for energy saving in the Hospital Sector in the
South Region of Brazil and its impact on the mitigation of carbon dioxide emission to the
atmosphere, achieved through the reduction in the consumption of electricity. The study
analyzed sixteen hospitals where energy saving projects has been implemented. Each hospital
has been monitored before and after the implementation of energy saving projects through
energy audits conducted by the Research Group on Energy Efficiency from PUCRS.
Moreover, the study used data from the IBGE and DATASUS. The estimation of energy
saving and other values of interest was carried out according to methodologies based on
population statistics. As the first step, it was calculated the mean values of consumption and
demand before energy efficiency projects, reductions in consumption and demand after
energy efficiency projects, and the necessary financial investments. All relevant data have
been normalized using the number of available beds on each hospital. As a second step,
through the calculation of the linear regression, it was found the estimated consumption of
each of the hospitals in the South Region of Brazil. Summing up the individual data, it was
possible to obtain the values for the whole population, which was in the sequence compared
to the mean values in order to verify its coherence. As a result, for the whole population, it
was found an annual consumption of 548 GWh of energy and a power demand of 112 MW,
which could be achieved with projects aiming to improve the efficiency of the use of
electrical energy. It was also found that such projects could lead to a reduction of
171.54 GWh on the energy consumption and 43.5 MW of power demand. However, this
would also require an investment of R$ 157.08 million. Taking into account the avoided costs
for the expansion of the electrical system to meet the same power demand, this investment
vi
would be paid in 3.6 years. Concerning environmental impacts, such energy conservation
actions would allows avoiding the emission of 164 thousand tones of CO
2
per year. Finally,
this study shows the great importance of energy saving in the hospital sector and the benefits
that actions of energy conservation would have to the society.
vii
LISTA DE FIGURAS
Figura 2.1. Representação do Planejamento Integrado dos Recursos Energéticos. ................ 21
Figura 3.1. Fluxograma da metodologia geral. ...................................................................... 40
Figura 3.2. Fluxograma da metodologia para sistema de iluminação. ................................... 42
Figura 3.3. Aspecto de uma luminária ineficiente. ................................................................ 43
Figura 3.4. Aspecto de uma luminária eficiente. ................................................................... 43
Figura 3.5. Aspecto da má disposição das luminárias no corredor de um Hospital. ............... 44
Figura 3.6. Aspecto da má disposição das luminárias em alguns leitos de um Hospital. ........ 44
Figura 3.7. Aspecto da lâmpada dicróica utilizada em alguns leitos de um Hospital. ............ 45
Figura 3.8. Aspecto da iluminação externa com lâmpadas de vapor de mercúrio. ................. 45
Figura 3.9. Exemplo de aproveitamento da iluminação natural com a abertura de persianas
durante o dia. ....................................................................................................................... 46
Figura 3.10. Fluxograma da metodologia específica do bombeamento de água. .................... 47
Figura 3.11. Fluxograma da metodologia específica do sistema de exaustão. ........................ 49
Figura 3.12. Aspecto da tela de proteção obstruída com sujeira. ........................................... 51
Figura 3.13. Aspecto do exaustor sem manutenção............................................................... 51
Figura 3.14. Fluxograma da metodologia específica do transporte vertical. .......................... 54
Figura 3.15. Fluxograma da metodologia específica da lavanderia. ...................................... 56
Figura 3.16. Fluxograma da metodologia específica do sistema de ar comprimido. .............. 58
Figura 3.17. Aspecto da falta de conservação das aberturas do hospital. ............................... 60
Figura 3.18. Aspecto da falta de manutenção dos filtros do sistema de ar condicionado........ 60
Figura 3.19. Aspecto da falta de planejamento da incorporação das cargas térmicas. ............ 61
Figura 3.20. Fluxograma da metodologia específica do sistema de condicionamento
ambiental. ............................................................................................................................ 63
viii
Figura 3.21. Aspecto de um chuveiro elétrico pertencente ao antigo sistema de aquecimento
de água de um hospital analisado nesta dissertação. ............................................................. 65
Figura 3.22. Aspecto de um chuveiro elétrico pertencente ao sistema de aquecimento de água
ix
LISTA DE TABELAS
Tabela 2.1 - Estimativa de consumo dos hospitais brasileiros em 1999 (GWh). .................... 34
Tabela 2.2 - Estimativa de consumo dos hospitais brasileiros de pequeno porte em 2002. .... 34
Tabela 3.1 - Interpretação dos coeficientes de Pearson. ........................................................ 71
Tabela 3.2 - Coeficientes de Pearson encontrados para as amostras analisadas. .................... 72
Tabela 3.3 - Coeficientes de determinação encontrados para as amostras analisadas com o
HSL. .................................................................................................................................... 74
Tabela 3.4 - Coeficientes de determinação e equações encontrados para as amostras analisadas
sem o HSL. .......................................................................................................................... 74
Tabela 3.5 - Fatores médio mensal de emissão de CO2 em ton CO2/MWh do Submercado Sul
do ano de 2006. .................................................................................................................... 81
Tabela 4.1 - Estimativas de consumo de energia elétrica do setor hospitalar da Região Sul do
Brasil. .................................................................................................................................. 83
Tabela 4.2 - Reduções de consumo de energia elétrica do setor hospitalar da Região Sul do
Brasil por usos finais. ........................................................................................................... 84
Tabela 4.3 - Intervalo de confiança das reduções de consumo de energia elétrica do setor
hospitalar da Região Sul do Brasil por usos finais. ............................................................... 84
Tabela 4.4 - Reduções de demanda de energia elétrica do setor hospitalar da Região Sul do
Brasil por usos finais. ........................................................................................................... 85
Tabela 4.5 - Intervalo de confiança para as reduções de demanda de energia elétrica do setor
hospitalar da Região Sul do Brasil por usos finais. ............................................................... 85
Tabela 4.6 - Investimento em eficiência energética no setor hospitalar da Região Sul do
Brasil. .................................................................................................................................. 85
Tabela 4.7 - Estimativas de investimentos em eficiência energética no setor hospitalar da
Região Sul do Brasil. ........................................................................................................... 86
Tabela 4.8 - Estimativas de custos evitados e RCB a partir de projetos de eficiência energética
para todo o setor hospitalar da Região Sul do Brasil. ............................................................ 87
x
Tabela 4.9 - Valores obtidos através da inferência estatística baseada no método da regressão
linear.................................................................................................................................... 90
Tabela 4.10 - Estimativas de emissões evitadas de CO
2
a partir de projetos de eficiência
energética para todo o setor hospitalar da Região Sul do Brasil. ........................................... 91
xi
LISTA DE GRÁFICOS
Gráfico 2.1. Emissões de CO2 por Setor no Mundo 1990. .................................................... 24
Gráfico 2.2. Reduções de CO2 no Mundo previsão para 2050. ............................................. 24
Gráfico 2.3. Evolução da quantidade de leitos oferecidos no setor hospitalar brasileiro. ....... 26
Gráfico 2.4. Distribuição percentual de leitos existentes nas grandes regiões do Brasil. ........ 27
Gráfico 2.5. Distribuição média do consumo de eletricidade nos hospitais brasileiros. ......... 30
Gráfico 3.1. Consumo do exaustor da lavanderia antes e após a limpeza dos filtros. ............. 50
Gráfico 3.2. Equações de regressão e curvas de ajuste, referentes ao consumo de energia
elétrica antes de ações de eficiência energética nas amostras analisadas. Modelos: (a) linear,
(b) logarítmico, (c) potencial e (d) exponencial. ................................................................... 75
Gráfico 3.3. Equações de regressão e curvas de ajuste, referentes à demanda de energia
elétrica antes de ações de eficiência energética nas amostras analisadas. Modelos: (a) linear,
(b) logarítmico, (c) potencial e (d) exponencial. ................................................................... 76
Gráfico 3.4. Equações de regressão e curvas de ajuste, referentes à redução do consumo de
energia elétrica a partir das ões de eficiência energética nas amostras analisadas. Modelos:
(a) linear, (b) logarítmico, (c) potencial e (d) exponencial. ................................................... 78
Gráfico 3.5. Equações de regressão e curvas de ajuste, referentes à redução de demanda de
energia elétrica a partir das ões de eficiência energética nas amostras analisadas. Modelos:
(a) linear, (b) logarítmico, (c) potencial e (d) exponencial. ................................................... 79
Gráfico 3.6. Equações de regressão e curvas de ajuste, ajuste referentes ao investimento para a
realização das ações de eficiência energética nas amostras analisadas. Modelos: (a) linear, (b)
logarítmico, (c) potencial e (d) exponencial. ......................................................................... 80
Gráfico 4.1. Distribuição do consumo e de demanda de energia elétrica antes da realização de
ações de eficiência energética no setor hospitalar para os três estados da Região Sul. ........... 88
Gráfico 4.2. Distribuição das reduções de consumo e de demanda de energia elétrica no setor
hospitalar para os três estados da Região Sul. ....................................................................... 89
Gráfico 4.3. Distribuição dos investimentos necessários para a realização dos projetos de
Eficiência Energética no setor hospitalar para os três estados da Região Sul. ........................ 89
xii
SUMÁRIO
1 Introdução ...................................................................................................................... 17
1.1 Objetivo ...................................................................................................................... 18
1.2 Justificativa ................................................................................................................. 18
1.3 Organização ................................................................................................................ 18
2 Estado da Arte ................................................................................................................ 20
2.1 O PIR e o Planejamento Energético Tradicional .......................................................... 20
2.2 Energia e Meio Ambiente ............................................................................................ 22
2.3 O Setor Hospitalar Brasileiro ....................................................................................... 25
2.3.1 Características Gerais do Setor Hospitalar Brasileiro ................................................ 25
2.4 A Conservação de Energia no Setor Hospitalar ............................................................ 27
2.4.1 Perfil do Uso da Energia nos Hospitais Brasileiros ................................................... 29
3 Métodos ......................................................................................................................... 35
3.1 Metodologia de Diagnósticos Energéticos ................................................................... 38
3.1.1 Sistema de Iluminação .............................................................................................. 40
3.1.2 Sistema de Força Motriz ........................................................................................... 46
3.1.3 Sistema de Condicionamento Ambiental .................................................................. 58
3.1.4 Sistema de Aquecimento de Água ............................................................................ 63
3.2 Inferência Estarística para a População dos Hospitais da Região Sul ........................... 67
3.2.1 Comparação dos Resultados com o Uso do Método da Regressão Linear ................. 73
3.3 Metodologia para a Estimativa de Ganhos na Mitigação de CO
2
.................................. 80
4 Resultados ...................................................................................................................... 83
4.1 Inferência Estatística Para os Usos Finais .................................................................... 83
4.2 Potenciais de Conservação de Energia Elétrica nos Estados da Região Sul do Brasil ... 87
4.3 Comparação dos resultados obtidos com o método da regressão linear ........................ 89
xiii
4.4 Mitigação de Gases do Efeito Estufa obtidas a partir da Eficiência Energética no Setor
Hospitalar ............................................................................................................................ 90
5 Conclusões ..................................................................................................................... 92
Bibliografia .......................................................................................................................... 95
Bibliografia Complementar .................................................................................................. 98
Glossário............................................................................................................................ 100
17
1 INTRODUÇÃO
Cada vez mais no mundo contemporâneo, as atividades humanas, a melhoria das
condições de vida das populações e o desenvolvimento econômico mundial estão dependentes
do fornecimento de energia elétrica. Segundo a Associação Brasileira de Distribuidores de
Energia Elétrica (ABRADEE), no Brasil, em 2003 cerca de 15 milhões de pessoas não
possuíam acesso a eletricidade [18], reduzindo assim sua qualidade de vida e impedindo sua
evolução sócio-econômica. Muitos pesquisadores vêm alertando sobre os riscos de déficit de
energia entre os anos de 2009 a 2013 em cenários onde o crescimento da economia nacional
pode alcançar 5.1%, o que impediria a sustentação desta evolução econômica como vivido
no ano de 2001. Além disto, a Associação Brasileira dos Grandes Consumidores de Energia
[19] constataram um aumento de 150% na tarifa média da energia elétrica entre os anos de
2001 a 2006 contra aproximadamente 60% no Índice Geral de Preços - Mercado (IGP-M) no
mesmo período, com fortes perspectivas destes valores continuarem em ascensão.
Segundo o enfoque da oferta de energia, toda a forma de geração de eletricidade traz
como conseqüência, impacto ambiental, em maior ou menor escala. Desde as fontes
consideradas mais limpas, como: a solar fotovoltaica, que necessitam de baterias para
acumular a energia gerada. Estas baterias contém metais pesados que não podem ser lançados
diretamente no solo sob risco de contaminação; a eólica que interfere na rota de migração de
pássaros. A exploração dos recursos hídricos, que pode inundar grandes áreas florestais,
ocasionando mudança na fauna local e gerando gás metano. Aproveitamentos hídricos
também podem interferir em rotas migratórias de peixes e por conseqüência na sua
reprodução. Até as consideradas mais poluentes, como exemplo a termoeletricidade à carvão,
óleo combustível e gás, que retira o carbono armazenado no subsolo e o lança na forma de
CO
2
na atmosfera ocasionando no aumento das temperaturas médias globais pelo efeito
estufa. Apesar disto, as projeções apontam para um aumento da participação do carvão na
matriz energética brasileira até o ano 2030.
Diante deste cenário é necessário que os recursos energéticos existentes sejam
aproveitados ao máximo, sendo insustentável o desperdício desta energia que tem um custo
elevado de produção, transmissão e distribuição sob qualquer ponto de vista. Segundo a
Empresa de Pesquisa Energética (EPE, 2007) desde 1998, ano em que as concessionárias
distribuidoras de energia elétrica começaram a investir em programas de eficiência energética,
foram retirados da ponta 1.395 MW e economizados 4.653 GWh/ano em todo o Brasil, o
18
que é pouco se comparado a oferta de energia elétrica no ano 2006 que foi de 461.200 GWh
(cerca de 1% de energia economizada).
1.1 Objetivo
Tendo como principal preocupação auxiliar a pesquisadores e sociedade na busca por
uma maior eficiência na forma de utilização de eletricidade. Desta forma, esta dissertação tem
o objetivo de apresentar uma metodologia para a elaboração de diagnósticos energéticos
especificamente para o setor hospitalar, e avaliar o potencial de economia de energia na
Região Sul do Brasil deste setor e os seus impactos, quanto à mitigação de gases do efeito
estufa oriundos da geração de energia demandada por estes estabelecimentos.
1.2 Justificativa
A escolha deste setor se deve a carência de recursos financeiros por parte da maioria
dos estabelecimentos de saúde do Brasil e a precariedade no atendimento e na pouca oferta de
leitos no setor. Para se ter uma idéia, a quantidade de leitos oferecida para a internação no ano
de 2005 (ano do último levantamento realizado pelo Instituto Brasileiro de Geografia e
Estatística (IBGE)) nunca foi tão pequena desde 1976, ano em que se começou a realizar esta
pesquisa, enquanto no mesmo período a população praticamente dobrou de tamanho.
Além disto, as edificações hospitalares contam com os mais diversos usos finais de
energia, e sua forma de utilização, se assemelha muitas vezes a de uma pequena indústria. A
metodologia apresentada para a realização de diagnósticos energéticos pode ser facilmente
transponível e adaptada para outros segmentos empresariais de pequeno porte. Ao mesmo
tempo a forma como é utilizada a energia também se assemelha a estabelecimentos do setor
de hotelaria, que também podem ser eficientizados com poucas mudanças na metodologia de
diagnósticos energéticos apresentada no capítulo 3.
1.3 Organização
Esta Dissertação está organizada da seguinte forma:
No segundo capítulo é realizada uma revisão da literatura existente, onde será
apresentado o conceito de Planejamento Integrado dos Recursos Energéticos (PIR) e
19
comparado com o planejamento energético tradicional, será também mostrado o conceito de
Gestão de Energia pelo Lado da Demanda e sua importância dentro do PIR. Posteriormente
será mostrada a relação entre a geração de energia e o meio ambiente apresentando o
Mecanismo de Desenvolvimento Limpo (MDL). Em seguida será apresentado o cenário atual
do setor hospitalar brasileiro e das grandes regiões do País, os trabalhos realizados quanto à
forma de utilização de eletricidade e a conservação de energia neste segmento.
No terceiro capítulo são apresentados os métodos utilizados. Primeiramente, a
metodologia adotada para a realização dos diagnósticos energéticos, para os diversos usos
finais de energia elétrica, que compõem a amostra analisada neste trabalho. Em seguida, é
realizada uma estimativa do potencial de conservação de energia para o setor hospitalar
brasileiro a partir da referida amostra e os procedimentos para a estimativa de redução dos
gases do efeito estufa originados a partir das ações de eficiência energética no setor.
No quarto capítulo, serão apresentados os resultados obtidos neste trabalho e
comparados, os valores resultantes a partir de dois diferentes métodos de estimação. Serão
exibidos os valores da inferência relativos ao consumo e demanda de energia da população
dos hospitais da Região Sul do País e depois os decréscimos de emissões de CO
2
obtidas com
estas reduções.
No quinto capítulo são apresentadas as conclusões do trabalho, bem como as
recomendações e propostas da continuação desta pesquisa.
20
2 ESTADO DA ARTE
2.1 O PIR e o Planejamento Energético Tradicional
O problema do fornecimento de energia elétrica requer um planejamento em que se
considerem todas as variáveis envolvidas, desde a fonte produtora até o consumidor final com
análise de todas as opções disponíveis. Desde o estudo da viabilidade de sistemas de geração
distribuída ou de fontes alternativas, principalmente nos sistemas isolados onde ainda se
utilizam combustíveis derivados do petróleo. Passando pelo estudo do incremento de
eficiência energética nas usinas hidroelétricas e termoelétricas e nos sistemas de transmissão e
distribuição, até chegar à análise da viabilidade de ações de eficiência energética nos usos
finais dos mais diversos segmentos da sociedade, analisando-se anteriormente onde estão os
maiores potenciais de economia de energia.
Neste contexto é necessário se analisar em que setores se encontram os maiores
potenciais de economia de energia, com o objetivo de auxiliar a tomada de decisão para se
minimizar investimentos, tarifas e impactos ambientais com a geração, transmissão e
distribuição de uma energia que será desperdiçada pelo usuário final.
O Planejamento Energético Tradicional (PE) procura a expansão dos recursos desde a
fonte a a distribuição através da previsão do crescimento da demanda, procurando
minimizar o custo financeiro da expansão. Os critérios do PE levaram a uma estratégia de
crescimento rápido com o objetivo de suprir o aumento da demanda, com pouca consideração
quanto à eficiência energética e seus impactos no meio-ambiente.
Atualmente, os custos crescentes da expansão do sistema e os problemas ambientais
vêm ocasionando mudança do PE para o PIR. Segundo [1], em termos gerais, o PIR é o
processo que faz uma análise de todas as opções possíveis e factíveis, no tempo e na
geografia, com o objetivo de promover do bem estar procurando garantir a sustentabilidade
social, econômica e ambiental.
21
A figura 2.1 representa o modelo de planejamento do PIR, onde são analisadas as
alternativas de Gestão de Energia pelo Lado da Demanda (GLD) (como, por exemplo, ações
de eficiência energética no setor hospitalar), com projeções de cargas em diferentes cenários.
Também são analisadas alternativas de suprimento com energias renováveis ou não para
projeções de expansão do sistema e os impactos ambientais resultantes. Então são executadas
análises econômicas e financeiras e confrontam-se curvas de capabilidade da produção com
suas curvas de emissões, atrelados aos custos de produção frente a curvas de carga dos
diferentes segmentos sócio-econômicos de mercado. Disto resulta ações que conduzem a
modificação dos perfis de uso da energia.
Figura 2.1. Representação do Planejamento Integrado dos Recursos Energéticos.
Fonte: JANNUZZI, 1997.
Assim, o PIR é a ferramenta que coloca em um mesmo patamar as opções de
gerenciamento de energia tanto pelo lado da oferta como da demanda. Aumentando o leque de
opções, permitindo a busca pela melhor escolha, com opções tais como: a redução da
utilização de energia; deslocamento de carga; substituição de fontes energéticas; educação do
consumidor, controle da demanda em horários de ponta, etc. [1].
Os programas de eficiência energética analisados no decorrer desta dissertação se
mostraram eficazes quanto à protelação de investimentos em expansão da oferta por parte das
concessionárias de energia, sobretudo de conservação de energia como poderá ser visto no
Capítulo 4. E como conseqüência da redução no consumo de energia, se tem a redução dos
impactos ambientais, quanto à emissão de gases do efeito estufa, resultantes da energia
22
elétrica que deixará de ser gerada para suprir as perdas resultantes do uso indevido de
eletricidade no setor hospitalar da Região Sul do país.
Os projetos estudados tiveram como base ações de Gestão de Energia pelo Lado da
Demanda (GLD) visando, sobretudo, a eficiência no uso final de energia e ações que
objetivam reduzir o consumo em horários de ponta. Estes projetos, em sua maioria, foram
financiados pela concessionária de energia local, que tinham, entre outros, o objetivo de
protelar investimentos em ampliação do sistema de fornecimento. Muitos dos hospitais
analisados se localizavam em pontos sensíveis da rede de distribuição. Em alguns casos a
ampliação destas redes, pode ser adiada após a realização das ões de GLD propostas nos
Diagnósticos Energéticos.
Os Programas de GLD envolvem um esforço de controlar o sincronismo e a
quantidade de eletricidade exigida por clientes. As estratégias de GLD são compostas de
esforços com o objetivo de mudar a forma da curva da carga ou a área total sob a curva da
carga (a integral da curva da carga a energia total consumida). As formas de utilização da
energia podem projetar os programas que combinam duas ou mais das estratégias da forma de
carga, modificando o formato da curva de carga de seus clientes e energia total exigida
possibilitando a protelação de investimentos para a ampliação do sistema elétrico [7].
Os esforços de GLD se o normalmente sobre uma região geográfica atendida por
uma rede elétrica, esta rede pode atender estabelecimentos de vários setores da economia.
Entre eles o hospitalar, que possui estabelecimentos em muitos municípios, já que o serviço
hospitalar é essencial para a assistência das populações e para o desenvolvimento humano.
2.2 Energia e Meio Ambiente
O setor hospitalar brasileiro utiliza amplamente a eletricidade e como o consumo de
energia traz como inevitável conseqüência alguma forma de dano ambiental, uma das
soluções de atenuação e limitação deste problema é a utilização racional da energia.
A produção de energia tem influência direta sobre o meio ambiente que é
responsável por grande parte da emissão de gases, como o gás carbônico (CO
2
) dentre outros,
que causam o acréscimo constante da temperatura média do Planeta Terra. Estes gases
bloqueiam parte da radiação infravermelha que a Terra devolve para o espaço, provocando
aumento da temperatura atmosférica, trazendo como conseqüências modificações climáticas.
23
Em [15 apud 22] concluiu-se que a utilização dos combustíveis fósseis tem a prioridade de
aumentar as concentrações atmosféricas de CO
2
. Segundo [17 apud 22], o gás carbônico tem
como fontes antropogênicas o uso de combustíveis fósseis o desmatamento ou mudanças no
uso da terra. Segundo [15], em 1990 as contribuições da produção de energia para o efeito
estufa no mundo já era de 57% conforme ilustrado no Gráfico 2.1.
A emissão de CO
2
causadas pelo homem no mundo atualmente estão em torno de sete
bilhões de toneladas. Com o objetivo de combater o aquecimento global provocado por estas
emissões foi negociado o Protocolo de Quioto, em Quioto no Japão em 1997, tendo entrado
em vigor em fevereiro de 2005.
O Mecanismo de Desenvolvimento Limpo (MDL) é um dos chamados Mecanismos de
Flexibilização criados pelo Protocolo de Quioto para facilitar que alguns países,
comprometidos em reduzir suas emissões de gases do efeito estufa possam atingir suas metas
com um menor impacto em suas economias. Através do MDL, os países desenvolvidos
podem investir neste tipo de projeto em países em desenvolvimento e utilizar Reduções
Certificadas de Emissões (RCE) para reduzir suas obrigações.
Os projetos de eficiência energética vêm ao encontro do objetivo de combater as
emissões ao buscar o uso eficiente das diversas formas de energia, introduzindo na economia
recursos, gerando crescimento e ainda competitividade dos bens e serviços produzidos.
Consumidores das mais variadas áreas aplicam este tipo de projeto em suas instalações.
De acordo com [10 apud 20], em um cenário projetado para o ano de 2050, onde
estima-se alcançar a redução de 32 Gt CO
2
, a maior parte desta redução (ou seja 45%) se
proveniente da prática de eficiência energética conforme visualizado no Gráfico 2.2. Um
recente documento do G8 intitulado “Growth and Responsibility in the World Economy
(2007) focaliza as discussões na eficiência energética com o objetivo de contribuir de forma
eficaz para os desafios da mudança do clima para a confiabilidade quanto ao suprimento de
energia no mundo. O documento diz que a melhora da eficiência energética é a forma mais
rápida, de maior sustentabilidade e mais barata de se reduzir os gases do efeito estufa e de se
garantir o suprimento de energia.
Segundo [10], do potencial de redução dos gases do efeito estufa proveniente de ações
de eficiência energética, 18% é aplicado em edificações, analisando o potencial de redução
por uso final (3% em aquecimento ambiental, 3% em ar condicionados, 3,5% em iluminação,
1% em aquecimento de água e cozimento de alimentos, 7,5% em outros usos finais), 17% em
24
indústrias e 10% em transportes. O Gráfico 2.2 as previsões de reduções de reduções de CO
2
para o mundo em 2050.
17%
4%
14%
9%
56%
CFC
Indústrias
Agricultura
Desmatamento e Mudança
nos Padrões de Uso da
Terra
Produção de Energia
Gráfico 2.1. Emissões de CO2 por Setor no Mundo 1990.
Fonte: USA - EPA 1990.
Gráfico 2.2. Reduções de CO2 no Mundo previsão para 2050.
Fonte: IEA, 2007 apud IEA, 2006.
34%
3%
5%
7%
6%
45%
Gerão de Energia
Sequestro de Carno e
Armazenamento - Industria
Petroquímica
Sequestro de Carno e
Armazenamento - Instrais
Mistura de Combustíveis
(Edificações 5% / Instria
2%)
Transporte de
Biocombustível
Eficiência no Uso Final
25
2.3 O Setor Hospitalar Brasileiro
O setor hospitalar brasileiro, nos últimos anos, tem apresentado uma queda na oferta
de leitos embora a população nacional esteja em crescimento. Neste capítulo é realizada uma
caracterização do atual cenário deste segmento, bem como sua evolução desde a cada de
1970 onde o IBGE, através de sua pesquisa intitulada de “Estatísticas de Saúde: Assistência
Médico-Sanitária (AMS)” começou a fazer os primeiros levantamentos de dados sobre o setor
hospitalar. Estes dados o relevantes, que como será visto posteriormente, as análises
estatísticas realizadas nesta dissertação relacionam os dados de consumo, demanda e
investimentos com o número de leitos disponíveis no universo dos hospitais da Região Sul do
Brasil.
2.3.1 Características Gerais do Setor Hospitalar Brasileiro
Os Estabelecimentos de Saúde (ES) podem ser classificados em clínicas, postos de
saúde, pronto-socorros, ambulatórios e hospitais. Hospitais são ES que possuem a
característica específica de oferecer leitos para internação de pacientes. Essa delimitação é
importante que os potenciais de conservação de energia e a presente dissertação abordam
apenas este tipo de estabelecimento. Segundo a AMS (2005), 9,3% de todos os ES o
hospitais.
Apesar de o setor privado possuir 62% desses estabelecimentos, a queda anual no
número de hospitais em relação à pesquisa realizada em 2002 foi de 2,7% neste setor e variou
de 5,7% na Região Norte, a 1,7% na Região Sul. Nas Regiões Nordeste e Centro-Oeste a
queda de foi 3,6% [3].
No tocante à especialização, 52,4% dos hospitais fazem atendimento geral. O
atendimento ambulatorial é oferecido por 91,9% destes ES. A disponibilidade da emergência
existe em 67,5% nos estabelecimentos com oferta de leitos para a internação. Um importante
dado a ser avaliado é a distribuição de leitos nos hospitais, pois, segundo [5], um importante
indicador de consumo de energia relaciona-se com o número de leitos disponível em um
hospital. A simples diferenciação numérica implica distinções quanto ao porte para
distinções na forma de uso da energia.
Em relação existência de leitos no setor hospitalar, o comportamento recente
acompanha a queda verificada na quantidade de ES com internação. O número de leitos que
26
de 1976 para 2002 havia aumentado de 443.888 para 544.357 (representando um aumento de
22,6% ou 1,3% ao ano) declinou para 443.210 em 2005 (diminuição 18,6% ou 1,6% ao ano).
O Gráfico 2.3 mostra a evolução da quantidade de leitos existentes no setor hospitalar de 1976
a 2005.
100 000
200 000
300 000
400 000
500 000
600 000
1
976
1
9
77
1
978
1
9
79
1
980
1981
1
98
2
1983
1
98
4
1
985
1986
1
987
1988
1
98
9
1990
1
99
2
1
999
2
0
02
2
005
Gráfico 2.3. Evolução da quantidade de leitos oferecidos no setor hospitalar brasileiro.
Fonte: Elaboração própria a partir de AMS, 2005.
Do total de leitos oferecidos no Brasil a Região Norte conta com 27.163 leitos,
a Nordeste com 115.857; a Sudeste com 191.453; a Região Sul com 74.558 e a Centro-Oeste
com 34.179 leitos. O Gráfico 2.4 apresenta a distribuição percentual de leitos existentes nestas
regiões [3].
Nas Grandes Regiões houve um decréscimo de oferta de leitos de 2002 para 2005, a
queda variou de 1,8%, na Região Norte, a 7,3%, na Região Centro-Oeste. Na Região Sul esta
queda ficou em 6,1%.
A relação de leitos por 1.000 habitantes, em 2005, era de 2,4. Cabe ressaltar que os
parâmetros de cobertura sobre a necessidade de leitos indicados pelo Ministério da Saúde, na
Portaria no. 1.101/GM, de 12 de junho de 2002, apontam valores de 2,5 a 3 leitos por 1.000
habitantes. Os dados levantados na AMS 2005 apresentam apenas oito estados com
indicadores de leito por 1.000 habitantes maior ou igual a 2,5. São eles: Paraíba com 2,5;
27
Pernambuco com 2,5; Santa Catarina com 2,7; Mato Grosso do Sul com 2,7; Paraná com 2,8;
Rio Grande do Sul com 2,8; Goiás com 2,9; e Rio de Janeiro com 2,9 leitos por 1.000
habitantes[3].
6%
17%
43%
26%
8%
Norte
Sul
Sudeste
Nordeste
Centro-Oeste
Gráfico 2.4. Distribuição percentual de leitos existentes nas grandes regiões do Brasil.
Fonte: IBGE, 2006.
2.4 A Conservação de Energia no Setor Hospitalar
A demanda de energia em hospitais é caracterizada pela necessidade de alta
confiabilidade e qualidade do fornecimento, já que grande parte dos equipamentos é destinada
à manutenção da vida do paciente. Hospitais em geral, além de possuir alta intensidade
energética, em sua maioria utilizam as fontes de energia de modo pouco eficiente.
Além disto, um fato observado em diversos hospitais é que muitos deles resolvem seus
problemas de ampliação de demanda, seja ela de iluminação, condicionamento ambiental,
aquecimento de água, vapor e outros, com ações pontuais, sem um planejamento que busque
ações globais como, por exemplo, o investimento em centrais térmicas novas, estudo de novos
circuitos de vapor, co-geração etc. Estas soluções, que muitas vezes chegam a ser improvisos,
tem como conseqüência a utilização ineficiente da energia e amesmo colocam em risco as
instalações de todo o estabelecimento. Este fato cria um potencial elevado para a conservação
de energia, que segundo [4] pode variar de 20% até 44%. Dependendo da forma como é
utilizada a energia, uma simples inspeção pode revelar possibilidade de ganhos em
iluminação, ar condicionado, equipamentos e outros usos finais. Outras medidas simples
incluem a limpeza de lâmpadas e luminárias regularmente, substituindo lâmpadas e filtros nos
28
intervalos de tempo recomendados, certificando-se de que termostatos e temporizadores estão
ajustados corretamente. Mas, as medidas fundamentais requerem um estudo mais
aprofundado de engenharia com o objetivo de fornecer o mínimo de energia necessária para o
cumprimento adequado dos serviços hospitalares.
As medidas citadas resultam em benefícios para todos os envolvidos: para a sociedade,
pois evita a poluição do meio-ambiente proveniente da geração de energia que seria
desperdiçada; para os clientes dos hospitais, que os custos de energia estão computados
diretamente nos preços dos atendimentos hospitalares; para as concessionárias de energia, que
podem protelar investimentos em geração, transmissão e distribuição e finalmente para o
hospital, que necessitará comprar menos energia reduzindo seus gastos.
Então, se a conservação de energia é comprovadamente um caminho efetivo para
reduzir os gastos com saúde, por que os hospitais em geral não avançam mais na redução do
consumo? Uma pesquisa realizada nos hospitais de Ontário no Canadá por [5] intitulada
“Energy Efficiency Opportunities in Ontario Hospitals” perguntou quais os motivos que
atrapalham os esforços na busca de um uso racional da energia elétrica. Os entrevistados
podiam fazer mais de uma escolha e as respostas foram as seguintes:
Energia está fora da pauta de recursos 59,42 %
Sem dinheiro disponível internamente para eficiência 55,07 %
Falta iniciativa da instituição 44,93 %
Falta de suporte por parte do Ministério da Saúde (Canadá) 43,48 %
Eficiência não é um fator de planejamento de capital 24,64 %
Segundo [5] as duas maiores barreiras à eficiência de energia relatada por hospitais
participantes da pesquisa foram relacionadas aos recursos internos, que inclui os recursos
humanos para controlar os programas e os custos das ações de eficiência energéticas
propriamente ditas. A maioria dos hospitais identificou que o possuem um plano de gestão
de energia e somente 29% relatou que possuem um plano aprovado por seus executivos e
diretores. Apesar da relevância desta pesquisa, não foi encontrado estudo semelhante no
Brasil.
29
2.4.1 Perfil do Uso da Energia nos Hospitais Brasileiros
O principal insumo energético utilizado em hospitais é a eletricidade que representa
50%, quando o hospital conta com caldeira a vapor, podendo chegar a 100% da energia total
utilizada quando não existe a mesma. A participação deste energético tem aumentado
ultimamente, o que indica uma substituição de outras fontes como óleo combustível, gás
liquefeito de petróleo, óleo diesel etc, por energia elétrica [2].
O consumo de eletricidade nos hospitais se deve principalmente aos sistemas de
iluminação, de ar condicionado, exaustão, bombeamento de água equipamentos hospitalares,
sistemas de informação e aquecimento de água. O óleo combustível, assim como o Gás
Natural é utilizado geralmente em caldeiras para a geração de vapor e as vezes para
aquecimento de água. Alguns hospitais utilizam também a lenha para o aquecimento de água
em caldeiras. O óleo diesel é pouco representativo e é utilizado geralmente para a geração de
energia de emergência [2]
O Gráfico 2.5 apresenta a distribuição média percentual do consumo de energia nos
hospitais brasileiros, onde se nota que a maior parte do consumo de energia é proveniente dos
sistemas de condicionamento ambiental (44%), seguido da iluminação (20%). Este dado é
importante já que orienta planos de ação em eficiência energética com vistas a combater
primeiramente os maiores consumidores, e avaliar onde estão os maiores ganhos. Segundo
[4], esta economia pode variar de 10% a 15% para programas em iluminação e de 10% a 12%
em ar condicionado. A amostra que forneceu a média que compôs esta distribuição foi de 10
diagnósticos energéticos, sendo que 7 eram hospitais que possuíam mais de 300 leitos e 3
contavam com menos de 150 leitos, sendo estas características mais adequadas para hospitais
de grande porte.
30
44%
20%
30%
6%
Ar Condicionado
Iluminação
Demais Usos
Aquecimento de
Água
Gráfico 2.5. Distribuição média do consumo de eletricidade nos hospitais brasileiros.
Fonte: VARGAS, 2006 apud ECOLUZ, 1998.
[4], com o objetivo de avaliar o potencial de co-geração e uso do gás natural nos
setores da indústria química, hoteleiros e hospitalares, a partir de uma amostra composta por
27 diagnósticos, revelou a existência de certos padrões no consumo de energia em hospitais.
O autor observa que 64% do consumo de energia provêm de aquecimento de água,
condicionamento ambiental e iluminação.
No caso do setor hospitalar, [4] aponta a existência de uma correlação entre o número
de internações e de leitos e o consumo de água quente. Existe também uma correlação entre a
complexidade dos serviços médico-hospitalares e a demanda por condicionamento ambiental.
Apesar de [4] não apresentar estimativas de redução do uso de eletricidade com medidas de
eficiência energética, o mesmo estima o consumo de energia a partir da classificação dos
estabelecimentos nos tipos descritos a seguir. Na presente dissertação, embora o se tenha
utilizado todas as tipologias adotadas por [4], as mesmas serviram como referência para a
extrapolação realizada.
a) Hospitais de Grande Porte (GP)
Este grupo compreende hospitais que possuem mais de 450 leitos e que, em sua
maioria, contam com uma área de mais de 100.000 m². Estes hospitais contam com setores de
UTI (Unidade de Tratamento Intensivo), geradores de emergência e equipamentos
31
hospitalares de elevada complexidade tecnológica, que operam praticamente as 24 horas do
dia e os 7 dias da semana.
Estes estabelecimentos possuem uma intensidade energética média nacional de 3,3
MWh/leito/ano.
b) Hospitais de Médio Porte com Elevado Nível de Conforto (MPAC)
São instituições que possuem entre 150 e 450 leitos, contam com leitos disponíveis em
UTI e gerador de emergência. Outros critérios para o enquadramento são: possuir mais leitos
disponíveis em quartos do que em enfermarias e atender a seguinte restrição em relação ao
nível de conforto:
5,0
32
×
+
×
ETLEDL
[Equação 1]
Onde:
EDL - Enfermarias de dois leitos;
ETL - Enfermarias com três leitos ou mais;
LTH - Leitos totais do hospital.
A condição dada pela restrição [02] assume a hipótese de que o padrão de conforto em
um hospital está relacionado com a proporção de leitos oferecidos em quartos individuais. Tal
consideração baseia-se no fato de que, na maioria dos casos, estabelecimentos que possuem
maior número de quartos individuais, apresentam maior demanda por condicionamento
ambiental. Nesta classe, a participação da eletricidade, dentro dos demais energéticos, é de
57%.
c) Hospitais de Médio Porte com Reduzido Nível de Conforto (MPBC)
Da mesma forma que os MPAC, os hospitais MPBC são instituições que possuem
entre 150 e 450 leitos, contam com leitos disponíveis em UTI e gerador de emergência. Porém
possuem menos leitos disponíveis em quartos do que em enfermarias e atendem a seguinte
restrição em relação ao nível de conforto:
5,0
32
>
×
+
×
ETLEDL
[03]
32
Estes estabelecimentos apresentam uma maior intensidade energética do que aqueles
já observados (GP e MPAC), uma explicação para este fato, é a pouca participação de
sistemas centralizados de geração de vapor que não é presente a todos os hospitais deste tipo.
Outro fator é a elevada participação de energia elétrica para o aquecimento de água para
banho. A participação total de eletricidade é em média de 74% de todos os demais insumos.
d) Hospitais com capacidade de 50 a 150 leitos (PP)
Este tipo de hospitais engloba estabelecimentos de pequeno porte que não atendem
exclusivamente SUS, e que contam com uma oferta de 50 a 150 leitos. Quanto a forma de
utilização da energia, pode-se encontrar as mais variadas situações nesta tipologia,
envolvendo desde estabelecimentos que utilizam exclusivamente energia elétrica, até mesmo
para aquecimento de água destinada à cocção ou para secagem de roupa na lavanderia, até os
que geram calor em sistemas centralizados com consumo de gás em caldeiras. A eletricidade
conta com uma participação média na matriz energética desta tipologia de 76% [4].
e) Hospitais com capacidade inferior a 50 leitos (<50)
a classificação <50 compreende hospitais que atendem não exclusivamente SUS e
que possuem oferta de leitos inferior a 50 leitos. Neste grupo a participação de eletricidade na
matriz energética representa em média 85% dos demais energéticos.
f) Hospitais de atendimento exclusivo SUS (SUS)
Grupo de hospitais que contam com atendimento exclusivo ao Sistema Único de
Saúde (SUS). [4] diz que necessidade desta classe surgiu pelo fato de que estes
estabelecimentos possuem determinadas peculiaridades, como por exemplo apresentarem
maior número de leitos por área construída aproximando-se da tipologia estabelecida para
hospitais <50; possuírem capacidade instalada menor em condicionamento ambiental
utilizando, em sua maioria, sistemas descentralizados, aproximando-se dos hospitais MPBC;
contarem com um menor número de leitos em UTI, aproximando-se dos hospitais <50; serem
de propriedade pública, com restrições de ordem orçamentária para investimentos;
apresentarem uma menor proporção de serviços e equipamentos complexos e de geradores de
emergência [4].
A participação média do consumo de eletricidade na matriz energética destes hospitais
é de 71%, sendo o restante da energia atendida por GLP na geração descentralizada de calor
em especial para cocção.
33
Desta forma, [4] realizou uma estimativa de consumo de energia segundo as tipologias
estabelecidas para o setor hospitalar, os valores encontrados estão apresentados na Tabela 2.1.
O autor constata um elevado grau de heterogeneidade no que se refere aos serviços oferecidos
e aos padrões de uso de energia nos diversos estabelecimentos de sua amostra, o que o leva a
adotar uma estratégia diferenciada para estimar o consumo de energia em relação aos outros
setores pesquisados. [4] conclui sua tese ressaltando a importância do potencial de cogeração
com o uso do gás natural nos segmentos hospitalar e hoteleiro relatando que seus padrões de
demanda muitas vezes se assemelham aos de uma pequena indústria.
Outro importante estudo foi realizado por [2], onde o autor analisa o potencial de
economia de energia no segmento hospitalar, porém o estudo avalia apenas hospitais públicos
e de pequeno porte, e suas ações de eficiência contemplam somente os sistemas de ar
condicionado e iluminação. O autor considera como hospitais de pequeno porte aqueles que
contam com um número de leitos menor ou igual a 150. A amostra analisada foi composta de
8 hospitais da Região Norte, 1 da Região Nordeste, 3 da Região Sudeste, 1 da Região Centro-
Oeste e 3 da Região Sul. Os potenciais de conservação de energia para hospitais de pequeno
porte no Brasil encontrados neste trabalho estão apresentados na Tabela 2.2.
Segundo [2], o consumo de energia total no Brasil em hospitais de pequeno porte é
estimado em 1.152,57 GWh/ano possuindo um total de economia de eletricidade no sistema
de iluminação da ordem de 148,02 GWh/ano e no de ar condicionado de 174,69 GWh/ano. Já
a redução de demanda ficou estimada em 22,86 MW no sistema de iluminação e de
38,10 MW no sistema de ar condicionado. [2] relata a dificuldade em se obter diagnósticos
energéticos no setor hospitalar brasileiro, tanto em quantidade quanto em qualidade e diz que
aumentando a quantidade e a qualidade das informações é possível se obterem resultados mais
precisos para a população de hospitais. Além disso, recomenda para outros trabalhos a análise
de outros usos finais como aquecimento de água e sistemas de bombeamento. Estes usos
finais estão contemplados nesta dissertação, como se verá posteriormente.
34
Tabela 2.1 - Estimativa de consumo dos hospitais brasileiros em 1999 (GWh).
Brasil
Eletricidade Percentual Combustíveis Percentual
GP 671,41
17%
383,47
22%
MPAC 914,79
24%
690,00
39%
MPBC 253,02
7%
87,26
5%
PP
1.259,29
33%
403,89
23%
I50L 444,29
12%
75,76
4%
SUS 318,80
8%
126,81
7%
TOTAL 3.861,62
100%
1.767,22
100%
Regiã
o
Sul
Eletricidade Percentual Combustíveis Percentual
GP
130
,25
16%
74,39
20%
MPAC 237,15
30%
178,87
48%
MPBC 34,67
4%
11,95
3%
PP 265,21
34%
85,06
23%
I50L 106,18
13%
18,10
5%
SUS 17,73
2%
7,05
2%
TOTAL 791,21
100%
375,45
100%
Fonte: SOARES, 2004.
Tabela 2.2 - Estimativa de consumo dos hospitais brasileiros públicos de pequeno porte em 2002.
Norte Sul Nordeste Sudeste
Centro
-
Oeste
Consumo Total (GWh/ano) 149,84
108,34
549,28
244,33
104,79
Consumo
Tot. Ilum. (GWh/ano)
49,23
35,59
180,46
80,27
34,43
Consumo Total Ar (GWh/ano) 55,17
39,89
202,25
89,96
38,58
Potencial de Conservação Ilum (GWh/ano) 19,18
13,87
70,30
31,27
13,41
Potencial de Conservação Ar (GWh/ano) 22,63
16,36
82,96
36,90
15,83
Potencial de Conservação Ilum. (MW) 2,96
2,14
10,86
4,83
2,07
Potencial de Conservação Ar (MW) 4,94
3,57
18,10
8,05
3,45
Investimento Ilum. (Milhões de R$) 8,74
6,32
32,02
14,24
6,11
Investimento Ar (Milhões de R$)
6,72
4,86
24,64
10,96
4,70
Fonte: VARGAS, 2006.
35
3 MÉTODOS
Este trabalho foi elaborado a partir de dados de diagnósticos energéticos realizados
pelo Grupo de Pesquisa em Gestão de Energia da Faculdade de Engenharia da Pontifícia
Universidade Católica do Rio Grande do Sul (GPGE-FENG/PUCRS). Atualmente o GPGE
conta com vários trabalhos realizados na área hospitalar. Muitas vezes os trabalhos realizados
são limitados pelos administradores que querem minimizar os impactos nos usos e hábitos dos
funcionários, médicos e pacientes. A mudança comportamental dos usuários de energia é de
fundamental importância na busca da promoção das ações de eficiência energética. Além
disso, existem várias possibilidades para tornar mais eficientes os hospitais. Por isso, muito
ainda pode ser feito para se reduzir o consumo de energia e desta forma ajudar diretamente as
atividades assistenciais. Este capítulo apresenta os todos utilizados para a realização desta
dissertação.
Primeiramente, foi feito um agrupamento dos dados de diagnósticos de eficiência
energética, realizados, onde foram realizados levantamentos de campo e análises de
viabilidade técnica e econômica além de entrevistas com usuários dos sistemas. Com estes
relatórios, foram analisados os seguintes dados:
a) consumo de energia elétrica e demanda antes da implantação de
36
Conforme evidenciado anteriormente, os hospitais possuem diferentes características
de uso de energia dependendo do seu porte. Por este motivo os hospitais foram classificados
em diferentes tipos, quais sejam:
a) Hospitais de Pequeno Porte (PP): são hospitais que possuem o número de leitos até
150 leitos;
b) Hospitais de Médio Porte (MP): são hospitais que possuem um número de leitos
entre 151 e 450 leitos;
c) Hospitais de Grande Porte (GP): são hospitais com um número de leitos maior que
450 leitos.
As classificações segundo o seu grau de conforto, bem como hospitais com menos de
50 leitos e atendimento exclusivo SUS não foram realizados, diferentemente da metodologia
estabelecida por [4], pois a amostra existe é pequena para estas tipologias, o que gera um
nível de incerteza relativamente grande.
Foram estabelecidos índices que relacionam consumo e demanda (antes do Programa
de Eficiência Energética - PEE), reduções de consumo e de demanda (após PEE), e
investimento, com o número de leitos ofertados pelos hospitais que foram classificados
segundo o porte.
Juntamente com os dados de toda a Região Sul do país, levantados a partir do
DATASUS, foi realizada uma extrapolação dos valores analisados. Desta forma, foram
analisados os potenciais de redução para o setor hospitalar na Região Sul.
De posse dos valores de redução de consumo e de demanda de energia elétrica e dos
investimentos necessários para o alcance destes, é feita uma comparação entre os custos de
geração e transmissão, de forma a comparar a viabilidade do projeto. Além disto, forma
avaliados os impactos das ações de Gestão de Energia pelo Lado da Demanda (GLD) no
sistema elétrico com o adiamento de construção de usinas geradoras, linhas de transmissão e
subestações.
As etapas que compõem a metodologia são as seguintes:
Etapa 1: Levantamento de dados:
Por parte da amostra foram levantados os dados de diagnósticos energéticos de 16
hospitais realizados pelo GPGE. Por parte da população, as quantidades de leitos disponíveis
37
em todos os hospitais da Região Sul do Brasil a partir do banco de dados do DATASUS e da
Pesquisa AMS do IBGE.
Etapa 2: Classificação segundo o porte do hospital:
Os hospitais, tanto os da amostra quanto os da população, forma classificados segundo
o seu número de leitos (conforme recomendado por [4]) em hospitais GP, MP e PP.
Etapa 3: Estabelecimento de indicadores.
Foram calculados indicadores de consumo energético que relacionam o consumo, e a
demanda de energia com o número de leitos do hospital. Para o consumo e a redução de
consumo foi calculada a relação MWh/leito; para a demanda e redução de demanda foi
calculada a relação kW/leito e para os investimentos necessários para a aplicação do programa
de eficiência energética, a relação R$/leito.
Etapa 4: Estimação dos valores populacionais.
Os valores populacionais foram estimados com base nas médias dos indicadores
amostrais e do número total de leitos existentes no Estado onde se localizam e no porte dos
hospitais analisados.
Etapa 5: Impactos Financeiros no Sistema Elétrico.
Foi realizada uma análise financeira a fim de se conhecer a Relação Custo Benefício
de todas as ações de eficiência energética estudadas, em todo o universo de hospitais da
Região Sul do país para se comparar o que é mais viável: expandir o Sistema Elétrico, ou
investir em projetos de conservação de energia.
Etapa 6: Impactos Ambientais.
Com base nos dados de despacho de energia elétrica das usinas do Sistema Interligado
Nacional (SIN) foram calculados e disponibilizados pelo Ministério de Ciências e Tecnologia
MCT os fatores de emissão de CO
2
para todas as horas, dias e meses do ano de 2006, onde se
começou este levantamento. Com estes fatores e com os consumos evitados foram
encontrados os potenciais de redução de emissões dos gases do efeito estufa para toda a
população de hospitais da Região Sul.
38
3.1 Metodologia de Diagnósticos Energéticos
Tomando como base a caracterização dos usos finais realizada no capítulo 2 e os
diagnósticos realizados em 16 hospitais do Rio Grande do Sul, neste item é descrita a
metodologia utilizada para a elaboração dos diagnósticos energéticos utilizada nas amostras
estudadas.
Segundo [16], a metodologia para a eficiência energética de hospitais segue uma série
de etapas padrões e específicas. A rigor, pode-se considerar que cada uso final possui análises
específicas de acordo com o seu consumo energético. Porém, inicialmente, são realizadas
ações gerais que servirão de base para a análise individual de cada sistema consumidor de
energia.
Sendo assim, primeiramente é realizada uma visita ao local, onde são conhecidas as
instalações, identificados os ambientes, e levantadas as seguintes informações:
equipamentos elétricos existentes, identificando a potência e o estado de
conservação dos mesmos;
entrevistas com os usuários, a fim de conhecer os bitos de consumo e coletar
dados sobre os aspectos operacionais de equipamentos e da edificação;
dados de consumo e demanda de eletricidade, medidos pela concessionária de
energia.
Após a aquisição das informações referentes à edificação analisada, são realizadas as
seguintes análises:
prospecção de oportunidades para a redução dos desperdícios identificados;
construção de gráficos que apontem as maiores parcelas de consumo de energia e
picos de demanda elétrica da edificação;
proposição da substituição dos usos finais onde baixo rendimento energético,
por equipamentos eficientes.
simulação de diferentes enquadramentos tarifários, para avaliar qual se ajusta
melhor ao perfil da edificação.
Então, é realizada a avaliação da redução no consumo e demanda de eletricidade,
utilizando equipamentos de alta eficiência energética. De posse dos custos dos equipamentos
e de implantação, bem como redução do consumo e demanda de energia elétrica, calcula-se a
RCB do ponto de vista do cliente e da concessionária e da sociedade e o VPL, TIR e TRC sob
39
a ótica do cliente para a implementação das medidas. Para o cálculo da RCB sob o enfoque da
concessionária são levados em conta os custos evitados para a ampliação dos sistemas de
geração, transmissão e distribuição, cujas taxas são ditadas pela Agência Nacional de Energia
Elétrica (ANEEL). sob o enfoque do cliente são levadas em conta as tarifas praticadas,
cujas taxas são ditadas pelo mercado.
De forma resumida, primeiramente, realiza-se a análise tarifária a partir do histórico de
consumo adquirido e levanta-se a curva de carga da edificação. Após a aquisição de
informações e a partir da escolha de tecnologias de alta eficiência para substituir
equipamentos obsoletos e ineficientes, calcula-se a redução de consumo e demandas bem
como a relação custo-benefício (RCB) com o investimento proposto. O fluxograma contido na
figura 3.1 apresenta as etapas anteriormente descritas de levantamento, análise de dados e
apresentação da viabilidade das ações de EE.
40
Diagnóstico Energético
Hisrico de
Consumo
Substituição de
Equipamentos
Cálculo do
Consumo e
Damanda
Atuais
Sistema A tual
RCB < 0,85*?
NÃO
SIM
Ação EE
Recomendada
Ação EE Não
Recomendada
Sistema
Projetado
Análise
Financeira
Cálculo de
Redução de
Consumo e
Demanda
*A partir de 2005. Até 2004 RCB < 0,8.
Fonte: ANEEL 2005.
Aquisão de
Informações
Condições do
Ambiente
Propostas de
Eficientização
do "Serviço"
Plano de
Manuteão
Proposta de Troca
por Tecnologias
Eficientes
Tecnologias
Utilizadas
Grandezas
Etricas
Funcionamento
Operacional
Cálculo do
Consumo e
Damanda
Projetados
Análise
Tarifária
Cálculo RCB
Cálculo:
VPL
TIR
TRC
RCB
Cálculo sob
ponto de
vista da
concessionária
Cálculo sob
ponto de
vista do
cliente
Figura 3.1. Fluxograma da metodologia geral.
3.1.1 Sistema de Iluminação
Seguindo a metodologia proposta, foi desenvolvido um fluxograma, conforme
visualizado na Figura 3.2, com o objetivo de explicar passo a passo como diagnósticos
energéticos foram desenvolvidos no sistema de iluminação. De acordo com esta metodologia,
o levantamento de dados é realizado através de visita a todos os ambientes. Durante essas
visitas, dados específicos do sistema devem ser coletados, a fim de se realizar o cálculo
41
luminotécnico para o atendimento das normas de sistemas de iluminação e alcançar um nível
adequado de conforto visual. Finalizada a etapa de coleta de dados, calcula-se o consumo
(kWh) e a demanda (kW) e os horários de utilização.
Posteriormente, é realizada a análise de dados, onde são sugeridas e calculadas todas
as propostas de ações de eficiência energética do sistema. Conforme visualizado na figura 3.2,
propõe-se troca por tecnologias eficientes, entre elas:
substituição de lâmpadas incandescentes por lâmpadas fluorescentes compactas;
substituição das calhas convencionais por calhas com fundo em alumínio anodizado;
substituição de lâmpadas fluorescentes de potência de 40 W por 32 W e mpadas
fluorescentes de 20 W por 16 W;
substituição de reatores eletromagnéticos por reatores eletrônicos;
aproveitamento da iluminação natural.
Pode-se exemplificar a substituição de calhas e lâmpadas com a figura 3.3 que ilustra
o aspecto de uma luminária ineficiente sendo que a figura 3.4 apresenta a luminária indicada
para substituição. As figuras 3.5 e 3.6 mostram exemplos da disposição das luminárias,
instaladas na parede indicando-se realocação das mesmas em locais onde o aproveitamento
seja melhor. Lâmpadas dicróicas instaladas na cabeceiras dos leitos, conforme visualizado na
figura 3.7, trazem desconforto térmico e visual, sendo indicado neste caso a substituição por
uma luminária articulada com mpada fluorescente compacta. As lâmpadas de vapor de
mercúrio e mista para a iluminação externa, ilustradas na figura 3.8, possuem baixo
rendimento e portanto, maior consumo de eletricidade, sendo indicado a substituição por
lâmpadas de vapor de sódio. Ao indicar o aproveitamento da iluminação natural, cita-se como
exemplo a abertura das persianas durante o dia evitando a iluminação artificial, conforme
visualizado na figura 3.9.
42
Diagnóstico Energético
Iluminação
- Dimensões
- Cores dos
Envolventes
Tipos de
Lâmpadas
Tipos de
Reatores
Tipos de
Luminárias
Hábitos dos
Usuários
Horário de
Utilização
Substituição de
Lâmpadas, Calhas
e Reatores
Cálculo do
Consumo e
Damanda
Projetados
Cálculo do
Consumo e
Damanda
Atuais
43
Figura 3.3. Aspecto de uma luminária ineficiente.
Figura 3.4. Aspecto de uma luminária eficiente.
44
Figura 3.5. Aspecto da má disposição das luminárias no corredor de um Hospital.
Figura 3.6. Aspecto da má disposição das luminárias em alguns leitos de um Hospital.
45
Figura 3.7. Aspecto da lâmpada dicróica utilizada em alguns leitos de um Hospital.
Figura 3.8. Aspecto da iluminação externa commpadas de vapor de mercúrio.
46
Figura 3.9. Exemplo de aproveitamento da iluminação natural com a abertura de persianas durante o dia.
Ao escolher as novas potências de lâmpadas e modelos de calhas é necessário executar
o lculo luminotécnico a fim de atender os níveis mínimos de iluminação exigidos pelas
normas vigentes.
Depois de escolhido, com base em normas técnicas, o nível de iluminamento para cada
ambiente analisado, é calculado o consumo e a demanda de energia elétrica, projetados no
diagnóstico. A partir dos dados obtidos são realizadas análises de viabilidade como o cálculo
do Tempo de Retorno de Capital (TRC), Valor Presente Líquido (VPL), e Taxa Interna de
Retorno (TIR), investimento simples e a relação custo-benefício (RCB).
3.1.2 Sistema de Força Motriz
É composto pelos subsistemas de bombeamento de água, exaustão, transporte vertical,
maquinário da lavanderia e ar comprimido. O sistema de força motriz atua praticamente em
todos os setores de um hospital. Devido a isso, seu potencial de economia de energia é
analisado dentro dos parâmetros de utilização, e, diferentemente dos demais sistemas, foi
desenvolvido um fluxograma para cada subsistema do sistema de força motriz com o objetivo
de explicar passo a passo como são desenvolvidos os diagnósticos energéticos neste uso final.
47
3.1.2.1 Bombeamento de Água
Responsável pelo bombeamento de água, este sistema é composto por bombas que
geralmente operam de forma ineficiente, necessitando na maioria de redimensionamento para
melhor aproveitamento da energia elétrica. Seguindo orientações da metodologia geral,
primeiramente realiza-se o levantamento de dados com o objetivo de adquirir todas as
informações necessárias para posterior análise. A figura 3.11 apresenta o fluxograma com
metodologia específica para o bombeamento de água.
Diagnóstico Energético - Força Motriz
Bombeamento de Água
- Reservaórios
de Água
- Tubulações
Setores que
Atende
Horário de
Utilização
48
De acordo com a figura 3.11, é feita a coleta de dados de várias formas, que vão desde
o processo manual para verificação de dados de placa de cada bomba, disposição dos
reservatórios, de onde cada bomba capta água e quais os setores que atende, até a instalação
49
3.1.2.2 Sistema de Exaustão
Este sistema compreende todos os exaustores do hospital, e geralmente opera de forma
ineficiente devido à falta de manutenção e ao superdimensionamento dos motores destes
exaustores. A figura 3.12 apresenta o fluxograma com metodologia específica para o sistema
de exaustão.
Diagnóstico Energético - Foa Motriz
Sistema de Exaustão
Condições das
Tubulações
Setores que
Atende
Horário de
Utilização
Proposta de Troca
por Tecnologias
Eficientes
Cálculo do
Consumo e
Damanda
Projetados
Cálculo do
Consumo e
Damanda
Atuais
Levantamento
de Dados
Sistema Atual
RCB < 0,85*?
NÃO
SIM
ão EE
Recomendada
ão EE Não
Recomendada
Sistema
Projetado
Análise
Financeira
lculo de
Redução de
Consumo e
Demanda
*A partir de 2005. A2004 RCB < 0,8.
Fonte: ANEEL 2005.
Levantamento
das Instalações
sicas
Grandezas
Elétricas
Instalão de
Registradores de
Grandezas
Etricas
- Substituição de
Bombas
- Vistoria da
tubulação
Utilizão
Propostas de
Eficientização
do "Serviço"
Plano de
Manutenção
lculo RCB
Cálculo:
VPL
TIR
TRC
RCB
Cálculo sob
ponto de
vista da
concessionária
lculo sob
ponto de
vista do
cliente
Figura 3.11. Fluxograma da metodologia específica do sistema de exaustão.
50
A coleta de dados é feita da mesma maneira que no sistema de bombeamento,
anteriormente descrita. Com a planilha de coleta de dados, os dados de cada exaustor são
coletados e com a instalação de registradores de grandezas elétricas é possível traçar a curva
de consumo do sistema.
Posteriormente são analisados os dados, onde são sugeridas propostas de
eficientização no sistema. Dentre essas propostas, cita-se a criação ou melhoria do plano de
manutenção deste sistema. Analisando os diagnósticos já realizados, observa-se a falta de
controle de limpeza dos filtros e pás dos exaustores, assim como a manutenção das correias e
monitoramento de seu funcionamento. Na maioria das vezes a única manutenção que ocorre é
a corretiva. Como medida de eficiência para este sistema propõe-se um plano de manutenção
preventiva, onde o setor responsável deve controlar a limpeza destes exaustores. Para
comprovar a eficiência deste método pode-se exemplificar com o exaustor de uma lavanderia
com demanda de aproximadamente 21 kW, que após a limpeza, a potência medida foi de
aproximadamente 5 kW. Com isso, verificou-se que a sujeira obstruía a saída, reduzindo
assim a vazão de ar e solicitando maior potência do motor do exaustor, conseqüentemente
aumentando o consumo de energia elétrica do mesmo. No Gráfico 3.1 pode-se visualizar o
comportamento descrito do consumo do exaustor da lavanderia, a Figura 3.12 e a Figura 3.13
apresentam respectivamente, o aspecto de um filtro obstruído pela sujeira e de um exaustor
sem manutenção.
0
5
10
15
20
25
00:00
01:00
0
2
:0
0
03:00
04
:
00
05:00
06:00
0
7
:0
0
08:00
09
:
00
1
0
:0
0
11:00
1
2
:0
0
1
3
:0
0
14:00
1
5
:0
0
16:00
17
:
00
1
8
:0
0
19:00
2
0
:0
0
2
1
:0
0
22
:
00
2
3
:0
0
Hora
Potência (kW)
Gráfico 3.1. Consumo do exaustor da lavanderia antes e após a limpeza dos filtros.
51
Figura 3.12. Aspecto da tela de proteção obstruída com sujeira.
Figura 3.13. Aspecto do exaustor sem manutenção.
52
em muito o consumo de energia. Um exemplo do potencial elevado de economia é a
ventilação de instalações comerciais e industriais fora do horário de serviço. Analisando o
desligamento de exaustores durante horários ociosos, é possível projetar a alteração do horário
de funcionamento, promovendo a redução do consumo. Se utilizados equipamentos novos
mais eficientes energeticamente, com programador horário configurado para trabalhar apenas
nos horários de serviço e desligando o equipamento no restante do tempo, o ganho é
significativo. Ainda como medida de eficiência cita-se a troca dos motores convencionais por
motores de alto rendimento.
Depois de estabelecidas as medidas de eficiência energética, é calculado o novo
consumo e a nova demanda, e conhecendo o investimento necessário, é calculado o RCB e o
TRC a fim de se avaliar a implantação do novo sistema.
3.1.2.3 Transporte Vertical
O sistema de transporte vertical compreende os elevadores de um hospital. O cálculo
do consumo de energia elétrica de um elevador envolve diversas variáveis, tais como:
modelo e características técnicas;
tipo de utilização;
carga transportada;
quantidade de viagens por dia.
O consumo de energia elétrica neste sistema se deve principalmente à energia utilizada
na máquina de tração, com uma menor participação da luz da cabina, do ventilador, do
operador da porta e do quadro de comando. O sistema de elevadores em um prédio pode
apresentar um bom potencial de economia de energia, principalmente em casos onde possui
uma idade avançada, estes resultados podem ser alcançados através de investimentos na
modernização e atualização deste sistema.
Com os dados adquiridos com o registrador de grandezas elétricas é possivel traçar a
curva de consumo e demanda atuais. Concluída esta etapa, surgem as propostas de
eficientização. Se o sistema atua sem comunicação entre os elevadores, quando passageiro
chama dois elevadores ao mesmo tempo, por exemplo, eles simplesmente atenderão o andar
juntos. Com a proposta de modernização dos equipamentos considerando troca de quadros de
53
comando, acionamentos e motores, os elevadores terão comunicação entre si, impedindo com
que dois elevadores atendam ao mesmo chamado, tornando o sistema mais eficiente. O
desgaste natural dos componentes eletromecânicos, excesso de falhas e baixa velocidade de
processamento ou codificação de sinais decorrente de desatualização tecnológica dos sistemas
de comando e controle após longo período de funcionamento que prejudicam o desempenho
atual da instalação e o conforto de seus usuários.
Pode-se analisar a troca do sistema ou apenas o remanejo na operação, reorganizando
os horários de utilização de cada elevador, conforme a viabilidade da proposta. Após esta
análise calcula-se o retorno de investimento simples e o RCB para as sugestões de eficiência
energética. A figura 3.14 apresenta o fluxograma da metodologia deste sistema.
54
Diagnóstico Energético - Força Motriz
Transporte Vertical
Condições dos
Elevadores
Modelo e
Caracterísitcas
Técnicas
Tipo de Utilização
Carga Transportada
Quantidade de
Viagens por Dia
Proposta de Troca
por Tecnologias
Eficientes
Cálculo do
Consumo e
Damanda
Projetados
Cálculo do
Consumo e
Damanda
Atuais
Levantamento
de Dados
Sistema Atual
RCB < 0,85*?
NÃO
SIM
Ação EE
Recomendada
Ação EE Não
Recomendada
Sistema
Projetado
Análise
Financeira
Cálculo de
Redução de
Consumo e
Demanda
*A partir de 2005. Até 2004 RCB < 0,8.
Fonte: ANEEL 2005.
Levantamento
das Instalações
Físicas
Grandezas
Elétricas
Instalação de
Registradores de
Grandezas
Elétricas
Substituição de
Total ou
Modernização
dos Elevadores
Tecnologias
utilizadas
Propostas de
Eficientização
do "Serviço"
Utilização
Cálculo RCB
Cálculo:
VPL
TIR
TRC
RCB
Cálculo sob
ponto de
vista da
concessionária
Cálculo sob
ponto de
vista da
concessionária
Cálculo sob
ponto de
vista do
cliente
Figura 3.14. Fluxograma da metodologia específica do transporte vertical.
3.1.2.4 Lavanderia
As análises do consumo de eletricidade da lavanderia são realizadas a partir dos dados
de processo fornecidos pela equipe técnica da mesma, os dados técnicos de equipamentos são
fornecidos pela equipe de manutenção do hospital, acrescidos dos levantamentos feitos pela
equipe que realiza o levantamento de dados, bem como catálogos técnicos fornecidos pelos
fabricantes dos equipamentos.
55
Composta por um maquinário de alto consumo energético, a lavanderia possui
peculiaridades na distribuição de tarefas em sua planta, as quais necessitam ser eficientes para
não interferir na qualidade do processo e atendimento ao serviço. Ao realizar o diagnóstico
energético neste setor, é necessário se fazer um levantamento de dados a partir das estatísticas
da lavanderia, como a quantidade de roupa que necessita lavar, passar, dobrar, etc, para se
conhecer os hábitos de consumo e propor ações que melhorem o aproveitamento da energia
elétrica a fim de realizar o serviço requerido. Além disso, deve-se instalar registradores de
grandezas elétricas com objetivo de coletar dados de consumo e demanda e traçar estas
curvas. Na análise de dados são propostas as trocas de máquinas, ou remanejo nas instalações
da área suja (utilizada para separação e lavagem) e a área limpa (utilizada para acabamento e
guarda), com o objetivo de melhor aproveitamento físico e redução de perdas por calor, entre
outros. A troca por motores de alta eficiência e uso de inversores são propostas que podem ser
analisadas dependendo da aplicação. A Figura 3.15 apresenta o fluxograma da metodologia de
um diagnóstico energético neste setor.
56
Diagnóstico Energético - Força Motriz
Lavanderia
Levantamento da
Planta da
Lavanderia
Modelo e
Caractesitcas
Técnicas
Estasticas da
Lavanderia
Proposta de Troca
por Tecnologias
Eficientes
Cálculo do
Consumo e
Damanda
Projetados
Cálculo do
Consumo e
Damanda
Atuais
Levantamento
de Dados
Sistema Atual
RCB < 0,85*?
NÃO
SIM
Ação EE
Recomendada
Ação EE Não
Recomendada
Sistema
Projetado
Análise
Financeira
Cálculo de
Redução de
Consumo e
Demanda
*A partir de 2005. A 2004 RCB < 0,8.
Fonte: ANEEL 2005.
Levantamento
das Instalações
Físicas
Grandezas
Etricas
Instalação de
Registradores de
Grandezas
Etricas
Substituão de
Motores Standard
por Alto
Rendimento
Tecnologias
utilizadas
Propostas de
Eficientização
do "Servo"
Utilizão
Uso de Inversor
de Freqüência
- Remanejo das
Instalações
- Troca de
Máquinas
Cálculo RCB
Cálculo:
VPL
TIR
TRC
RCB
Cálculo sob
ponto de
vista da
concessionária
Cálculo sob
ponto de
vista da
concessionária
Cálculo sob
ponto de
vista do
cliente
Figura 3.15. Fluxograma da metodologia específica da lavanderia.
3.1.2.5 Sistema de Ar Comprimido
O sistema motriz termodinâmico funciona para “comprimir o ar” consumindo
energéticos, como por exemplo, a energia elétrica. Como esse consumo é o principal insumo
57
para obter-se o ar comprimido, qualquer uso indevido na produção e na utilização do ar
comprimido representa perda de energia elétrica.
Como em todos os sistemas descritos neste capítulo, a etapa inicial sempre será a de
levantamento de dados. Durante essa etapa, é muito importante, além de coletar os dados dos
compressores (como potência do motor, pressão de trabalho, capacidade, vel de ruído, etc),
realizar uma visita às instalações deste sistema, para inspecionar a situação atual da rede de
tubulações e verificar possíveis vazamentos. As perdas por vazamentos de ar comprimido
podem ser grandes, devido a redes sem manutenção adequada, equipamentos obsoletos e
escapes excessivos de ar. A instalação de registradores de grandezas elétricas fornece grande
contribuição na busca por vazamentos, pois quando traçada a curva de consumo dos
compressores, é possível verificar se considerável fluxo de trabalho fora do horário de
utilização e afirmar se o sistema está operando de forma ineficiente.
Na análise de dados é calculado o novo consumo e demanda de energia elétrica a
partir das propostas de eficiência escolhidas. Após, é calculado o TRC e o RCB. A Figura
3.16 apresenta o fluxograma deste sistema.
58
59
medidas devem ser tomadas, onde a partir do levantamento de dados é possível indicar pontos
críticos do sistema onde estas medidas possam ser implantadas.
Durante o levantamento de dados é importante verificar a quantidade aparelhos de ar
condicionado tipo split e tipo janela, além do sistema de ar central. A arquitetura da edificação
tem grande influência neste sistema, pois a conservação das aberturas, o uso de divisórias,
sistema de iluminação e uso energeticamente adequado do brise influenciam em sua eficiência
e conseqüentemente na carga térmica do ambiente. Após a coleta de dados, é necessário
propor soluções para melhora do sistema.
O sistema de iluminação, em dias quentes, tem dois impactos na fatura de energia. O
primeiro é resultante do consumo de energia para atender o próprio sistema de iluminação. O
outro é proveniente da energia utilizada pelos sistemas de condicionamento de ar, para retirar
o calor produzido pelo sistema de iluminação. Portanto, neste segundo caso, observa-se que as
lâmpadas acesas desnecessariamente ou a iluminação o eficiente acarretam numa maior
exigência dos aparelhos de ar condicionado (nos períodos quentes como o verão). Também os
revestimentos dos vidros das janelas com películas, se traduzem em bons métodos para
diminuir a carga térmica advinda do sol.
Filtros obstruídos acarretam em uma maior exigência dos motores dos aparelhos de ar
condicionado, pois estes são obrigados a trabalhar com maior pressão. Uma recomendação é o
controle da perda de pressão nos aparelhos através de manômetros, tipo coluna de água,
procedendo-se a limpeza ou a troca dos filtros, quando atingida a perda máxima recomendada
pelo fabricante.
Outra ação muito importante neste sistema é estabelecer uma política energética e de
manutenção. A falta de equipe ou projeto de planejamento global de crescimento e
manutenção energética do hospital é um grande problema pelo qual muitos estabelecimentos
passam. Como conseqüência, são realizados improvisos para o atendimento do aumento da
carga térmica sem a avaliação como um todo, o que tem como conseqüência risco na
confiabilidade e a operação fora do ponto de maior eficiência. Nos programas de manutenção
são previstos todos os cuidados com a parametrização de cada equipamento, ajustes e limpeza
de filtros, contribuindo assim, não para evitar o desperdiço de energia, mas também para
impedir paradas não desejadas para os equipamentos.
Alguns exemplos de desperdício podem ser verificados nas fotografias a seguir onde a
Figura 3.17 apresenta um exemplo de falta de conservação das aberturas no hospital, que
contam com persianas que não fecham por falta de manutenção permitindo a incidência direta
60
da radiação solar. A Figura 3.18 mostra a falta de manutenção nos filtros, que estão obstruídos
pela sujeira. A Figura 3.19 mostra a falta de planejamento da compatibilização das cargas
térmicas, onde existe uma estufa elétrica localizada ao lado de uma tomada de ar.
Figura 3.17. Aspecto da falta de conservação das aberturas do hospital.
Figura 3.18. Aspecto da falta de manutenção dos filtros do sistema de ar condicionado.
61
Figura 3.19. Aspecto da falta de planejamento da incorporação das cargas térmicas.
62
3.1.3.1 Análise do Conforto Térmico
A análise do conforto térmico é uma etapa importante para verificação de eficiência do
sistema. Esta análise é realizada com o intuito de verificar o dimensionamento dos aparelhos
de ar condicionado necessários para atender os níveis desejados de conforto térmico,
adequando os equipamentos para a real necessidade dos ambientes do hospital. Os dados
relevantes referentes à construção, iluminação, equipamentos elétricos, hábitos do hospital e
ocupação dos ambientes, devem ser levantados in loco para utilização no cálculo de carga
térmica. De posse desses dados é possível determinar o nível de conforto térmico, verificando
se estão de acordo com as temperaturas especificadas na NBR-6401, e quais as potências dos
sistemas de ar condicionado necessárias para suprir a carga térmica dos ambientes analisados.
Com o auxílio do programa computacional EnergyPlus (programa de simulação de
edificações oficial do Departamento de Energia dos Estados Unidos), é possível realizar as
análises de conforto térmico dos ambientes da edificação hospitalar [11].
Após calculadas as reais necessidades de potência para se atingir o conforto térmico e
com conhecimento do investimento em tecnologias mais eficientes, é realizada uma análise
econômico-financeira onde se obtém o RCB e o TRC, a fim de se conhecer a viabilidade das
ações de eficiência propostas. O fluxograma da Figura 3.20 permite visualizar de forma geral,
como se desenvolve o diagnóstico para este sistema.
63
Diagnóstico Energético
Condicionamento Ambiental
- Carga Térmica
- Arquitetura
- Conservação
das Aberturas
Ar Central
Ar Condicionado
Tipo Split
Ar Condicionado
Tipo Janela
Grandezas
Elétricas
Instalação de
Registradores de
Grandezas
Elétricas
Cálculo
Carga Térmica
Propostas de
Eficientização
do "Serviço"
Proposta de Troca
por Tecnologias
Eficientes
- Análise de Registros de
Tomada de Ar Exterior
- Limpeza dos filtros
- Manutenção Programada
Cálculo do
Consumo e
Damanda
Projetados
Cálculo do
Consumo e
Damanda
Atuais
Levantamento
de Dados
Sistema Atual
Cálculo RCB
Cálculo:
VPL
TIR
TRC
RCB < 0,85*?
Cálculo sob
ponto de
vista da
concessionária
NÃO
SIM
Ação EE
Recomendada
Ação EE Não
Recomendada
Sistema
Projetado
Análise
Financeira
Cálculo de
Redução de
Consumo e
Demanda
*A partir de 2005. Até 2004 RCB < 0,8.
Fonte: ANEEL 2005.
Tecnologias
Utilizadas
Condições do
Ambiente
Figura 3.20. Fluxograma da metodologia específica do sistema de condicionamento ambiental.
3.1.4 Sistema de Aquecimento de Água
Conforme [16], o chuveiro elétrico de passagem é a forma mais usual de aquecimento
de água utilizada no Brasil. Este equipamento possui elevado consumo de eletricidade,
podendo muitas vezes superar a potência de 7.500 W. Desta forma, a demanda de energia
elétrica pode ser bastante elevada, apesar do mesmo funcionar em curtos intervalos de tempo.
Estes equipamentos são responsáveis por 18 a 25% do pico de demanda nos sistemas elétricos
das regiões Sul e Sudeste, o que significa que a cada R$ 35,00 investidos para a instalação de
64
um chuveiro elétrico novo o sistema deve aplicar R$ 1.900,00 para que o mesmo possa
funcionar em horário de ponta, permanecendo esta capacidade ociosa nos demais períodos de
tempo [17].
Como será visto posteriormente, no sistema de aquecimento de água, apesar do mesmo
não ser o que mais consome energia elétrica, é nele que existem os maiores potenciais de
economia de eletricidade especialmente para hospitais de pequeno e médio porte. Isto ocorre
por que, através da substituição de chuveiros elétricos de passagem por sistemas de
aquecimento solar, se obtém até 90% de economia de energia elétrica no para o aquecimento
de água. Figura 3.25 apresenta o fluxograma com metodologia de levantamento, análise e
proposição de ações de eficiência para o sistema de aquecimento de água. A Figura 3.21
apresenta o aspecto de um chuveiro elétrico que pertencia a um hospital (que é uma das
amostras analisadas neste trabalho), estes equipamentos foram, após uma análise da
viabilidade econômico-financeira, substituídos por equipamentos de aquecimento solar. Esta
prática é muito comum em estabelecimentos que utilizam sistemas elétricos para o
aquecimento de água para banho. As figuras de 3.22 à 3.24 mostram o novo sistema instalado
que se mostrou muito eficiente em comparação com o sistema antigo.
65
Figura 3.21. Aspecto de um chuveiro elétrico pertencente ao antigo sistema de aquecimento de água de um
hospital analisado nesta dissertação.
Figura 3.22. Aspecto de um chuveiro elétrico pertencente ao sistema de aquecimento de água após o
projeto eficiência energética de um hospital analisado nesta dissertação.
66
Figura 3.23. Aspecto dos boilers instalados para o novo sistema de aquecimento de água em um hospital
da amostra analisada nesta dissertação.
Figura 3.24. Aspecto dos coletores solares do novo sistema de aquecimento de água em uma amostra
utilizada nas análises desta dissertação.
67
Cálculo das
Necessidades de
Aquecimento de
Água
Propostas de
Eficientização
do "Serviço"
Proposta de Troca
por Tecnologias
Eficientes
Cálculo do
Consumo e
Damanda
Projetados
Cálculo do
Consumo e
Damanda
Atuais
Levantamento
de Dados
Sistema Atual
Cálculo RCB
Cálculo:
VPL
TIR
TRC
RCB < 0,85*?
Cálculo sob
ponto de
vista da
concessionária
NÃO
SIM
Ação EE
Recomendada
Ação EE Não
Recomendada
Sistema
Projetado
Análise
Financeira
Cálculo de
Redução de
Consumo e
Demanda
*A partir de 2005. Até 2004 RCB < 0,8.
Fonte: ANEEL 2005.
Tecnologias
Utilizadas
Diagnóstico Energético
Aquecimento de Água
Características
Técnicas
Tecnologias
Utilizadas
Chuveiros
Elétricos
Quantidade de
Banhos Diários
Tempo Médio
dos Banhos
Substituição por
Aquecedores
Solares
Figura 3.25 - Fluxograma da metodologia específica do sistema de aquecimento de água.
3.2 Inferência Estatística para a População dos Hospitais da
Região Sul
Foi utilizada uma amostra de 16 hospitais de diversos portes para se estimar os dados
populacionais. Esta amostra corresponde aos diagnósticos energéticos elaborados conforme a
metodologia descrita no item 3.1. Também foram utilizados dados provenientes do
DATASUS e do IBGE através da pesquisa Assistência Médica Sanitária (AMS 2005). Os
valores médios do consumo anual de energia elétrica e demanda, reduções de consumo e de
68
demanda, investimentos, tempo de retorno e RCB, bem como do número de leitos oferecidos
pelo hospital, foram utilizados como base na inferência estatística. Para estimar os valores
relativos à extrapolação para toda Região Sul dos consumos e demandas atuais, bem como
dos ganhos de energia, serão utilizadas técnicas estatísticas, baseadas na média, desvio padrão
e intervalo de confiança.
Para a estimação pontual, onde se está interessado em se encontrar um único valor que
esteja satisfatoriamente próximo do valor verdadeiro, o estimador da média populacional é a
média da amostra. O estimador do desvio padrão populacional é o desvio padrão da amostra.
A Equação 3 apresenta o cálculo da média amostral e a Equação 4 o desvio padrão.
n
X
X
=
[Equação 3]
2
)( XXs =
[Equação 4]
Onde:
s
- desvio padrão da amostra
X
- valores da amostra
X
- média da amostra
n - tamanho da amostra
Entretanto, o valor pontual estimado quase nunca é igual ao verdadeiro. Logo,
geralmente existe o interesse em se descobrir um intervalo de confiança no qual existe uma
faixa de valores aceitável para o parâmetro baseado nos dados amostrais [8]. Na estimação
intervalar, se obtém intervalos que englobam os parâmetros procurados com uma margem de
confiança conhecida através de dados amostrais. O intervalo de confiança para uma
distribuição Normal pode ser obtido através da Equação 5 [2].
1
=
Np
nNp
n
s
zcI
[Equação 5]
69
Onde:
I - intervalo de confiança
zc - coeficiente de confiança ou valor crítico
Np - tamanho da população
Segundo [2] para grandes amostras (n>30), a distribuição Normal é a mais indicada na
inferência estatística. A razão pela qual a distribuição Normal é tão importante é porque não
importa qual seja a distribuição da variável de interesse para grandes amostras, a distribuição
das dias amostrais sempre se aproximará de uma normal, e tenderá a uma distribuição
normal à medida que o tamanho da amostra aumentar [8].
Todavia, a distribuição Normal não se aplica ao caso aqui analisado, pois para
amostras pequenas (n<30), onde o desvio padrão da amostra é uma estimativa menos
confiável que o desvio padrão da população, deve-se usar os valores da distribuição
T-student, cuja equação do intervalo de confiança é:
n
s
tcI =
[Equação 6]
Onde:
tc - coeficiente de confiança ou valor crítico
A maior diferença entre as duas distribuições é que a distribuição T-student utiliza o
chamado grau de liberdade que é calculado a partir do número de amostras da seguinte forma:
1
=
nv
[Equação 7]
Onde v é denominado de grau de liberdade.
Os valores de zc e tc, utilizados para calcular o intervalo de confiança, são tabelados
(Tabela da distribuição Normal e Tabela da distribuição t de Student) e seus valores podem
ser encontrados em livros de estatística.
Neste trabalho, serão utilizados para as estimativas, um nível de confiança de 80%, ou
seja, se poderá dizer, com 80% de confiança, que o valor verdadeiro do parâmetro de interesse
se encontra no intervalo encontrado. Optou-se por este valor porque com níveis de confiança
muito elevados, se produz uma faixa de valores (intervalo de confiança) muito grande. Do
contrário, quando se utiliza veis de confiança menores, a faixa do intervalo de confiança
será menor, porém a probabilidade do valor populacional estar dentro da faixa também é
70
menor. com um valor intermediário, se produziu um valor com uma faixa de intervalo de
confiança não tão grande e um resultado com precisão admissível.
Para se avaliar o consumo de energia elétrica, é comum se utilizar indicadores de
consumo específico, que relacionam o consumo e demanda de eletricidade com o produto
final, montante financeiro, área construída etc. que possibilitam traçar comparativos entre
diversos estabelecimentos. No caso de hospitais, o parâmetro mais utilizado é o que relaciona
o consumo de energia com o número de leitos existentes. Também se utiliza a relação de
consumo pela área construída. Porém no caso desta dissertação, não se tem os dados de área
construída de todos os hospitais disponibilizados pela AMS e DATASUS. Ao contrário, o
número de leitos está presente em toda a população dos hospitais pesquisados.
Uma maneira usual de se determinar o grau de associação linear entre dois conjuntos
de valores, como por exemplo o número de leitos e o consumo de energia, é através do
cálculo do coeficiente de correlação de Pearson (r) que é definido como [2]:
=
])()][[
))(()(
222
YYXn
YXXYn
r
[Equação 8]
Onde:
X e Y: são conjuntos de dados para os quais se quer determinar o coeficiente de
correlação. Os dois conjuntos devem possuir o mesmo número de elementos. Nesse estudo ,
X pode representar as grandezas a serem estimadas e Y a quantidade de leitos, ou vice-versa.
Da mesma forma como a média e o desvio padrão da amostra são estimativas da
média e do desvio padrão da população, a correlação da amostra também é uma estimativa da
correlação da população e é simbolizada pela letra grega ρ. Este fato é importante já que ao se
calcular o valor da correlação de um parâmetro desejado da amostra dos hospitais se obtém
uma estimativa da correlação deste parâmetro para toda a população, ou seja para todo o setor
hospitalar da Região Sul.
O valor de r estasempre entre -1 e 1. r = 0 significa a não existência de correlação.
Para r positivo a interpretação é de que a associação entre os dois conjuntos de valores é
positiva, ou seja, a medida de que a variável x cresce, também cresce a variável y. Para r
negativo a interpretação é de que a associação entre os dois conjuntos de valores é também
negativa, ou seja, a mediada que a variável x cresce a variável y decresce. A Tabela 3.1
apresenta alguns valores de r e suas interpretações.
71
Tabela 3.1 - Interpretação dos coeficientes de Pearson.
Valores de r (+ ou -) Interpretação
0,00 a 0,19 Uma correlação bem fraca
0,20 a 0,39 Uma correlação fraca
0,40 a 0,69 Uma correlação moderada
0,70 a 0,89 Uma correlação forte
0,90 a 1,00 Uma correlação muito forte
Fonte: VARGAS JÚNIOR, 2006 apud RIBEIRO. 2006.
Como dito anteriormente, foi realizada uma classificação segundo o porte de cada
hospital em três tipologias, pequeno porte (PP), com estabelecimentos possuindo a150
leitos, de médio porte (MP), com hospitais de 151 à 450 leitos e de grande porte (GP) com
hospitais possuindo mais de 450 leitos. A amostra analisada de 16 hospitais foi classificada da
seguinte forma:
Hospitais de grande porte:
Hospital Nossa Senhora da Conceição com 1.104 leitos;
Hospital São Lucas da PUCRS com 539 leitos.
Hospitais de médio porte:
Hospital Cristo Redentor com 282 leitos;
Hospital Nossa Senhora das Graças com 292 leitos;
Hospital Santa Cruz com 180 leitos;
Hospital de Caridade e Beneficência com 180 leitos;
Hospital Irmandade Santa Casa de Caridade de Alegrete com 154 leitos;
Hospital Bruno Born com 159 leitos.
Hospitais de pequeno porte:
Hospital São Francisco - Santa Casa de Misericórdia com 107 leitos;
Hospital Associação Franciscana de Assistência com 108 leitos;
Hospital Militar de Porto Alegre com 133 leitos;
Hospital São Sebastião Mártir com 136 leitos;
Casa de Saúde Homero Lima de Menezes com 41 leitos;
72
Hospital São José com 69 leitos;
Hospital Ana Nery com 75 leitos;
Hospital Fêmina com 132 leitos.
Como se pode observar, a amostra referente aos hospitais de grande porte (GP) é
pequena, apenas dois hospitais, o que o permite o cálculo correto da correlação e torna a
análise com pouca relevância. Porém serão mostrados os resultados obtidos a partir da média
das duas amostras, para se ter uma idéia do comportamento do consumo e demanda de
eletricidade destes hospitais, assim como seu potencial de redução de consumo e demanda de
energia elétrica e investimentos necessários para as ações de eficiência propostas.
Ressalta-se que neste trabalho se utilizou apenas amostras que seguiram a metodologia
de Diagnósticos Energéticos apresentada. Além disto, existem poucos trabalhos no Brasil
que detalham os procedimentos e metodologias nos projetos de eficiência energética
realizados, principalmente para a tipologia GP.
para os hospitais MP e PP, as amostras apresentaram correlação entre os dados de
consumo, demanda, reduções de consumo e demanda e investimentos. A Tabela 3.2 mostra o
valor destas correlações.
Para a estimativa populacional sesuposta uma relação linear entre as grandezas a
serem estimadas e o número de leitos. De acordo com o coeficiente de Pearson essa relação
não é perfeitamente linear, e sim moderada, no entanto foram utilizados os valores
provenientes dessa aproximação pelo fato de não se possuir indicadores melhores para a
extrapolação.
Tabela 3.2 - Coeficientes de Pearson encontrados para as amostras analisadas.
Variável Valor de r - MP Valor de r - PP
Consumo Antes da EE 0,57 0,13
Demanda Antes da EE 0,49 0,18
Redução de Consumo 0,49 0,61
Redução de Demanda 0,27 0,60
73
valores abaixo de 0,2. Este fato ocorreu por que poucos diagnósticos possuem estes dados
para esta tipologia. nos hospitais MP este dado é presente em quase todas as amostras e os
valores encontrados de r foram maiores.
3.2.1 Comparação dos Resultados com o Uso do Método da Regressão
Linear
A fim de se comparar e verificar os resultados obtidos pelo método da correlação
através da estimação dos valores populacionais a partir do cálculo da média dos indicadores
de consumo, demanda, redução de demanda, redução de consumo e investimento oriundos das
amostras, foi realizada uma inferência estatística utilizando-se o método da Regressão. O
método da regressão consiste na tentativa de se estabelecer uma equação matemática que
descreva como se relacionam duas variáveis.
Para se avaliar qual o modelo estatístico que melhor representa o caso estudado foram
utilizados os macros do programa Microsoft Excel como regressão linear simples (reta),
exponencial, logarítmica e potencial. Para se escolher a curva que melhor representa o modelo
em questão foram analisados os coeficientes de determinação (r
2
). Este coeficiente pode ser
obtido elevando-se o valor da correlação r ao quadrado. O valor de r
2
pode variar de 0 a 1 e
pode ser expresso em valores percentuais. A interpretação do coeficiente de determinação é
que r
2
representa a proporção da variação na variável resposta pela variável preditora [8]. Por
exemplo, no caso do consumo de energia elétrica versus numero de leitos se obteve um valor
de r
2
para a regressão linear simples de 0,95, isso indica que 95% da variação do consumo de
energia, está relacionada à variação no número de leitos. Da mesma forma, 5% da variação do
consumo de energia se devem a outros fatores que não estão contemplados pela equação de
regressão.
Com o uso dos macros do Excel foi possível se conhecer os coeficientes de
determinação e as equações de regressão linear que mostram o comportamento das amostras
frente ao número de leitos nos hospitais analisados. Em todas as regressões em que estava
presente a amostra referente ao Hospital São Lucas da PUCRS (HSL) os valores de r
2
foram
baixos, e no caso da regressão linear simples os valores estão apresentados na Tabela 3.3.
74
Tabela 3.3 - Coeficientes de determinação encontrados para as amostras analisadas com o HSL.
Variável Valor de r
2
Consumo Antes da EE 0,51
Demanda Antes da EE 0,43
Redução do Consumo 0,81
Redução da Demanda 0,65
Investimento 0,36
Um dos fatores que conduziu a estes valores é de que o HSL possui, junto a sua fatura
de energia, mais um prédio anexado referente ao Centro Clínico. Que funciona de forma
independente ao HSL e não oferece leitos para internação. Por isto, uma nova análise foi
realizada excluindo-se das amostras o HSL.
Em todos os casos, o maior valor de r
2
foi o da regressão polinomial, porém todos os
valores para a regressão linear simples (equação da reta) ficaram muito próximos destes, se
diferenciando em alguns casos somente na terceira casa decimal. Pelo fato da regressão linear
se tratar de um modelo mais simples, suas equações é que foram utilizadas para a estimação.
A Tabela 3.4 mostra de forma resumida os valores de r
2
para os modelos analisados com a
regressão linear simples bem como a equação da reta encontrada.
Tabela 3.4 - Coeficientes de determinação e equações encontrados para as amostras analisadas sem o
HSL.
Variável
Valor de r
2
Equação
Consumo Antes da EE 0,95 y = 5,194 x + 48,96
Demanda Antes da EE 0,90 y = 0,764 x + 65,78
Redução do Consumo 0,81 y = 1,687 x + 28,36
Redução da Demanda 0,65 y = 0,210 x + 26,30
Investimento
0,73
y
=
0,916
x
+
80,85
Assim, foram calculados consumos e demandas atuais, suas reduções e investimentos
para todos os hospitais da Região Sul do Brasil, a partir do número de leitos existentes em
cada um deles, obtidos através do banco de dados do DATASUS, posteriormente estes
valores foram somados e se obteve os valores das variáveis desejadas para os três Estados da
Região Sul do país.
Os gráficos de 3.2 à 3.6 mostram as amostras e as curvas obtidas através de quatro
modelos de regressão, bem como os coeficientes de determinação e suas equações. O gráfico
75
3.2 apresenta os modelos para regressão referentes ao consumo de energia elétrica antes das
ações de eficiência energética nas amostras analisadas. O gráfico 3.2a mostra o modelo de
regressão linear onde se obteve um r
2
de 0,956. O gráfico 3.2b se trata de um modelo
logarítmico que possui um r
2
igual à 0,733 e os gráficos 3.2c e 3.2d 3.2e se tratam de funções
potencial, logarítmica e polinomial e os valores de r
2
foram 0,664, 0,57 e 0,957
respectivamente. As amostras foram obtidas diretamente das faturas de energia dos hospitais
analisados e apresentaram pouca dispersão conforme pode ser observado nos gráficos.
y = 5,194x + 48,96
= 0,956
0
1000
2000
3000
4000
5000
6000
7000
0 200 400 600 800 1000 1200
Consumo (kWh)
Leitos
(a)
y = 1550,ln(x) - 6570,
= 0,733
0
1000
2000
3000
4000
5000
6000
7000
0 200 400 600 800 1000 1200
Consumo (kWh)
Leitos
(b)
y = 6,207x
0,960
= 0,664
0
1000
2000
3000
4000
5000
6000
7000
0 200 400 600 800 1000 1200
Consumo (kWh)
Leitos
(c)
76
O gráfico 3.3 apresenta os modelos para regressão referentes a demanda de energia
elétrica antes das ações de eficiência energética nas amostras analisadas. O gráfico 3.3a
mostra o modelo de regressão linear onde se obteve um r
2
de 0,902. O gráfico 3.3b se trata de
um modelo logarítmico que possui um r
2
igual à 0,759 e os gráficos 3.3c, 3.3d e 3.3e se
tratam de funções potencial, logarítmica e polinomial e os valores de r
2
foram 0,724, 0,548 e
0,904 respectivamente. Da mesma forma que o consumo de energia, as amostras de demanda
foram obtidas diretamente das faturas de energia dos hospitais analisados e apresentaram
pouca dispersão conforme pode ser observado nos gráficos.
y = 0,764x + 65,75
= 0,902
0
200
400
600
800
1000
0 200 400 600 800 1.000 1.200
Demanda (kW)
Leitos
(a)
y = 239,2ln(x) - 963,6
= 0,759
0
200
400
600
800
1000
0 200 400 600 800 1000 1200
Demanda (kW)
Leitos
(b)
y = 2,354x
0,853
= 0,724
0
200
400
600
800
1000
0 200 400 600 800 1000 1200
Demanda (kW)
Leitos
(c)
y = 105,2e
0,002x
= 0,548
0
200
400
600
800
1000
0 200 400 600 800 1000 1200
Demanda (kW)
Leitos
(d)
y = -0,000x
2
+ 0,947x + 43,71
= 0,904
0
200
400
600
800
1000
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
D
e
m
a
n
d
a
(
k
W
)
Leitos
(e)
Gráfico 3.3. Equações de regressão e curvas de ajuste, referentes à demanda de energia elétrica antes de
ações de eficiência energética nas amostras analisadas. Modelos: (a) linear, (b) logarítmico, (c) potencial,
(d) exponencial e (e) polinomial.
77
O gráfico 3.4 apresenta os modelos para regressão referentes à redução de consumo de
energia elétrica após ões de eficiência energética nas amostras analisadas. O gráfico 3.4a
mostra o modelo de regressão linear onde se obteve um r
2
de 0,811, observa-se que existe uma
amostra (ponto em que se tem 282 leitos e 1157 kWh de redução de consumo) que se
distancia um pouco mais da reta que os demais pontos, esta amostra se refere ao hospital
público de Porto Alegre que possuía um maior desperdício de energia que os demais
estabelecimentos de saúde. Este fato se refletiu no valor da correlação. O gráfico 3.4b se trata
de um modelo logarítmico que possui um r
2
igual à 0,678 e os gráficos 3.4c, 3.4d e 3.4e se
tratam de funções potencial, logarítmica e polinomial e os valores de r
2
foram 0,688, 0,473 e
0,811 respectivamente. Os valores de redução de consumo utilizados foram calculados nos
diagnósticos energéticos analisados com base em catálogos de fabricantes de tecnologias de
usos finais eficientes e informações da forma de emprego desta tecnologia por seus usuários.
y = 1,687x + 28,36
R² = 0,811
0,00
200,00
400,00
600,00
800,00
1000,00
1200,00
1400,00
1600,00
1800,00
2000,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
R
e
d
u
ç
ã
o
n
o
C
o
n
s
u
m
o
(
k
W
h
)
Leitos
(a)
78
79
y = 1,789x
0,648
R² = 0,207
0,00
30,00
60,00
90,00
120,00
150,00
180,00
210,00
240,00
270,00
300,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
R
e
d
u
ç
ã
o
d
a
D
e
m
a
n
d
a
(
k
W
)
Leitos
(c)
y = 30,37e
0,002x
R² = 0,227
0,00
30,00
60,00
90,00
120,00
150,00
180,00
210,00
240,00
270,00
300,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
R
e
d
u
ç
ã
o
d
a
D
e
m
a
n
d
a
(
k
W
)
Leitos
(d)
80
y = 0,916x + 80,85
= 0,731
0,00
200,00
400,00
600,00
800,00
1000,00
1200,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
Investimento em Milhares de R$
Leitos
(a)
y = 283,9ln(x) - 1148,
R² = 0,601
0,00
200,00
400,00
600,00
800,00
1000,00
1200,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
Investimento em Milhares de R$
Leitos
(b)
y = 2,658x
0,831
R² = 0,319
0,00
200,00
400,00
600,00
800,00
1000,00
1200,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
Investimento em Milhares de R$
Leitos
(c)
y = 105,0e
0,002x
= 0,290
0,00
200,00
400,00
600,00
800,00
1000,00
1200,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
Investimento em Milhares de R$
Leitos
(d)
y = -0,000x
2
+ 1,201x + 46,52
= 0,733
0,00
200,00
400,00
600,00
800,00
1000,00
1200,00
0,00 200,00 400,00 600,00 800,00 1000,00 1200,00
I
n
v
e
s
t
i
m
e
n
t
o
e
m
M
i
l
h
a
r
e
s
d
e
R
$
Número de Leitos
Gráfico 3.6. Equações de regressão e curvas de ajuste, ajuste referentes ao investimento para a realização
das ações de eficiência energética nas amostras analisadas. Modelos: (a) linear, (b) logarítmico, (c)
potencial, (d) exponencial e (e) polinomial.
3.3 Metodologia para a Estimativa de Ganhos na Mitigação de
CO
2
Toda forma de geração de energia traz consigo algum impacto ambiental, como já dito
anteriormente, portanto, toda vez que se economiza energia elétrica, também se esta evitando
danos ao meio-ambiente. Neste item será apresentada a metodologia utilizada para a avaliação
das emissões evitadas de gases do efeito estufa provenientes da redução do consumo de
energia elétrica a partir de projetos de eficiência energética.
81
Através dos valores obtidos com a inferência estatística dos potenciais de conservação
de energia elétrica no setor hospitalar da Região Sul do Brasil, cuja metodologia foi descrita
no item anterior, é possível estimar o quanto esta redução implica em emissões evitadas de
gases do efeito estufa. Para tanto, calcula-se a redução de consumo de eletricidade e
82
de energia obtidas a partir da inferência estatística realizada nesta dissertação, foram
calculadas as emissões evitadas para os três tipos de hospitais estudados. Os valores das
reduções de consumo de energia elétrica, bem como as emissões de gases do efeito estufa
evitadas estão apresentadas no Capítulo 4.
83
4 RESULTADOS
Os resultados da inferência estatística mostra que os hospitais da Região Sul
apresentam um consumo de energia elétrica de 548,54 GWh por ano e uma demanda de
112,8 MW. Este consumo representa 0,53% da energia gerada na Região Sul e esta demanda
representa 0,46% da potência instalada em centrais elétricas da região segundo dados do
Balaço Energético Nacional (2005). Considerando um consumo méd-2.80762(s81(ê)-2.80864)-9.23319onsêtsã
84
Também nos hospitais MP o maior ganho está no sistema de aquecimento de água que
fica em 15.867,86 MWh, porém com uma menor participação se comparado aos outros usos
finais, em segundo lugar fica o sistema de iluminação que conta com uma redução de
15.165,16 MWh.
nos hospitais GP, o maior potencial de economia de eletricidade está no sistema de
condicionamento ambiental que é de 4.438,78 MWh. A Tabela 4.2 apresenta as extrapolações
dos ganhos em consumo de energia para todas as tipologias de hospitais analisadas separadas
de acordo com os usos finais estudados.
Tabela 4.2 - Reduções de redução de consumo de energia elétrica do setor hospitalar da Região Sul do
Brasil por usos finais.
Redução de Consumo (MWh) GP MP PP Total
Iluminação:
2.885,48
15.165,16
34.705,25
52.755,89
Climatização:
4.438,78
10.469,92
23.172,73
38.081,43
Aquecimento água:
3.012,54
15.867,86
47.628,36
66.508,76
Força Motriz:
3.358,58
3.273,25
7.564,46
14.196,29
Total
*
13.695,39
44.776,18
113.070,81
171.542,37
Os maiores intervalos de confiança observados foram os dos hospitais GP por
contarem com uma amostra de apenas dois hospitais. Para o sistema de aquecimento de água
não foi possível calcular o intervalo de confiança, pois o sistema com chuveiro elétrico era
presente em apenas um hospital da amostra. A Tabela 4.3 apresenta os intervalos de confiança
para a inferência estatística realizada, a
Tabela 4.4 apresenta as reduções de demanda verificadas e a Tabela 4.5 apresenta o
intervalo de confiança correspondente. As mesmas observações referentes à redução de
consumo podem ser feitas para as demandas evitadas.
Tabela 4.3 - Intervalo de confiança das reduções de consumo de energia elétrica do setor hospitalar da
Região Sul do Brasil por usos finais.
Intervalo de Confiança - Redução de Consumo (MWh)
GP MP PP
Iluminação: 1.625,50
5.617,13
10.452,61
Climatização: 4.423,26
9.945,51
14.914,91
Aquecimento água: - 14.512,04
13.893,04
Força Motriz:
8.641,16
1.568,69
5.706,52
Total 7.595,40
22.932,91
28.682,01
85
Tabela 4.4 - Reduções de demanda de energia elétrica do setor hospitalar da Região Sul do Brasil por usos
finais.
Redução de Demanda GP MP PP Total
Iluminação:
361,66
1.866,57
8.856,20
11.084,43
Climatização:
524,08
2.196,20
8.284,29
11.004,58
Aquecimento água:
368,86
5.158,09
13.497,94
19.024,89
Força Motriz:
479,95
879,89
1.014,84
2.374,68
Total*
1.734,55
10.100,76
31.653,27
43.488,57
Tabela 4.5 - Intervalo de confiança para as reduções de demanda de energia elétrica do setor hospitalar da
Região Sul do Brasil por usos finais.
Intervalo de Confiança - Redução de Demanda (kW)
GP MP PP
Iluminação: 114,34
445,36
2867,76
Climatização: 1,67
1.823,80
4395,72
Aquecimento água: - 3.564,34
5828,08
Força Motriz: 910,60
573,53
419,54
Total
583,46
3.094,22
8
.
105,66
O maior investimento necessário para a realização das ações de eficiência energética
em hospitais PP observado, se nos sistemas de aquecimento de água (R$ 68,39 milhões),
seguido dos sistemas de climatização (R$ 20,40 milhões). para os hospitais MP, o maior
investimento se dá em aquecimento de água (R$ 15,23 milhões), porém seguido do sistema de
iluminação (R$ 6,77 milhões). nos hospitais GP o maior parcela se nos investimentos
em condicionamento ambiental (R$ 7,66 milhões) seguidos do sistema de iluminação (R$
3,52 milhões).
Tabela 4.6 - Investimento em eficiência energética no setor hospitalar da Região Sul do Brasil.
Investimento em Milhões de R$ GP MP PP Total
Iluminação: 3,52
6,77
15,40
25,69
Climatização: 7,66
6,30
20,40
34,36
Aquecimento água: 2,93
15,23
68,39
86,55
Força Motriz: 1,88
2,55
6,05
10,48
Total* 15,99
30,86
110,24
157,08
86
Tabela 4.7 - Estimativas de investimentos em eficiência energética no setor hospitalar da Região Sul do
Brasil.
Intervalo de Confiança - Investimento em Milhões de R$
GP MP PP
Iluminação: 4,16
2,52
5,10
Climatização: 12,32
5,76
10,90
Aquecimento água: - 5,75
10,44
Força Motriz: 9,51
1,85
4,26
Total 14,21
10,47
34,48
Com a energia e demanda evitadas seria possível protelar até R$ 43,26 milhões por
ano em investimentos em expansão da geração e transmissão, este valor foi obtido através do
cálculo dos custos marginais de geração, transmissão e distribuição médios das cinco maiores
concessionárias de energia da Região Sul do Brasil, o valor do Cus
87
Tabela 4.8 - Estimativas de custos evitados e RCB a partir de projetos de eficiência energética para todo o
setor hospitalar da Região Sul do Brasil.
Iluminação
Condicionamento
Ambiental
Aquecimento de
Água
Força Motriz
Investimento Total: 25.687.728,80
34.362.070,91
86.549.496,64
10.484.739,43
Energia Economizada (EC): 52.755,89
38.081,43
66.508,76
14.196,29
Redução Demanda Ponta (RP): 11.084,43
11.004,58
19.024,89
2.374,68
Vida Útil 4
5
20
10
Investimento anualizado: 8.457.284,91
9.532.372,88
11.587.141,02
1.855.632,84
FRC 33%
28%
13%
18%
RCB 0,68
0,94
0,66
0,60
Investimento Evitado: 12.361.596,36
10.161.253,35
17.666.332,43
3.075.753,61
4.2 Potenciais de Conservação de Energia Elétrica nos Estados da
Região Sul do Brasil
As estimativas mostram que o estado da Região Sul do Brasil que tem o maior
consumo e demanda de energia elétrica no setor hospitalar é o Rio Grande do Sul, que possui
um consumo total de 245.246 MWh/ano e uma demanda total de 49.535 kW. Deste total
132.313 MWh/ano (54%) é consumido por hospitais PP. O segundo tipo de hospitais que
mais consomem energia são os GP que respondem pelo consumo
59.748 MWh/ano, (24% do total). O segundo estado com maior consumo de energia elétrica é
o Paraná, com 212.854 MWh/ano, sendo que o tipo de estabelecimentos com o maior uso de
eletricidade é também o PP que responde por 73% (155.596 MWh/ano) deste consumo. No
Paraná, em segundo lugar no consumo de energia está nos hospitais MP com 20%.
o estado que apresenta o menor consumo de energia elétrica é Santa Catarina com
90.422 MWh/ano, onde novamente os maiores consumos e demanda se encontram nos
hospitais PP, que possuem um utilizam de 65% do total de energia, neste estado, o foi
encontrado registros no DATASUS de hospitais com mais de 450 leitos (GP). O Gráfico 4.1
mostra a distribuição do consumo e de demanda de energia para os três estados da Região Sul
do Brasil por porte do hospital.
88
-
25.000,00
50.000,00
75.000,00
100.000,00
125.000,00
150.000,00
175.000,00
200.000,00
225.000,00
250.000,00
GP MP PP Total GP MP PP Total GP MP PP Total
Rio Grande do Sul Santa Catarina Paraná
Consumo Antes EE em MWh
Demanda Antes EE em kW
Gráfico 4.1. Distribuição do consumo e de demanda de energia elétrica antes da realização de ações de
eficiência energética no setor hospitalar para os três estados da Região Sul.
Quanto às reduções de consumo e de demanda, o estado com maior potencial também
é o Rio Grande do Sul (42% do total da Região Sul de redução de consumo e 41% de
demanda). O segundo estado com maior potencial é o Paraná (39% do total da Região Sul de
redução de consumo e 40% de demanda). O Gráfico 4.2 mostra a distribuição dos potenciais
de redução de consumo e de demanda de energia elétrica para os três estados da Região Sul.
O Gráfico 4.3 apresenta os investimentos necessários para a realização dos projetos de
eficiência energética para os três estados da Região Sul, onde se verifica que, novamente o
Rio Grande do Sul necessitaria dos maiores investimentos, seguido pelo Paraná e Santa
Catarina.
89
-
25.000,00
50.000,00
75.000,00
100.000,00
125.000,00
150.000,00
175.000,00
200.000,00
225.000,00
250.000,00
90
Tabela 4.9 - Valores obtidos através da inferência estatística baseada no método da regressão linear.
Paraná Santa Catarina Rio Grande do Sul Total
Consumo Antes EE em MWh 186.053,13
89.146,97
193.259,61
468.459,71
Demanda Antes EE em kW
58.636,42
25.820,14
50.797,74
135.254,31
Redução de Consumo em MWh
67.085,17
31.659,61
67.532,61
166.277,38
Redução Demanda em kW
20.534,97
9.386,35
17.131,22
47.052,54
Investimento Total de R$
71,40
31,40
61,69
164,50
Comparando-se com os valores obtidos anteriormente, nota-se que todos os valores,
com exceção do investimento total (ficando apenas 3% acima do limite superior) se
encontram dentro do intervalo de confiança a um vel de significância unilateral de 10%. O
que mostra coerência nos resultados encontrados.
4.4 Mitigação de Gases do Efeito Estufa obtidas a partir da
Eficiência Energética no Setor Hospitalar
Para a estimativa das emissões de CO
2
calculadas para o setor hospitalar da Região
Sul do Brasil, o fator de emissão utilizado foi obtido através da média anual
de 2006 para o Submercado Sul do Setor Interligado Nacional (SIN), calculado em
0,958075 ton CO
2
/MWh.ano. A quantidade total de dióxido de carbono que deixaria de ser
emitido na atmosfera fica em 161.350,46 ton CO
2
/ano, sendo o maior responsável por estas
reduções o sistema de aquecimento de água seguido pelo sistema de iluminação. Quanto ao
porte o maior potencial de redução se encontra nos hospitais PP.
Para se ter uma idéia do que este valor representa, no caso de se optar por retirar esta
mesma quantidade de gases do efeito estufa, apenas através do plantio de árvores, sabendo
que o Eucalipto possui uma capacidade de absorção de 12 ton CO
2
/ha/ano [14], seria
necessária uma área de plantio de 136,95 km
2
, o que equivale a 28% do tamanho do
município de Porto Alegre (496,82 km2). A Tabela 4.10 apresenta as estimativas das reduções
de emissões de CO
2
obtidas a partir das estimativas de economia de energia elétrica no setor
hospitalar do Sul do país.
91
Tabela 4.10 - Estimativas de emissões evitadas de CO
2
a partir de projetos de eficiência energética para
todo o setor hospitalar da Região Sul do Brasil.
Redução de Emissão (ton CO
2
/ano)
GP MP PP Total
Iluminação 2.764,51
14.529,36
33.250,24
50.544,10
Condicionamento Ambiental 4.252,69
10.030,96
22.201,22
36.484,87
Aquecimento de Água 2.886,24
15.202,60
45.631,54
63.720,38
Força Motriz 3.217,77
3.136,02
7.247,32
13.601,11
Total 13.121,21
42.898,94
108.330,32
164.350,46
Da mesma forma como as reduções do consumo de energia, por ser proporcional, as
emissões evitadas de CO
2
tem seu maior potencial nos sistemas de aquecimento de água em
hospitais PP e seu menor potencial nos sistema de iluminação em hospitais GP. Além disto,
no geral, os hospitais com maior potencial de economia também são os PP seguidos pelos
MP.
Portanto, as maiores parcelas tanto de economia de energia quanto de redução de
emissão de CO
2
se encontram em hospitais de pequeno porte, e quanto aos usos finais os
sistemas de aquecimento de água possuem os maiores potenciais. Este fato deve orientar
pesquisadores e profissionais da área ao elaborar programas e planejamentos que levem em
conta a eficiência energética como um meio de gerar a sustentabilidade e a confiabilidade no
sistema, o que tem como conseqüência, para o setor hospitalar, redução das despesas e um
melhor atendimento das necessidades energéticas destes estabelecimentos.
92
5 CONCLUSÕES
Esta dissertação avaliou o potencial de conservação de energia no setor hospitalar da
Região Sul do Brasil, bem como os investimentos necessários para a implantação de
programas de eficiência energética no setor e das reduções de emissões de CO
2
obtidas a
partir destes projetos. De forma especial, nos sistemas de iluminação, condicionamento
ambiental, força motriz e aquecimento de água.
A metodologia empregada para a estimativa dos valores populacionais se baseou em
trabalhos realizados na área de gestão de energia e em bibliografias da área da estatística. Por
não ter sido encontrada na bibliografia trabalhos que estimaram as reduções de consumo e
reduções de demanda para a população estudada (hospitais da Região Sul de todos os portes),
foram utilizados dois diferentes métodos para se avaliar a coerência dos resultados. Um
realizado através da média de consumo, redução de consumo, demanda, redução de demanda
e investimentos, todos estes relacionados com o número de leitos disponível nos hospitais
analisados. O outro todo utilizou as equações de regressão linear encontradas a partir das
amostras analisas. Ambos os métodos chegam a valores próximos, porém, o método da média
necessitou de um menor número de dados para encontrar os resultados. Do contrário, para o
método da regressão linear foi preciso se calcular o consumo de cada um dos hospitais
existentes na Região Sul do país a partir do número de leitos destes hospitais.
Já os valores de consumo de energia antes de ações de eficiência energética são
encontrados na bibliografia e foram estimados por [4], que encontrou um valor de
791 GWh/ano (com dados de 1999) enquanto o presente estudo verificou um consumo de
548 GWh/ano (com dados de 2005) sendo 30% menor. Esta dissertação mostrou que existe
correlação entre o consumo de energia entre o número de leitos. Logo, os valores
apresentaram certa coerência, já que o número de leitos, oferecidos para internação em
hospitais da Região Sul, segundo dados do IBGE, diminuiu em 8% do ano de 1999 para o ano
de 2005.
[2] estimou os valores populacionais apenas para hospitais públicos e de pequeno
porte (para todo o Brasil). Apesar de o autor ter encontrado valores específicos para a Região
Sul, os mesmos não puderam serem comparados com os estabelecimentos de pequeno porte
desta dissertação por se tratarem de hospitais públicos (o presente trabalho analisou
estabelecimentos das duas esferas administrativas).
93
Os dados utilizados foram extraídos de uma amostra de 16 diagnósticos energéticos
realizados pelo Grupo de Eficiência Energética da PUCRS. Estes hospitais foram
classificados segundo seu porte. No caso dos hospitais de grande porte a amostra foi pequena,
(apenas dois hospitais) o que não possibilitou o cálculo correlação entre o uso da energia e o
número de leitos disponíveis. Já para os hospitais de Médio e Pequeno porte, apesar da
amostra também ser pequena (seis e oito estabelecimentos respectivamente) a maioria das
análises mostraram que existe uma correlação moderada entre estes parâmetros.
Conforme se esperava, existe um grande potencial de economia de energia no setor
hospitalar. O estudo trabalhou com uma população de 77.233 leitos em hospitais na Região
Sul do Brasil, onde se estimou um consumo anual de 548 GWh e uma demanda de
112 MW, neste universo se encontra um potencial de redução de consumo de 171,5 GWh
e uma demanda evitada na ponta de 43,5 MW para isto seria necessário um investimento de
R$ 157,08 milhões. Assim, seria possível adiar, R$ 43,2 Milhões por ano em ampliação do
sistema elétrico, obtendo-se um tempo de retorno de investimento simples de 3,6 anos e uma
RCB de 0,72. Estes números mostram a grande atratividade do investimento em conservação
de energia no setor hospitalar.
Ressalta-se que os resultados encontrados estão sujeitos a alteração de seus valores
conforme a mudança no número de leitos oferecidos à internação no setor hospitalar além de
alterações no cenário da economia nacional como aumento da inflação e acréscimos de preços
praticados pelo mercado para tarifas de energia, equipamentos e tecnologias de usos finais e
custos de operação e ampliação do sistema elétrico.
Além das vantagens financeiras, a eficiência energética no setor hospitalar traz
grandes reduções nas emissões de gases do efeito estufa, principalmente em dióxido de
carbono, por ser as principais fontes que emitem este gás, usinas termoelétricas, que estão
localizadas principalmente nos estados do sul e que tem grande participação na matriz
energética desta região. Com a prática de ões de eficiência energética em todo o setor
hospitalar da Região Sul do País, seria evitada a emissão de aproximadamente 164 Mil
toneladas de CO
2
o que corresponde ao plantio de árvores em 136 km
2
de área.
Os projetos de eficiência energética podem gerar as chamadas Reduções Certificadas
de Emissões (RCE) no âmbito do MDL, porém as metodologias aprovados atualmente no
Intergovernamental Panel on Climate Change (IPCC) são bastante simplistas e levam em
consideração apenas a economia de energia gerada pela substituição de equipamentos, não
94
examinando as economias geradas por mudanças de processos produtivos ou por mudanças de
hábitos de uso da energia por parte dos consumidores finais.
O presente trabalho servirá de base para futuros estudos onde se deseja conhecer de
que forma é utilizada a energia elétrica em um hospital e onde estão localizados os maiores
potenciais de economia de energia, além disso, auxiliará grupos de pesquisa e empresas de
consultoria em energia, pois o trabalho apresenta métodos para se incrementar a eficiência
energética em diferentes usos finais.
A metodologia para a obtenção das RCEs que trata de projetos de eficiência energética
leva em conta apenas a redução de consumo obtida pela diminuição da potência elétrica
obtida pela substituição de equipamentos ineficientes por outros com maior eficiência e os
tempos de utilização destes equipamentos. Para trabalhos futuros, se propõe o estabelecimento
e a proposição de uma metodologia mais global. Esta metodologia deverá levar em
consideração também a mudança de processo visando o serviço desejado (por exemplo:
iluminação natural em substituição à artificial) além de treinamento e mudança de hábitos por
parte dos usuários. Para isto será necessário se encontrar padrões na forma de utilização da
energia e de procedimentos para o aumento da eficiência energética em diferentes
diagnósticos energéticos de estabelecimentos de vários segmentos da sociedade.
95
Bibliografia
[1] GALVÃO, LUIZ C. R. et al. Estudos Básicos sobre o PIR: (1996 - 1999) Planejamento
Integrado de Recursos Energéticos Para o Setor Elétrico. - USP, São Paulo - SP, 2000. 94
p.
[2] VARGAS JÚNIOR, RAUNILDO H. Análise do Potencial de Conservação de Energia
Elétrica em Hospitais Públicos de Pequeno Porte no Brasil: Sistemas de Iluminação e Ar
Condicionado do Tipo Janela. - Dissertação de Mestrado- COPPE, Universidade Federal do
Rio de Janeiro. Rio de Janeiro - RJ, 2006. 197 p.
[3] INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA, Estatísticas da Saúde
Assistência Médico Sanitária. - IBGE. Rio de Janeiro - RJ, 2006. 164 p.
[4] SOARES, JEFERSON B. Formação do Mercado de Gás Natural no Brasil: Impacto
de Incentivos Econômicos na Substituição Interenergéticos e na Cogeração em Regime
Topping. - Tese de Doutorado - COPPE, Universidade Federal do Rio de Janeiro. Rio de
Janeiro, 2004. 390 p.
[5] JEFFERSON, JIM. Energy Efficiency Opportunities In Ontario Hospitals. - OHA
Energy Efficiency. Ontário. Canada. 2006. 69 p.
[6] TOLMASQUIM, MAURÍCIO T., SZKLO, ALEXANDRE S., SOARES JEFERSON B.,
Energy consumption indicators and CHP technical potential in the Brazilian hospital
sector. - ELSEVIER - Energy Conservation & Management. Estados Unidos da América,
2003. 17 p.
[7] JANUZZI, GILBERTO M., SWISHER, JOEL N., REDLINGER, ROBERT Y., Tools
and Methods for Integrated Resource Planning - Improving Energy Efficiency and
Protecting the Environment. - UNEP. Dinamarca, 1997. 270 p.
[8] SHIMAKURA, Silvia E., CE001 - Bioestatística - Notas de Aula Estimativa -
Disponível em: http://leg.ufpr.br/~silvia/CE001/node32.html - Acesso em Junho de 2007.
[9] PROGRAMA EUROPEU MOTOR CHALLENGE. Módulo de Sistemas de Ventilação,
European Commission - General Energy And Transport. - Bruxelas - Bélgica. 11 p.
[10] INTERNATIONAL ENERGY AGENCY. Legal Aspects of Storing CO
2
- Paris -
França, 2005. 69 p.
96
[11] BALTAR, MARTA G. Redução da Demanda de Energia Elétrica utilizando
Parâmetros Construtivos visando ao Conforto Térmico. - Dissertação de Mestrado -
PPGEE - Pontifícia Universidade Católica do Rio Grande do Sul. Porto Alegre - RS, 2006.
124 p.
[12] REIS, LINEU B., SILVEIRA, SEMIDA. Energia Elétrica para o Desenvolvimento
Sustentável, São Paulo, SP: Ediusp, 2000. 284 p.
[13] MINISTÉRIO DE CIÊNCIA E TECNOLOGIA. Cálculo dos fatores de emissão de
CO
2
pela geração de energia elétrica no Sistema Interligado Nacional do Brasil.
Disponível em http://www.mct.gov.br/ . Acesso em Agosto de 2007.
[14] SANQUETTA, CARLOS R.; DALLACORTE, A. P.; ZILIOTTO M. A.. Fixação de
Carbono na Biomassa: Resultados de Experiências Atuais. I Seminário Brasileiro Sobre
Seqüestro de Carbono e Mudanças Climáticas. Natal -RN, 2007. 40 p.
[15] FBDS - Fundação Brasileira para o Desenvolvimento Sustentável. MDL e Eficiência
Energética: Oportunidades no Setor Industrial. In: Seminário de Oportunidade para
Financiamento de Projetos de Eficiência Energética e MDL, 2005, Rio de Janeiro. Anais
Eletrônicos. Rio de Janeiro: Fundação Getúlio Vargas, 2005. Disponível em:
<http://www.fbds.org.br/Apresentacoes/FBDS-MDLEficEnerg.pdf>. Acesso em: 13 jun.
2007.
[16] SILVEIRA, ALEXANDRE H., Projeto de Eficiência Energética em Centros
Assistenciais: Centro de Atenção Integral à Criança e ao Adolescente - Canoas (RS) -
Trabalho de Conclusão de Curso. FENG - PUCRS, 2005. 86 p.
[17] WWF BRASIL. Carta aberta do WWF-Brasil para a EPE. Disponível em:
assets.wwf.org.br/downloads/carta_resposta_tolmasquim_out_06.pdf . Acesso em outubro de 2007.
[18] SOUZA, AURÉLIO A., Aproveitamento de Energias Renováveis no Meio Rural.
Winrock International Brasil. Salvador - Bahia. 59 p.
[19] SOUZA, ANTÔNI I., Representatividade dos EncargosSetoriais e Tributos noCusto
da Energia Elétrica., Associação Brasileira de Grandes Consumidores de Energia e
Consumidores Livre. Porto Alegre - RS, 2007. 39 p.
[20] AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Manual para
Elaboração de Programas de Eficiência Energética Ciclo 2005/2006. Brasília: ANEEL,
2005. 121 p.
97
98
Bibliografia Complementar
AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (BRASIL). Atlas de energia elétrica
do Brasil. Brasília: ANEEL, 2002. 153 p.
AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (BRASIL). Manual para Elaboração
do Programa Anual de Combate ao Desperdício de Energia Elétrica. Brasília: ANEEL,
2000. 169 p.
EMPRESA DE PESQUISA ENERGÉTICA. Estudos das premissas básicas para projeção
do mercado de energia elétrica 2005-2015. Brasília: EPE, 2005. 136p. Disponível em:
<http://www.epe.gov.br/Lists/PremissasMercado>. Acesso em 12 jan. 2007.
KAEHLER, José Wagner Maciel. Material da disciplina de gestão pelo lado da demanda
de energia. Curso de mestrado em Engenharia Elétrica da Pontifícia Universidade Católica
do Rio Grande do Sul. Porto Alegre. 2006.
NUNES, Antônio Saldanha; KAEHLER, José Wagner Maciel. Estrutura integrada de ações
dos planos anuais de eficiência energética da AES-Sul. In: CONGRESSO DE
MINISTÉRIO DA SAÚDE. Manual de Lavanderia Hospitalar. Brasília: Centro de
Documentação do Ministério de Saúde, 1986.
CALLENDAR G. S. The artificial production of carbon dioxide and its influence on
temperature. Quarterly Journal of the Royal Meteorological Society 64, páginas 223 - 240,
1938.
COLOMBO, U. Development and The Global Environmentin The Energy-Environment
Connection. USA: Island Press (Editado por Jack M. Hollander), 1992.
EPA - U.S. Environmental Protection Agency. Emissions Factors: External Combustion
Sources. USA: EPA, 1996.
ROSSWELL, T. Greenhouse Gases and Global Change: International Collaboration.
Environmental Science and Technology, 1991, volume 25, páginas 567 - 573.
Santos, Afonso H. M., et all. Conservação de Energia - Eficiência Energética de
Instalações e Equipamentos. 2ª ed., Itajubá: Escola Federal de Engenharia de Itajubá, 2001.
Springer Link. Disponível em: <http://www.springerlink.com/>. Acesso em: 13 jun. 2007.
99
100
Glossário
Demanda - Média das potências elétricas ativas e/ou reativas, solicitadas ao sistema elétrico
durante um intervalo de tempo especificado.
Demanda Contratada - Demanda de potência ativa a ser obrigatória e continuamente
disponibilizada pela concessionária, expressa em quilowatts (kW).
Energia Elétrica Reativa - Energia elétrica que circula continuamente entre os diversos
campos elétricos e magnéticos de um sistema de corrente alternada, sem produzir trabalho.
Energia Elétrica Ativa - Energia elétrica que pode ser convertida em outra forma de energia,
expressa em quilowatts/hora (kWH).
Estrutura Tarifária Horo-sazonal - Aplicação de tarifas diferenciadas de consumo e demanda,
de acordo com as horas do dia dos períodos do ano.
Diagnósticos Energéticos - Os diagnósticos energéticos têm como objetivo principal
determinar as condições atuais da instalação sob o ponto de vista do uso de energia,
identificando problemas e recomendando solução para que ela se torne eficiente. Os mesmos
fundamentam-se em levantamentos de campo que propiciam os dados a serem analisados.
101
Anexo 1 – Publicações Relacionadas ao
Desenvolvimento da Dissertação
102
Anexo 2 - Planilha de Levantamento de Dados do
Sistema de Iluminação
As planilhas do Anexo 2 foram utilizadas para a realização dos levantamentos de
dados dos sistemas de iluminação que fazem parte dos Diagnósticos Energéticos elaborados
pelo GEE da PUCRS nos hospitais da amostra.
103
Levantamento do Sistema de Iluminação Artificial
Identificação
Local
Setor
Andar
Sala
Padrão
Características do Sistema de Iluminação
Luminária
Modelo
Nº de Luminárias
Lâmpadas
Modelo
Nº de Lampâdas
Potência
Reatores
Modelo
Nº de Reatores
Tipo
Tempo Funcionamento
Horas p/ Dia
Periodo 1
Periodo 2
Periodo 3
Dias p/ Semana
Nº de Meses
Observação
Identificação
Local
Setor
Andar
Sala
Padrão
104
Características do Sistema de Iluminação
Luminária
Modelo
Nº de Luminárias
Lâmpadas
Modelo
Nº de Lampâdas
Potência
Reatores
Modelo
Nº de Reatores
Tipo
Tempo Funcionamento
Horas p/ Dia
Periodo 1
Periodo 2
Periodo 3
Dias p/ Semana
Nº de Meses
Observação
105
Anexo 3 - Planilha de Levantamento de Dados
Sistema de Força Motriz
As planilhas do Anexo 3 foram utilizadas para a realização dos levantamentos de
dados dos sistemas de força motriz que fazem parte dos Diagnósticos Energéticos elaborados
pelo GEE da PUCRS nos hospitais da amostra.
106
Cadastro De Equipamentos
Localização
Equipamento Nº:
Bloco: Atende Área:
Pavimento: Localização: Nº M.U.:
Ventilador
Marca: Modelo: Série:
Altura: Largura: Profund.:
Motor
Marca: Modelo: Potência:
N.Série: Polos: Amp(Rst):
Tensão: Eixo Ø:
Polia Motora Polia Conduzida Acoplamento
Ø Externo: Ø Externo: Correia Tipo: Qtd:
Ventilador:
Tipo: Eixo Ø: Rolamentos:
Quantidade: As / Da: Rotor Ø: Acopl:
Pré-Filtro e Filtro de Ar
Tipo: Altura: Largura: Qtd:
Tipo: Altura: Largura: Qtd:
Vazões De Ar:
Vazão De Placa: Vazão Med.:
Quadro Elétrico
Cont. Vent: Fusíveis: Relé Térmico: Reg:
Cont. Resist: Fusíveis
Observações
Data Qtde. Componente
RELAÇÃO DE EQUIPAMENTOS - HSL - Modelo
NOME Marca
Potência
Carga
Cte?
Utiliização
Horário de
Atendimento
Atendimentos
Obs.:
Potência
Estimada
Potência
Medida
Potência
Nominal
Sim
Não
S
T
Q
Q
S
S
D
Início
Intervalo
Fim
Quant./Dia
Anexo 4 - Análise da Viabilidade Econômica
O Anexo 4 apresenta a metodologia para os cálculos econômico-financeiros segundo o
Manual para a Elaboração de Programas de Eficiência Energética da Agência Nacional de
Energia Elétrica (ANEEL). Estes cálculos foram utilizados para a realização das análises de
dados de todos os sistemas de usos finais que fazem parte dos Diagnósticos Energéticos
elaborados pelo GEE da PUCRS nos hospitais da amostra.
Análise Técnico-Orçamentária e a RCB
Um projeto de eficiência requer não a disponibilidade de dados técnicos e
orçamentários referentes ao projeto considerado, mas também:
Os montantes de economia de energia em MWh/ano e de redução da demanda em
kW, obtidos com a implantação do projeto, e respectivos benefícios financeiros;
Os dados técnicos e orçamentários sobre a alternativa de expansão da capacidade
da rede elétrica.
Segundo o Manual para a Elaboração de Programas de Eficiência Energética da
Agência Nacional de Energia Elétrica (ANEEL), os projetos de eficiência energética devem
ter sua RCB calculada sob a ótica da sociedade. Assim, se um projeto possuir mais de um uso
final, cada um desses deverá ter sua RCB calculada, bem como a RCB global do projeto.
Conforme a ANEEL (2002), a avaliação econômica do projeto será feita por meio do
cálculo da RCB de cada uso final, devendo obedecer a seguinte metodologia:
sAnualizadoBenefícios
sAnualizadoCustos
RCB = (1)
a) Cálculo do Custo Anualizado Total (CA
TOTAL
):
++=
equipnequipequipTotal
CACACACA
21
(2)
b) Cálculo do Custo Anualizado dos equipamentos com mesma vida útil
(CAequip n):
FRCCPECA
equipnequipn
×
=
(3)
c) Cálculo do Custo dos equipamentos e/ou materiais com mesma vida útil
(CPEequip n):
×+=
CTE
CE
CTECTCECPE
equipn
equipnequipn
)( (4)
Obs.: equipamentos e/ou materiais = lâmpadas, reatores, economizadores, luminárias
(aberta e fechada), relé e braço.
d) Cálculo do fator de recuperação de capital (FRC):
1)1(
)1(
+
+
=
n
n
i
ii
FRC
(5)
onde:
CPEequip n - custo dos equipamentos com a mesma vida útil, acrescido da parcela
correspondente aos outros custos diretos e indiretos. Esta parcela é proporcional ao percentual
do custo do equipamento em relação ao custo total com equipamentos;
CEequip n - Custo somente de equipamento com mesma vida útil;
CT - Custo total do projeto (custos diretos + custos indiretos);
CTE - Custo total somente de equipamentos;
n - vida útil (em anos);
i - taxa de juros (taxa de desconto).
O custo anualizado dos equipamentos com a mesma vida útil (CPEequip n) também
pode ser calculado utilizando os custos unitários de mão-de-obra e os custos indiretos
(administração, acompanhamento e avaliação), desde que estes estejam desagregados.
No caso do projeto englobar equipamentos com vidas úteis diferentes, o investimento
anualizado do projeto será composto pelo somatório dos investimentos anualizados
correspondentes a cada equipamento e a sua respectiva vida útil.
O CPEequipn deve então ser calculado pela soma dos custos unitários de
equipamento, mão-de-obra e indiretos multiplicada pela quantidade total do equipamento
correspondente.
O custo anualizado pode também ser calculado considerando a menor vida útil. Se a
relação custo-benefício for menor que 0,85, não é necessário o cálculo dos custos anualizados
por tipo de equipamento.
A taxa de desconto a ser considerada na avaliação financeira é de no mínimo 12% a.a.
Esta taxa tem por base o Plano Decenal de Expansão 1999/2008 aprovado pela Portaria MME
nº. 151, de 10 de maio de 1999.
e) Cálculo dos Benefícios:
)()( CEDRDPCEEEEB
×
+
×
=
(6)
onde:
EE - Energia Economizada (MWh/ano);
CEE - Custo Evitado de Energia (R$/MWh);
RDP - Redução de Demanda na Ponta (kW);
CED - Custo Evitado de Demanda (R$/kW).
Para que o projeto seja considerado viável, a relação custo-benefício deve ser menor
que 0,85.
Anexo 5 - Cálculo Luminotécnico
O Anexo 5 apresenta a metodologia utilizada para os cálculos luminotécnicos
utilizados nos Diagnósticos Energéticos elaborados pelo GEE da PUCRS nos hospitais da
amostra. Através do cálculo luminotécnico, verifica-se a necessidade de se aumentar ou
reduzir o nível de iluminamento, a fim de se atender as normas e legislação vigentes e atingir
o conforto visual, buscando minimizar a quantidade e a potência das lâmpadas utilizadas na
instalação.
Cálculo Luminotécnico - Método dos Lúmens
Indica-se este método, pois segundo CREDER (1986), tal metodologia conduz a
resultados bastante aceitáveis na prática. Os métodos ponto a ponto e das cavidades zonais
levam resultados mais precisos, porém são mais especializados e requerem maior quantidade
de dados de levantamento que encarece o projeto devido a grande quantidade de ambientes a
serem, levantados. Inicia-se o estudo do método dos lúmens com algumas definições:
Luz: aspecto da energia radiante que um observador humano constata pela sensação
visual, determinado pela retina ocular (ABNT, 1986).
Fluxo luminoso de uma fonte: é o fluxo de energia, medido em lumens, emitido por
uma fonte em todas as direções do espaço.
Lúmen: é a quantidade de luz irradiada através de uma abertura de 1 m² por uma
fonte, de intensidade de uma vela, em todas as direções, localizada no centro de uma esfera de
1m de raio (CREDER, 1986).
Iluminamento de uma superfície plana: é a densidade superficial de fluxo luminoso
recebido, conforme a equação 04.
2
m
Lúmen
Lux =
[04]
Após revistas as definições luminotécnicas, é possível abordar o método dos lumens.
Para isto, é preciso determinar o nível de iluminamento do local que se deseja iluminar. A
norma NBR 5413 - Iluminância de Interiores fornece os níveis de iluminamento para diversos
locais como escritórios, salas de aula, hospitais, etc.
A próxima etapa é a escolha da luminária que, depende de diversos fatores tais como o
objetivo da instalação (comercial, industrial, residencial, etc), fatores econômicos, razões de
decoração, etc.
Determinação do índice do local
O índice do local relaciona as dimensões do recinto, comprimento, largura e altura de
montagem, ou seja, a altura da luminária em relação ao plano de trabalho.
Determinação do coeficiente de utilização
De posse do índice do local, é possível calcular o coeficiente de utilização, que
relaciona o fluxo luminoso inicial emitido pela luminária (fluxo total) e o fluxo recebido no
plano de trabalho (fluxo útil). Desta forma, a determinação do coeficiente de utilização
depende das dimensões do local, da cor do teto, das paredes e do acabamento das luminárias.
A tabela 3.1 apresenta diversos fatores de refletância para diferentes materiais e cores,
necessários para o cálculo luminotécnico.
Tabela 3.1 - Fatores de refletância para diferentes materiais e cores.
Determinação do fator de depreciação
Também chamado de fator de manutenção, este fator relaciona o fluxo emitido ao final
do período de manutenção da luminária e do fluxo luminoso inicial da mesma. Quanto melhor
for a manutenção das luminárias (limpeza e substituição) mais alto será este fator.
Fluxo total e número de luminárias
Para determinar o número mínimo de luminárias necessárias para um determinado
nível de iluminamento, devem ser empregadas as equações 05, 06 e 07.
Material Fator (%)
Material Fator (%) Cor Fator (%) Cor Fator (%)
Asfalto 7 Tijolo 13 - 48 escuras 15 - 30 vermelha 10 - 35
Cal 85 - 88 Fazenda 2 médias 30 - 50 amarela 30 - 70
Escura
Cantaria 25 - 60 Livros em 10 - 20 claras 50 - 70 azul 5 - 55
Estantes
Cerâmica
30
Madeira
13
muito
50
-
70
bege
25
-
65
Vermelha Clara claras
Concreto
55
Madeira
7
-
13
brancas
85
-
95
branca
85
-
95
Aparente Escura
Gesso
90
-
95
Nuvens
80
cinzenta
25
-
60
creme
60
-
68
Branco
Granito
40
Papel
80
-
85
parda
8_50
marfim
71
-
77
Branco
Granolite 17 Troncos 3 - 5 pérola 72 espelhos 80 - 90
Árvores
Macadam 18 Vegetação 25 alumínio 60 - 70 preta 4 - 8
Mármore 45 Veludo 0,2 - 1 cromo 60 - 65 rosa 35 - 70
Branco Preto
Pedregulho
13 Terra 1 - 20 aço inox 55 - 65 verde 12 - 60
d
u
ES
=
φ
[05]
ϕ
φ
=n
[06]
)( lck
lc
k
m +
=
[07]
Onde:
φ
- fluxo luminoso total em lúmens;
S - área do recinto em metros quadrados;
E - nível de iluminamento em lux;
u - fator de utilização ou coeficiente de utilização;
d - fator de depreciação ou de manutenção;
n - número de luminárias;
ϕ
- fluxo por luminária em lúmens;
k - índice do local;
c - comprimento do recinto em metros;
l - largura do recinto em metros.
1
Anexo 6 - Aquecedores Solares
O Anexo 6 mostra a metodologia utilizada para o dimensionamento dos sistemas de
aquecimento solar utilizados nos Diagnósticos Energéticos elaborados pelo GEE da PUCRS
nos hospitais da amostra. Os sistemas de aquecimento solar são avaliados quando se existe a
possibilidade de substituir sistemas de aquecimento de água em torneiras ou duchas que
utilizam outros energéticos como sistemas elétricos e GLP.
2
Aquecedores Solares
Atualmente os sistemas de aquecimento solar no Brasil beneficiam mais de 500 mil
residências, economizando energia elétrica equivalente ao consumo de uma cidade de 1,1 milhões de
famílias. Estima-se que mais de dois milhões de pessoas já se beneficiam com a tecnologia do
aquecedor solar, sendo aquecidos cerca de 200 milhões de litros de água para banho diariamente
(ABRAVA, 2000).
O uso de aquecedores solares pode minimizar a utilização de formas convencionais de
energia degradantes, e que de uma maneira ou outra causam impactos negativos ao meio ambiente.
Segundo a ABRAVA (2000) cada 1 m² de coletores instalados permite:
Economizar 55 kg de GLP/ano;
Economizar 66 l de diesel/ano;
Evitar a inundação de cerca de 56 m² (hidroelétricas);
Eliminar anualmente o consumo de 215 kg de lenha.
Além das vantagens ecológicas, esses sistemas podem reduzir em até 80% o consumo de
energia convencional, garantindo retorno de investimento e lucro até o final de sua vida útil
(aproximadamente 20 anos).
O reservatório fornece a água a ser aquecida ao sistema. Como em muitas instalações utiliza-
se a própria caixa d’água, a tomada de água neste caso deverá ser localizada em um nível superior ao
sistema de aquecimento, desta forma a água é conduzida por gravidade.
Os coletores são responsáveis por captar a energia solar e aquecer a água através do efeito
estufa. A movimentação do quido se por termossifão, onde a água fria vem da caixa d’água,
desloca por convecção a água aquecida pelo sol que está contida na serpentina do coletor criando o
movimento da água no sentido do boiler.
O princípio de funcionamento do aquecimento solar baseia-se na transmissão do calor através
dos materiais que compõem o sistema. Este é composto pelo boiler e pelos coletores solares. A figuras
A 3.1 e A 3.2 mostram, respectivamente, o aspecto físico de um coletor solar e o esquema de
construção de um aquecedor solar com as suas principais partes.
3
Figura A 3.1: Aspecto físico de um coletor solar.
FONTE: SOLETROL, 2000.
Figura A 3.2: Esquema de construção de um coletor solar.
FONTE: SOLETROL, 2000.
4
A descrição dos principais componentes que compõe o coletor solar, apresentado na figura A
3.2, são as seguintes:
Vidro: impede que entrem no coletor água de chuva, materiais sólidos, poeira etc. Tem com o
finalidade principal provocar o efeito estufa. Ou seja, a luz do sol, incidindo diretamente no vidro, faz
com que parte dela penetre no interior do coletor, refletindo outra parcela de luz. Na reflexão, a luz é
composta basicamente de raios infravermelhos que não conseguem ultrapassar a camada de vidro,
provocando assim um aquecimento interno que ajudará no aquecimento da água que está circulando na
tubulação de cobre.
Tubo de cobre: serve para conduzir a água que capta o calor do sol. O cobre, sendo um ótimo
condutor de calor, absorverá toda esta energia do coletor e transmitirá para a água que está circulando.
Poliuretano expandido ou lã de vidro: é um material que isola termicamente o coletor,
impedindo que o calor captado pela luz solar escape para o ambiente.
Chapa de alumínio enegrecida: tem por finalidade auxiliar no aquecimento do coletor.
Pela sua cor negra, absorve melhor o calor da luz solar, transmitindo-o para os tubos de cobre
e conseqüentemente para a água.
A figura A 3.3 mostra o aspecto sico de um boiler. Este dispositivo serve para armazenar
água quente para consumo e é fabricado por fora de alumínio e por dentro de cobre ou aço inox.
Internamente, a água quente se mistura com a fria ficando a água quente sempre na parte superior. O
boiler possui resistência elétrica que aquece a água em dias em que não há luz solar suficiente.
Comandada por um termostato, ela liga e desliga de acordo com a temperatura da água. Em dias com
grande luminosidade, a água quente pode ficar armazenada por várias horas sem precisar acionar a
resistência elétrica. Existem boilers de baixa e de alta pressão. Os de baixa pressão trabalham com até
5 mca e os de alta pressão com até 20 mca. Estes dispositivos podem ser de nível (colocado no mesmo
nível da caixa fria) ou de desnível (abaixo da caixa fria). A escolha vai depender da altura da cumeeira
da edificação.
5
Figura A 3.3: Aspecto físico de um boiler.
FONTE: SOLETROL, 2000.
Dimensionamento dos Aquecedores Solares
6
O apoio elétrico consome 10% em média da energia necessária para aquecer água até a
temperatura necessária o restante é aquecido pelo Sol (SOLETROL, 2000). Assim, para calcular a
quantidade de energia o apoio elétrico consumirá:
1,0
/
860
=
kWh
kcal
Q
E
(A 3.2)
7
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo