Download PDF
ads:
MAÍRA CARNEIRO PROIETTI
ESTOQUES MISTOS DA TARTARUGA-VERDE (Chelonia
mydas) NO SUL DO BRASIL, REVELADOS POR DNA
MITOCONDRIAL E CORRENTES OCEÂNICAS
RIO GRANDE
Junho de 2009
ads:
Livros Grátis
http://www.livrosgratis.com.br
Milhares de livros grátis para download.
ii
UNIVERSIDADE FEDERAL DO RIO GRANDE
INSTITUTO DE OCEANOGRAFIA
PÓS-GRADUAÇÃO EM OCEANOGRAFIA BIOLÓGICA
ESTOQUES MISTOS DA TARTARUGA-VERDE (Chelonia
mydas) NO SUL DO BRASIL, REVELADOS POR DNA
MITOCONDRIAL E CORRENTES OCEÂNICAS
MAÍRA CARNEIRO PROIETTI
Dissertação apresentada ao Programa de
Pós-graduação em Oceanografia
Biológica da Universidade Federal do Rio
Grande, como requisito parcial à obteão
do título de MESTRE.
Orientador: Eduardo Resende Secchi
Co-orientador: Luis Fernando Marins
RIO GRANDE
Junho de 2009
ads:
iii
AGRADECIMENTOS
Dedico este trabalho aos meus pais, que sempre me apoiaram
incondicionalmente e me inspiram a querer ser uma pesquisadora melhor. Agradeço a
Júlia, grande amiga e colega de trabalho, por tudo. Obrigada pela amizade sem
tamanho, ajuda, força, discussões, e todo o aprendizado ao longo dos anos. Agradeço
aos orientadores, Edu e Luf, pela ajuda e confiança ao longo do trabalho. Agradeço o
Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) pela bolsa de mestrado, e
as instituições britânicas Rufford Small Grants (RSG) e People‟s Trust for Endangered
Species (PTES) pelo financiamento do trabalho. Obrigada a todos do Laboratório de
Biologia Molecular da FURG, em especial Dani, Liane e Lupe pela amizade,
companheirismo e enorme apoio tanto dentro quanto fora do laboratório, e Márcio pelas
inúmeras consultorias laboratoriais. A todos que participaram das expedições ao
Arvoredo, não tenho palavras para agradecer todo o trabalho e os perrengues”
enfrentados: Déa, Mari, Manu, Tremembé, Diego, Arthur, Theo, Curiri, Tiago, Pablo,
Jaca, Paulinha, Chris, Japa, Alessandra, Robs, Arnaldinho. Obrigada a todas as
operadoras de mergulho (Pata da Cobra, Parcel, Sea Divers, Aquanauta), e um
agradecimento especial ao Neio, Tiago e Tidico da Pata da Cobra, pela grande força.
Agradeço a Marinha do Brasil pela disposição em nos apoiar na ilha. Ao NEMA e
CRAM, em especial Dani, Serginho e Alice, agradeço o fornecimento de material da
Praia do Cassino. Ao Fabrício Santos, Sarah Vargas e o Laboratório de Biologia e
Evolução Molecular da UFMG, agradeço a parceria e ajuda com seqüenciamento, e a
Marina Lobato e a Fundação Hemominas pela ajuda com PCRs. Muito obrigada ao
Paul Kinas pela valiosa ajuda na construção das prioris e ao Tiago Grandra pelo mapa
das áreas. Agradeço imensamente todos os amigos queridos, sempre presentes
iv
mesmo de longe, que acompanharam esta trajetória: Vi, Tati, Cá, Cami, Tiago, Mari,
Kássio, Robs, Renatão, O Bando de Coirana, Amália, Shei, Cissa, Matas. Obrigada
também aos pentagêmeos pelas boas risadas, e ao Chris por todo o carinho e apoio na
reta final. Muito obrigada a todos!
v
ÍNDICE
RESUMO ......................................................................................................................... 1
ABSTRACT ..................................................................................................................... 2
I) INTRODUÇÃO ............................................................................................................. 3
I.1.) A tartaruga-verde .................................................................................................. 3
I.2.) Ciclo de vida ......................................................................................................... 4
I.3.) Marcadores genéticos aplicados ao estudo de tartarugas-verdes ........................ 6
I.4.) Análise Bayesiana de Estoque Misto .................................................................... 8
I.5.) Correntes e dispersão de tartarugas marinhas ..................................................... 9
I.6.) Implicações para a conservação......................................................................... 11
I.7.) Objetivos ............................................................................................................. 11
II) MATERIAL E MÉTODOS .......................................................................................... 12
III) RESULTADOS ......................................................................................................... 13
IV) CONSIDERAÇÕES FINAIS ..................................................................................... 15
V) LITERATURA CITADA .............................................................................................. 16
VI) FIGURAS ................................................................................................................. 23
VII) ANEXOS ................................................................................................................. 26
VIII) APÊNDICE: MANUSCRITO: formatado para o periódico Molecular Ecology. ....... 28
1
RESUMO
Análises genéticas podem elucidar diversos aspectos da biologia e ecologia de
tartarugas-verdes (Chelonia mydas), como composição de áreas de alimentação,
dispersão de filhotes e migrações. Para avaliar estrutura genética e estimar origens
natais de áreas de alimentação no sul do Brasil, seqüências do DNA mitocondrial da
Ilha do Arvoredo (SC n = 115) e Praia do Cassino (RS n = 101) foram analisadas e
comparadas a outras áreas de forrageio e desova do Oceano Atlântico. Para comparar
estimativas de origens natais (obtidas através da Análise Bayesiana de Estoque Misto)
com dados oceanográficos e desenvolver novas prioris informativas para estas
estimativas, trajetórias de bóias de deriva do Oceano Atlântico foram analisadas. Cada
área de estudo apresentou doze haplótipos, dos quais dez eram compartilhados e
presentes em freqüências extremamente semelhantes. Os haplótipos mais freqüentes
nas amostras foram CM-A8 e CM-A5 (aproximadamente 60% e 20%, respectivamente),
e haplótipos restantes apresentaram freqüências menores que 5%. Não foi observada
estruturação genética entre a as áreas de estudo. A Ilha do Arvoredo e Praia do
Cassino tamm não apresentaram estruturação em relão a Ubatuba e
Rocas/Noronha, no Atlântico sudoeste, mas sim em relação a áreas de alimentação
mais distantes no Brasil, Caribe e América do Norte. A análise de trajetórias de bóias de
deriva revelou que bóias provindas das ilhas Ascensão e Trindade são dominantes na
costa leste brasileira. As prioris desenvolvidas para a Análise de Estoque Misto não
alteraram muito estimativas de contribuições, porém as consideramos ecologicamente
mais realistas. As Ilhas de Ascensão, Aves e Trindade, assim como o Golfo de Guiné,
foram os principais contribuintes para os estoques mistos do sul do Brasil. No entanto,
áreas de desovam necessitam de uma caracterização genética mais adequada para
2
fornecer estimativas mais precisas de origens natais, uma vez que a redução de
impactos em estoques mistos ao longo da costa resulta na conservação de estoques
reprodutivos freqüentemente localizados a grandes distâncias.
Palavras-chave: tartaruga-verde, Atlântico sudoeste, áreas de alimentação, genética,
análise de estoque misto, bóias de deriva.
ABSTRACT
Genetic analyses have the potential to elucidate many aspects of juvenile green
turtle (Chelonia mydas) biology and ecology, such as foraging ground composition,
hatchling dispersal and migrations. To evaluate genetic structure and assess natal
origins of mixed stocks in Southern Brazil, we analyzed mitochondrial DNA control
region sequences from Arvoredo Island (n = 115) and Cassino Beach (n = 101),
comparing them to other mixed stocks and examining their composition in terms of
stocks (nesting areas) in the Atlantic Ocean. In order to compare natal origin estimates
(obtained through Bayesian Mixed Stock Analysis) with oceanographic data and develop
novel informative priors for this analysis, surface drifter trajectories in the Atlantic Ocean
were analyzed. Each study area presented twelve haplotypes, of which ten were shared
at extremely similar frequencies. Haplotypes CM-A8 and CM-A5 were most frequent,
representing respectively around 60% and 20% of samples from both areas, and
remaining haplotypes presented frequencies lower than 5%. Genetic structuring was not
observed between the study areas. Arvoredo Island and Cassino Beach also did not
present structuring in relation to Ubatuba and Rocas/Noronha, in the southwestern
Atlantic, but were structured when compared to farther feeding areas in Brazil, the
3
Caribbean, and North America. Analysis of drifter trajectories revealed that drifters from
Ascension and Trindade Islands are dominant at the eastern coast of Brazil. Informative
priors developed for Mixed Stock Analysis did not greatly alter stock estimates; we do,
however, consider them to be ecologically more realistic. Ascension, Aves and Trindade
Islands, as well as Gulf of Guinea, were the main contributors to the Southern Brazil
mixed stocks. However, rookeries require adequate genetic characterization in order to
provide accurate estimated of natal origins, an analysis with important implications for
the survival of this species, since the reduction of impacts on mixed stocks along the
coast will ultimately lead to the conservation of reproductive stocks frequently thousands
of kilometers away.
Keywords: green turtle, southwestern Atlantic, foraging grounds, genetics, mixed stock
analysis, surface drifters
I) INTRODUÇÃO
I.1.) A tartaruga-verde
A tartaruga-verde (Chelonia mydas) pertence à ordem Testudinata, subordem
Cryptodira, superfamília Chelonioidea, família Cheloniidae. Possui casco ósseo rígido e
oval, de coloração predominantemente marrom e verde, geralmente apresentando
padrões radiais e rajados. As características morfológicas que a distinguem das demais
espécies são: quatro pares de escudos laterais no casco, quatro pares de escamas
pós-orbitais, duas escamas pré-frontais alongadas entre as orbitais e uma mandíbula
serrilhada (Pritcher & Mortimer 1995; Figura 1). Tamanhos e pesos variam de acordo
4
com a população, podendo chegar a 140 cm de comprimento de casco e 300 kg (Carr
1952), porém geralmente não ultrapassam os 123 cm e 240 kg (Pritcher & Mortimer
1995). No Brasil, um estudo com tartarugas-verdes adultas no Atol das Rocas revelou
tamanhos e pesos médios diferenciados entre machos e fêmeas, com média de 106 cm
e 134 kg (máximo 118 cm e 176 kg) para machos e 113 cm e 147 kg (máximo 130 cm e
191 kg) para fêmeas (Grossman et al. 2007). Esta espécie possui hábito alimentar
onívoro com tendência à herbivoria, variando de acordo com suas fases de vida e
necessidades nutricionais e energéticas (Bjorndal 1985, Bjorndal 1997). Apresenta
distribuição circumglobal tropical e subtropical e complexo ciclo vital, ocupando diversos
nichos ecológicos e habitats distintos ao longo de sua vida, e realizando migrações
muitas vezes de larga-escala entre áreas de alimentação e reprodução quando atingem
a maturidade sexual (Meylan & Meylan 1999, Bolten 2003, Godley et al. 2003). No
Brasil, esta espécie ocorre em todo o litoral para alimentação e desenvolvimento, mas
sua reprodução é restrita às ilhas oceânicas de Trindade, Atol das Rocas e Fernando
de Noronha (Bellini & Sanches 1996, Grossman et al. 2007). Assim como as outras seis
espécies viventes de tartarugas marinhas, encontra-se ameaçada de extinção (IUCN
2009) devido a fatores como superexploração, ocupação desordenada do litoral e
destruição de habitats, poluição marinha, e captura acidental em pesca (Limpus 1995,
Campbell 2003, Bugoni et al. 2001, Domingos et al. 2006).
I.2.) Ciclo de vida
Tartarugas-verdes atingem a maturidade sexual entre 20 e 50 anos de idade, e
apresentam comportamento reprodutivo filopátrico, ou seja, retornam à mesma região
para reproduzirem em ciclos reprodutivos subseqüentes (Carr 1967, Miller 1997, Avise
5
2007). A corte e apula geralmente ocorrem em águas próximas às praias de desova,
sendo comum o cortejo de uma única fêmea por vários machos (Limpus 1993; Miller
1997). Aproximadamente 20 dias após a cópula, a fêmea sobe a praia para desovar,
depositando geralmente entre 100 e 120 ovos em uma mara cavada com as
nadadeiras (Miller 1997). Desovam de três a sete vezes por temporada reprodutiva, e
ovos permanecem incubados por 50-60 dias, período após o qual ocorre a eclosão e a
corrida dos filhotes para o mar, onde nadam contra as ondas para chegarem ao mar
aberto, onde o risco de predação é supostamente menor (Carr 1967, Musick & Limpus
1997). Pouco se sabe sobre a fase pós-eclosão destes animais, em que permanecem
no ambiente pelágico sendo, teoricamente, transportados por correntes oceânicas
durante alguns anos (“os anos perdidos” Carr 1967, Witham 1980, Musick & Limpus
1997). Após atingirem tamanho adequado (geralmente entre 20 e 35 cm de carapaça
de acordo com o local e população; Bjorndal 1997, Musick & Limpus 1997, Bolten
2003), juvenis recrutam para áreas costeiras de alimentação e desenvolvimento, onde
mistura de indivíduos provindos de diversas áreas reprodutivas formando um
“estoque misto” (Bass et al. 2006). As tartarugas-verdes muitas vezes exibem fidelidade
a estes locais, mas podem realizar deslocamentos entre diferentes áreas (Godley et al.
2003, Reisser et al. 2008). Quando se aproximam da maturidade sexual, podem se
mover para áreas de alimentação adultas (Godley et al. 2003), possivelmente devido à
maior proximidade de áreas de desova ou necessidades alimentares. Ao atingirem a
maturidade, se deslocam para suas áreas reprodutivas, retornando à área de
alimentação após a reprodução, onde permanecem entre dois e seis anos (fêmeas) e
um a dois anos (machos) armazenando energias até o próximo ciclo reprodutivo
6
(Musick & Limpus 1997, Hamman et al. 2003). A Figura 2 apresenta o modelo geral
mais aceito do ciclo de vida das tartarugas-verdes.
I.3.) Marcadores genéticos aplicados ao estudo de tartarugas-verdes
A complexidade do ciclo de vida destes animais e as grandes distâncias
geográficas e temporais envolvidas tornam o estudo direto destes animais difícil, e
abordagens indiretas através de análises moleculares podem elucidar muitos aspectos
de sua biologia e comportamento (Bowen 1995, Bowen & Karl 1997, Bowen & Karl
2007, Avise 2007). Marcadores moleculares foram utilizados para investigar sistemas
de acasalamento e paternidade de tartarugas-verdes, e confirmaram a suspeita de
poligamia e múltipla paternidade de ninhos (FitzSimmons 1998, Lee & Hays 2004).
Estrutura populacional e fluxo gênico foram avaliados com marcadores mitocondriais e
nucleares, evidenciando estruturação entre áreas de desova com baixo fluxo gênico
entre elas, ou seja, baixas taxas de migrações entre áreas de desova (Roberts et al.
2004). Estudos moleculares foram aplicados também à filogeografia, revelando
separação genética entre Oceano Atlântico/Mediterrâneo e Oceano Pacífico/Índico,
assim como elevada estruturação entre quatro grupos regionais de áreas de desova no
Oceano Atlântico: um grupo a oeste, composto pelo México, Costa Rica e Flórida; um
central, envolvendo a Ilha Aves e Suriname; um ao sul/sudeste, composto pelo Brasil,
Ilha de Ascensão e Guiné Bissau; e um ao leste em Chipre, no Mediterrâneo (Bowen et
al. 1992, Encalada et al. 1996, Lahanas et al. 1998). Sistemática e taxonomia também
são focos de estudos genéticos. No Pacífico Leste, uma variação morfológica da
tartaruga-verde denominada tartaruga-negra é considerada por muitos pesquisadores
uma espécie distinta (Chelonia agassizii); porém, análises genéticas não evidenciaram
7
esta distinção, e embora as tartarugas-negras sejam uma população com morfologia
característica e limitada distribuição geográfica, não devem ser consideradas uma
espécie geneticamente distinta (Karl & Bowen 1999). Por fim, a hipótese de retorno à
praia natal e origens natais de indivíduos em fases não-reprodutivas do ciclo de vida,
também são foco de estudos genéticos (Avise 2007).
A hipótese de retorno à praia natal” foi proposta pela primeira vez por Carr
(1967), baseada na observação de que tartarugas-verdes fêmeas apresentam elevado
grau de filopatria, com variados graus de precisão (Miller 1997, Musick & Limpus 1997,
Formia et al. 2007, Avise 2007, Lee et al. 2007). Diante desta observação, surgiram
duas hipóteses para explicar a fidelidade de fêmeas ao sítio reprodutivo: retorno à
praia natal”, em que as meas retornariam à região em que nasceram para se
reproduzirem, e “facilitação social”, em que fêmeas inexperientes seguiriam as
experientes para um local de desova e utilizariam este local para sua reprodução dali
em diante (Bowen & Karl 2007). Estas hipóteses são difíceis de testar diretamente,
considerando a dificuldade de se aplicar uma marca a um filhote recém-nascido de 5
cm e recuperá-la décadas depois, em um adulto medindo mais de um metro. Porém,
estas hipóteses geram predições testáveis da estruturação genética entre populações:
se uma mea retorna fielmente à sua área natal, cada área de desova apresentará
uma assinatura genética única em termos do DNA mitocondrial herdado maternamente;
por outro lado, se as áreas de desova são escolhidas por facilitação social, haverá alta
taxa de fluxo gênico entre populações de desova que se sobrepõem em locais de
alimentação (Bowen & Karl 2007). Estudos de marcação de tartarugas-verdes
demonstraram que locais de alimentação no nordeste brasileiro são divididos por
animais de populações de desova do Suriname e da Ilha de Ascensão. Apesar da
8
sobreposição em áreas de alimentação, estudos genéticos demonstraram grande
diferenciação genética entre amostras do Suriname e Ascensão, revelando que não
dispersão de fêmeas entre estas áreas e apoiando a hipótese de retorno à praia natal
(Bowen et al. 1992, Allard et al. 2004, Bowen & Karl 2007), tendência observada
também para a Austrália (Dethmers et al. 2006).
I.4.) Análise Bayesiana de Estoque Misto
Baseada na premissa de que existe estruturação entre áreas de desova, uma
abordagem Bayesiana denominada Análise de Estoque Misto (Mixed Stock Analysis
MSA) tem sido crescentemente aplicada para a determinação da contribuição de áreas
de desova (estoques) para agregações alimentares de tartarugas (estoques mistos).
Esta análise, inicialmente desenvolvida para a avaliação de estoques pesqueiros, utiliza
diferenças nas freqüências de caracteres genéticos (especialmente haplótipos de
mtDNA) para estimar contribuições de cada estoque para um estoque misto (Pella &
Masuda 2001). Esta análise freqüentemente apresenta elevados desvios-padrão e é
baseada no pressuposto de que todos os estoques e misturas são adequadamente
amostrados, o que não é o caso, com muitas áreas apresentando pouco ou nenhuma
caracterização genética (Avise 2007). Apesar destas potenciais fontes de erro, a MSA é
extremamente útil para estimativas quantitativas e descrições qualitativas de origens de
tartarugas-verdes em habitats de alimentação (Bowen & Karl 2007). Estas estimativas
devem ser consideradas com cuidado e, quando possível, comparadas e associadas a
outros dados e hipóteses. A abordagem Bayesiana para a MSA permite incorporar
prioris informativas para melhorar estimativas, e dados ecológicos como tamanho da
população de desova e distância do estoque ao estoque misto são comumente
9
empregados, com base no pressuposto de que estes fatores influenciam a composição
do estoque misto. Dados oceanográficos, como trajetórias de derivadores superficiais,
podem ser bons indicadores das dispersões de tartarugas marinhas recém-nascidas,
visto que estas são consideradas pela maioria dos pesquisadores como “pelágicas” e
transportadas por correntes oceânicas (Bolten 2003), possuindo deste modo grande
potencial para incorporação nas MSAs Bayesianas.
Alguns exemplos de estimativas de origens natais de tartarugas-verdes do
Atlântico e Pacífico podem ser vistos nos trabalhos de Bass et al. (2006), Bolker et al.
(2007), Bjorndal & Bolten (2008), e Dutton et al. (2008). No Atlântico sudoeste e sul-
central existem quatro áreas de desova de tartarugas-verdes, listadas em ordem
decrescente de tamanho populacional: Ilha de Ascensão (Reino Unido), Ilha de
Trindade (ES), Atol das Rocas (RN) e Fernando de Noronha (PE). Origens de
tartarugas-verdes juvenis do Brasil foram descritas para o Atol das Rocas (RN) e
Fernando de Noronha (PE) (agrupados em uma só área em Bjorndal et al. 2006)
Ubatuba (SP) e Almofala (CE) (Naro-Maciel et al. 2007). Para todas estas áreas, foram
consistentemente observadas contribuições altas da Ilha de Ascensão, seguidas por
menores porém importantes contribuições da Ilha de Trindade e contribuições quase
nulas do Atol das Rocas e Fernando de Noronha. Estes autores atribuem estas
estimativas de contribuição ao padrão de correntes oceânicas que fluem próximo a
estas áreas de desova.
I.5.) Correntes e dispersão de tartarugas marinhas
O papel das correntes oceânicas na dispersão e migração de tartarugas
marinhas tem sido amplamente discutido (ver Luschi et al. 2003a). Como citado
10
anteriormente, acredita-se que tartarugas recém-nascidas são dispersas por correntes
oceânicas até recrutarem para suas áreas de alimentação costeiras, e o
acompanhamento de tartarugas através de telemetria por satélite indicam que os
movimentos e migrações destes animais o freqüentemente moldados por correntes
oceânicas (Luschi et al. 1998, 2003a, 2003b; Craig et al. 2004). Para estoques mistos
do Atlântico norte, comparações entre MSA e correntes oceânicas foram realizadas por
Luke et al. (2004) e Bass et al. (2006), e estes autores concluíram que a composição
destas áreas de alimentação dependem dos sistemas locais de correntes oceânicas.
Para o Brasil, foi sugerido que recém-nascidos da Ilha de Ascensão derivam com
correntes Equatorias na direção da América do Sul, enquanto recém-nascidos de outras
áreas de desova possivelmente derivam em outras direções com as correntes
dominantes (Naro-Maciel et al. 2007). A circulação geral de larga escala da camada
superficial (< 100 m) do Oceano Atlântico Sul, que possivelmente influencia a dispersão
de tartarugas marinhas e conseqüentemente afeta a composição de áreas de
alimentação brasileiras, é caracterizada por um giro anticiclônico subtropical dominante.
A Corrente Sul Equatorial (CSE) flui para o oeste, bifurcando quando atinge a
plataforma continental sul-americana a aproximadamente 10° S, originando a Corrente
Norte do Brasil, com direção norte, e a Corrente do Brasil (CB), com direção sul. A CB
flui para o sul ao longo da costa até atingir a Zona de Convergência Subtropical
(aproximadamente 33-38º S), onde encontra a Corrente das Malvinas e separa da costa
formando a Corrente Sul do Atlântico, que flui para o leste. Ao se aproximar da costa
africana, parte flui para o Oceano Índico e parte forma a Corrente de Benguela que viaja
para o norte ao longo da costa, formando por sua vez a CSE e fechando o giro
(Stramma & England 1999) (Figura 3).
11
I.6.) Implicações para a conservação
A relevância conservacionista em se identificar origens natais e rotas de
dispersão de estoques mistos está no fato de que áreas de desova, apesar de serem
geralmente independentes em termos reprodutivos, são conectadas em fases não-
reprodutivas do ciclo de vida (Avise 2007). Impactos em áreas de alimentação e rotas
migratórias podem afetar ao mesmo tempo múltiplos estoques em diferentes níveis, de
acordo com o tamanho populacional do estoque e a fração de seus potenciais
reprodutores que habita uma determinada área de alimentação. A determinação de
rotas migratórias e identificação das áreas de desova impactadas com a mortalidade
em áreas o-reprodutivas, provocada por exploração humana direta e captura
acidental na pesca, podem auxiliar no manejo prático de populações (Avise 2007).
Portanto, o entendimento das origens natais e a determinação de possíveis rotas de
deslocamento entre áreas de desova e alimentação são essenciais para a identificação
de unidades discretas para a elaboração de planos de manejo e conservação de
tartarugas marinhas (Moritz 1994, Avise 2007, Bowen & Karl 2007).
I.7.) Objetivos
Considerando que estudos genéticos possuem o potencial de iluminar vários
aspectos da biologia e ecologia de tartarugas marinhas, incluindo composição de áreas
de alimentação, dispersão de tartarugas rem-nascidas e migrações, este trabalho
estudou haplótipos da região controle do DNA mitocondrial de tartarugas-verdes de
duas áreas de alimentação sul-brasileiras, a Ilha do Arvoredo (SC) e a Praia do Cassino
(RS), com os objetivos de: 1) diferenciar geneticamente as áreas de estudo das demais
áreas de alimentação do Atlântico com caracterização genética; 2) elucidar origens
12
natais das tartarugas se alimentando nas áreas de estudo; 3) desenvolver novas prioris
informativas para a Análise Bayesiana de Estoque Misto; 4) verificar o efeito da
incorporação de diferentes prioris informativas na Análise Bayesiana de estoque misto;
e 5) determinar possíveis padrões de dispersão de recém-nascidos das áreas de
desova para as áreas estudadas.
II) MATERIAL ETODOS
Foram analisadas 115 amostras da Ilha do Arvoredo, de tartarugas-verdes com
comprimento curvilíneo de carapaça (CCC) variando de 33.5-83 cm (média 49.2 cm), e
101 amostras da Praia do Cassino, de animais com CCC variando de 29-71.5 cm
(média 40.1 cm). A Ilha do Arvoredo, maior ilha da Reserva Biológica Marinha do
Arvoredo, é um recife rochoso coberto predominantemente por algas de clima tropical e
temperado quente (Horta et al. 2008), com elevada ocorrência de tartarugas-verdes
(Reisser et al. 2008) (Figura 4). A Praia do Cassino é uma extensa (aproximadamente
350 km) e contínua praia arenosa, cujo substrato é predominantemente não-
consolidado (Figura 4). Nesta área freqüente ocorrência da tartaruga-verde (Bugoni
et al. 2001), embora o papel exato deste local no ciclo de vida destes animais não seja
conhecido devido à ausência de estudos de marcação e recaptura e telemetria. DNA
genômico foi extraído de amostras de tecido através do método padrão de extração
fenol:clorofórmio (adaptado de Hillis et al. 1996, ver Anexo 1). Fragmentos de
aproximadamente 490 pares de base (pb) da região controle do mtDNA foram
amplificados via Reação em Cadeia da Polimerase (PCR), utilizando-se primers
específicos. Produtos da PCR foram purificados e sequenciados em ambas as direções.
Seqüências foram classificadas de acordo com haplótipos previamente descritos para
13
tartarugas-verdes do Oceano Atlântico, e as relações entre haplótipos encontrados
foram demonstradas através de uma rede haplotípica. Testes de diferenciação e
AMOVA foram efetuados para verificar estruturação entre as áreas de estudo e outras
áreas de alimentação do Oceano Atlântico com descrição genética.
Para comparar resultados da MSA com dados oceanográficos e desenvolver
duas novas prioris informativas para esta análise, trajetórias de ias de deriva do
Oceano Atlântico foram obtidas do programa de bóias de deriva da NOAA
(http://www.aoml.noaa.gov/envids/gld). O número de bóias que passaram por
determinadas áreas (áreas de desova de tartarugas-verdes incluídas na MSA) e a
fração destas bóias que chegaram a uma área-alvo na costa brasileira foram
determinados. Deste modo, a probabilidade posterior de uma bóia que chegou à área-
alvo ser de determinada área de desova foi calculada em um contexto Bayesiano,
seguindo uma distribuição Beta. Prováveis origens natais foram determinadas através
de Análise Bayesiana de Estoque Misto, considerando prioris não-informativas (MSA
1
) e
empregando prioris informativas de acordo com: 1) as probabilidades estimadas a partir
de dados de bóias de deriva (MSA
2
); 2) o número de fêmeas/ano de cada área-fonte
(MSA
3
); e 3) combinando as duas prioris informativas (MSA
4
). Estoques reprodutivos
considerados como possíveis contribuintes para as áreas de estudo correspondem a
todas as áreas de desova do Atlântico com descrição do DNA mitocondrial.
III) RESULTADOS
Cada área de estudo apresentou 12 haplótipos previamente descritos, dos quais
10 foram compartilhados (CM-A5, CM-A6, CM-A8, CM-A9, CM-A10, CM-A23, CM-A24,
CM-A32, CM-A42 e CM-A45) e quatro não (CM-A3 e CM-A39, presentes somente na
14
Ilha do Arvoredo, e CM-A25 e CM-A36, presentes somente na Praia do Cassino). O
número de sítios polimórficos definindo estes haplótipos foi 19 para ambas as áreas,
com um máximo de 12 variações distinguindo-os. As duas áreas foram caracterizadas
pela predominância dos haplótipos CM-A8 (61%) e CM-A5 (22% e 20% para a Ilha do
Arvoredo e Praia do Cassino, respectivamente), e freqüências menores que 5% para os
haplótipos restantes. Diversidades haplotípicas (h) e nucleotídicas (π) foram
extremamente similares, apresentando os valores respectivos de 0,5831 ± 0,0451 e
0,00246 ± 0,00176 para a Ilha do Arvoredo e 0,5857 ± 0,0501 e 0,00251 ± 0,00178 para
a Praia do Cassino.
Não foi constatada estruturação genética entre as áreas de estudo, com um Φ
ST
ligeiramente negativo
ST
= -0,0066, p > 0,05), indicando que o valor real é porém
muito baixo (Weir 1996). As análises revelaram que a Ilha do Arvoredo e a Praia do
Cassino são geneticamente diferentes em termos de haplótipos de mtDNA da maioria
das áreas de comparação (Almofala, Nicarágua, Barbados, Carolina do Norte, Florida e
Bahamas, p < 0,05), mas não apresentam diferença em relação a Ubatuba e
Rocas/Noronha (p > 0,05), localizadas no Atlântico sudoeste.
As trajetórias de todas as ias de deriva que passaram pelas 11 áreas 4°x
(todas as áreas de desova consideradas nas MSAs) revelaram que bóias provindas de
Ascensão e Trindade são dominantes na costa leste brasileira.
Todas as MSAs demonstraram que os principais contribuintes para as áreas de
alimentação sul-brasileiras são as Ilhas de Ascensão, Aves e Trindade. A Ilha de
Ascensão consistentemente mostrou maiores contribuições, acima de 50% em todas as
análises, enquanto as Ilhas Aves e Trindade geralmente exibiram contribuições acima
de 21 e 13%, respectivamente. Os estoques restantes apresentaram baixas
15
contribuições (geralmente menos de 1%), com a exceção do Golfo de Guiné, que
alcançou contribuições acima de 10% em algumas análises. A inserção de prioris
ecológicas não alterou muito estimativas da MSA. Para resultados detalhados e
discussão referir-se ao Apêndice 1 deste trabalho.
IV) CONSIDERAÇÕES FINAIS
A Ilha do Arvoredo e Praia do Cassino apresentaram diversidade e freqüências
haplotípicas extremamente semelhantes, e o foi observada estruturação genética
significativa entre elas e outras áreas de alimentação do Atlântico sudoeste
relativamente próximas (Ubatuba SP e Rocas/Noronha PE). Entretanto, há
estruturação significativa em relação a Almofala (CE), uma área de alimentação mais
distante. Trajetórias de bóias de deriva revelaram que as Ilhas de Ascensão e Trindade,
e em menor proporção Golfo de Guiné e Rocas/Noronha, apresentam condições
favoráveis para conduzir bóias de deriva à costa brasileira. As Análises de Estoque
Misto mostraram que o principal estoque contribuindo para as áreas de estudo foi a Ilha
de Ascensão, seguido pela Ilha Aves, Ilha de Trindade, e Golfo de Guiné. A inserção de
prioris ecológicas não provocou grandes alterações nas estimativas das MSAs. No
presente trabalho foram combinados diferentes tipos de dados ecológicos para
incorporação nas análises de origens natais, e acreditamos que esta combinação é o
cenário ideal para se obter estimativas de contribuições mais realistas. Apesar de
serem unidades geneticamente indistinguíveis, e serem agrupadas para a Análise de
Estoque Misto, sugerimos que diferentes estratégias de manejo sejam adotadas devido
a algumas diferenças entre as áreas em termos das tartarugas-verdes ocorrentes e sua
utilização dos habitats. O tamanho médio de carapaça dos animais amostrados neste
16
trabalho demonstra que as tartarugas da Ilha do Arvoredo e Praia do Cassino estão em
estágios diferentes de seus ciclos vitais, com a Praia do Cassino apresentando animais
menores. Estes diferentes estágios possuem diferentes vulnerabilidades e sua
sobrevivência influencia diferentemente taxas de crescimento populacional, com juvenis
maiores, por seu maior valor reprodutivo, contribuindo mais do que indivíduos menores
(Crouse et al. 1987; Crouse et al. 1999). Além disso, estes habitats podem apresentar
diferentes papéis no ciclo de vida das tartarugas. Enquanto fidelidade em pelo menos
curto prazo foi observada para a Ilha do Arvoredo (Reisser et al. 2008), o papel da
Praia do Cassino ainda não é claro devido à falta de estudos de marcação e recaptura e
telemetria, e é possivelmente mais importante como um corredor migratório do que uma
área de alimentação, quando comparada à Ilha do Arvoredo. Impactos nos estágios de
desenvolvimento das tartarugas-verdes podem impedi-las de cumprir seu papel
ecológico de atingir a maturidade e se reproduzir. Portanto, a proteção de juvenis na
costa leva à conservação de estoques reprodutivos muitas vezes localizados a milhares
de quilômetros de distância. A identificação de contribuições de estoques para áreas de
alimentação possui importantes implicações para a conservação, e para ser
considerada como uma ferramenta para a elaboração adequada de planos de manejo e
conservação, é necessário que se descreva adequadamente o mtDNA das populações
de desova, de modo a melhorar dados genéticos de base utilizados nas estimativas de
origens natais.
V) LITERATURA CITADA
Allard MW, Miyamoto MM, Bjorndal KA, Bolten AB, Bowen BW (1994). Support for natal
homing in green turtles from mitochondrial DNA sequences. Copeia, 1994(1), 34-41.
17
Avise JC (2007). Conservation genetics of marine turtles ten years later. In: Frontiers
in Wildlife Science: Linking Ecological Theory and Management Applications (eds.
Hewitt D, Fulbright T), pp. 295-314. CRC Press, Boca Raton, Florida.
Bass AL, Epperly SP, Braun-Mcneill J (2006). Green Turtle (Chelonia mydas) foraging
and nesting aggregations in the Caribbean and Atlantic: impact of currents and
behavior on dispersal. Journal of Heredity, 97(4), 346-354.
Bellini C, Sanches TM (1996). Reproduction and feeding of marine turtles in the
Fernando de Noronha Archipelago, Brazil. Marine Turtle Newsletter, 74, 12-13.
Bjorndal KA (1985). Nutritional ecology of sea turtles. Copeia, 3, 736-751.
Bjorndal KA (1997). Foraging ecology and nutrition of sea turtles. In: The Biology of Sea
Turtles (eds. Lutz PL, Musick JA), pp. 199-231. CRC Press, Boca Raton, Florida.
Bjorndal KA, Bolten AB, Moreira L, Bellini C, Marcovaldi MA (2006). Population structure
and diversity of Brazilian green turtle rookeries based on mitochondrial DNA
sequences. Chelonian Conservation and Biology, 5, 262-268.
Bjorndal KA & Bolten AB (2008). Annual variation in source contributions to a mixed
stock: implications for quantifying connectivity. Molecular Ecology, 17, 2185-2193.
Bolker BM, Okuyama T, Bjorndal KA, Bolten AB (2007). Incorporating multiple mixed
stocks in mixed stock analysis: „many-to-many‟ analyses. Molecular Ecology, 16,
685-695.
Bolten A (2003). Variation in sea turtle life history patterns: neritic vs. oceanic
developmental stages. In: The Biology of Sea Turtles Volume II (eds. Lutz PL,
Musick JA, Wyneken J), pp. 243-257. CRC Press, Boca Raton, Florida.
18
Bowen BW, Meylan AB, Ross JP, Limpus CJ, Balazs GH, Avise JC (1992). Global
population structure and natural history of the green turtle (Chelonia mydas) in terms
of matriarchal phylogeny. Evolution, 46(4), 865-881.
Bowen BW (1995). Tracking marine turtles with genetic markers voyages of the
ancient mariners. BioScience, 45(8), 528-534.
Bowen BW, Karl SA (1997). Population genetics, phylogeography, and molecular
evolution. In: The Biology of Sea Turtles (eds. Lutz PL, Musick JA), pp. 29-50. CRC
Press, Boca Raton, Florida.
Bowen BW, Karl SA (2007). Population genetics and phylogeography of sea turtles.
Molecular Ecology, 16, 4886-4907.
Bugoni L, Krause L, Petry MV (2001). Marine debris and human impacts on sea turtles
in Southern Brazil. Marine Pollution Bulletin, 42(12), 1330-1334.
Campbell LM (2003). Contemporary culture, use, and conservation of sea turtles. In:
The Biology of Sea Turtles Volume II (eds. Lutz PL, Musick JA, Wyneken J), pp.
307-338. CRC Press, Boca Raton, Florida.
Carr AF (1952). Handbook of Turtles. Cornnell University Press, New York.
Carr AF (1967). So excellent a Fishe: a Natural History of Sea Turtles. Scribner, New
York.
Craig P, Parker D, Brainard R, Rice M, Balazs G. (2004). Migrations of green turtles in
the central South Pacific. Biological Conservation, 116, 433-438.
Crouse DT, Crowder LB, Caswell H (1987). A stage-based population model for
loggerhead sea turtles and implications for conservation. Ecology, 68(5), 1412-
1423.
19
Crouse DT (1999). Population modeling and implications for Caribbean hawksbill sea
turtle management. Chelonian Conservation and Biology, 3(2),185-188.
Dethmers K, Broderick D, Moritz C, Fitzsimmons N, Limpus C, Lavery S, Whiting S,
Guinea M, Prince R, Kennett R (2006). The genetic structure of Australasian green
turtles (Chelonia mydas): exploring the geographical scale of genetic exchange.
Molecular Ecology, 15, 3931-3946.
Dutton PH, Balazs GH, LeRoux RA, Murakawa SKK, Zarate P, Martínez LA (2008).
Composition of Hawaiian green turtle foraging aggregations: mtDNA evidence for a
distinct regional population. Endangered Species Research, 5, 37-44.
Encalada SE, Lahanas PN, Bjorndal KA, Bolten AB, Miyamoto MM, Bowen BW (1996).
Phylogeography and population structure of the Atlantic and Mediterranean green
turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment.
Molecular Ecology, 5, 473-483.
FitzSimmons N (1998). Single paternity of clutches and sperm storage in the
promiscuous green turtle (Chelonia mydas). Molecular Ecology, 7, 575-584.
Formia A, Broderick AC, Glen F, Godley BJ, Hays GC, Bruford MW (2007). Genetic
composition of the Ascension Island green turtle rookery based on mitochondrial
DNA: implications for sampling and diversity. Endangered Species Research, 3,
145-158.
Godley BJ, Lima EHSM, Åkesson S et al. (2003). Movement patterns of green turtles in
Brazilian coastal waters described by satellite tracking and flipper tracking. Marine
Ecology Progress Series, 253, 271-288.
20
Grossman A, Mendonça P, Costa MR, Bellini C (2007). Morphometrics of the green
turtle at the Atol das Rocas Marine Biological Reserve, Brazil. Marine Turtle
Newsletter, 118, 12-13.
Hamann M, Limpus CJ, Owens DW (2003). Reproductive cycles of males and females.
In: The Biology of Sea Turtles Volume II (eds. Lutz PL, Musick JA, Wyneken J),
pp. 135-161. CRC Press, Boca Raton, Florida.
Hillis DM, Mable BK, Larson A, Davis SK, Zimmer EA (1996). Nucleic acids IV:
sequencing and cloning. In: Molecular Systematics, 2
nd
edition (eds. Hillis DM,
Moritz C, Mable BK), pp. 321-381. Sunderland, MA: Sinauer Associates.
Horta P, Salles J, Bouzon J, Scherner F, Cabral D, Bouzon Z (2008) Composição e
estrutura do fitobentos do infralitoral da Reserva Biológica Marinha do Arvoredo,
Santa Catarina, Brasil implicações para a conservação. Oecologia Brasiliensis,
12(2), 243-257.
IUCN (2009). The World Conservation Union/International Union for Conservation of
Nature and Natural Resources Red List. http://www.redlist.org, acessado 18 de
junho de 2009.
Karl SA & Bowen BW (1999). Evolutionary significant units versus geopolitical
taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia).
Conservation Biology, 13, 990-999.
Lahanas PN, Bjorndal KA, Bolten AB et al. (1998). Genetic composition of a green turtle
(Chelonia mydas) feeding ground population: evidence for multiple origins. Marine
Biology, 130, 345-352.
Lee PLM & Hays GC (2004). Polyandry in a marine turtle: females make the best of a
bad job. Proceedings of the National Academy of Sciences, USA, 101, 6530-6535.
21
Lee PM, Luschi P, Hays GC (2007). Detecting female precise natal philopatry in green
turtles using assignment methods. Molecular Ecology, 16, 61-74.
Limpus CJ (1993). The green turtle, Chelonia mydas, in Queensland: breeding males in
the Southern Great Barrier Reef. Wildlife Research, 20, 513-523.
Limpus CJ, 1995. Global overview of the status of marine turtles: a 1995 viewpoint. In:
Biology and Conservation of Sea Turtles (ed. Bjorndal, K.A.), pp. 605-609.
Smithsonian Institution Press, Washington D.C.
Luke K, Horrocks JA, LeRoux RA, Dutton PH (2004). Origins of green turtle (Chelonia
mydas) feeding aggregations around Barbados, West Indies. Marine Biology, 144,
799-805.
Luschi P, Hays GC, Del Seppia C, Marsh R, Papi F (1998). The navigational feats of
green sea turtles migrating from Ascension Island investigated by satellite telemetry.
Proceedings of the Royal Society of London B, 265, 2279-2284.
Luschi P, Hays GC, Papi F (2003a). A review of long-distance movements by marine
turtles, and the possible role of ocean currents. Oikos, 103, 293-302.
Luschi P, Sale A, Mencacci R, Hughes GR, Lutjeharms JRE, Papi F (2003b). Current
transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.
Proceedings of the Royal Society of London B, 270, S129-S132.
Meylan AB, Meylan PA (1999). Introduction to the evolution, life history, and biology of
sea turtles. In: Research and Management Techniques for the Conservation of Sea
Turtles (eds. Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M), pp. 3-5.
IUCN/SSC Marine Turtle Specialist Group Publication No. 4.
Miller JD (1997). Reproduction in sea turtles. In: The Biology of Sea Turtles (eds. Lutz
PL, Musick JA), pp. 51-81. CRC Press, Boca Raton, Florida.
22
Moritz C (1994). Applications of mitochondrial DNA analysis on conservation: a critical
review. Molecular Ecology, 3, 401-411.
Musick JA & Limpus CJ (1997). Habitat utilization and migration in juvenile sea turtles.
In: The Biology of Sea Turtles (eds. Lutz PL, Musick JA), CRC Press, Boca Raton,
Florida, 137-163.
Naro-Maciel E, Becker JH, Lima EHSM, Marcovaldi MA, Desalle R (2007). Testing
dispersal hypotheses in foraging green sea turtles (Chelonia mydas) of Brazil.
Journal of Heredity, 98, 29-39.
Pella J, Masuda M (2001). Bayesian methods for analysis of stock mixtures from genetic
characters. Fishery Bulletin, 9, 151-167.
Pritchard PCH & Mortimer JA (1995). Taxonomía, morforlogía externa e identificación
de las especies. In: Estratégia Mundial para la Conservación de las Tortugas
Marinas (eds. Eckert KL, Bjorndal KA, Abreu Grobois FA, Donnelly M), pp 23-41.
Publicación nº 4 de lo Grupo Especialista em Tortugas Marinas, UICN/CSE.
Reisser JR, Proietti MC, Kinas PG, Sazima I (2008). Photographic identification of sea
turtles: method description and validation, with an estimation of tag loss.
Endangered Species Research, 5, 73-82.
Roberts MA Schwartz TS, Karl SA (2004). Global population genetic structure and male-
mediated gene flow in the green sea turtle (Chelonia mydas): analysis of
microsatellite loci. Genetics 166:1857.
Stramma L, England M (1999). On the water masses and mean circulation of the South
Atlantic Ocean. Journal of Geophysical Research, 104(C9), 20,863-20,883.
Weir BS (1996). Intraspecific differentiation. In: Molecular Systematics, 2
nd
ed. (eds.
Hillis DM, Moritz C, Mable BK), pp. 385405. Sinauer, Sunderland, MA.
23
Witham R (1980). The “lost year” question in young sea turtles. American Zoologist, 20,
525-530.
VI) FIGURAS
Figura 1. Morfologia externa das tartarugas-verdes (Chelonia mydas), com
destaque para as características que as diferenciam como espécie. Adaptado de
Pritcher & Mortimer 1995.
24
Figura 2. Ciclo de vida geral das tartarugas-verdes. Adaptado de Miller 1997.
25
Figura 3. Sistema de correntes superficiais do Oceano Atlântico sul. Retirado de
Stramma & England 1999.
Figura 4. Localização geográfica da Ilha do Arvoredo (esquerda) e Praia do
Cassino (direita).
26
VII) ANEXOS
Anexo 1. Protocolo de extração do DNA (adaptado de Hillis et al. 1996)
1- Retirar porção branca do tecido animal (aproximadamente 0,5 g) e depositar em
tubo eppendorf para hidratação com água destilada, durante 10 minutos;
2- Descartar água e adicionar 500 µl de solução tampão (composição abaixo),
macerando o tecido para início da lise celular;
3- Adicionar 20 µl de proteinase K e levar a estufa (56°C), para catálise da digestão
protéica celular. Deixar por 4 horas;
4- Para início da separação entre porção orgânica (contendo moléculas indesejadas
como proteínas, lipídeos, etc.) e hidrossolúvel (contendo DNA), adicionar 250µl
fenol (Buffer Saturated Phenol Invitrogen) e 250µl clorofórmio/isoamil (24:1);
5- Agitar solução obtida à mão por quinze minutos;
6- Centrifugar por quinze minutos a 12000 rotações por minuto (RPM) para
formação de duas fases distintas: a porção orgânica, mais densa, compondo a
fase inferior; e a hidrossolúvel, formando um sobrenadante, com fina película
entre elas;
7- Retirar sobrenadante era então retirado (com cuidado para não romper a película
entre fases) em três vezes de 150µl e depositar em novo eppendorf;
8- Novamente adicionar solução clorofórmio/isoamil (24:1, 500µl) e agitar
manualmente por dez minutos;
9- Centrifugar por dez minutos a 12000 RPM para novamente formar duas fases;
10- Retirar a fase superior retirada em duas vezes de 150µl e depositar em
eppendorf vazio;
27
11- Depositar juntamente ao sobrenadante 250µl acetato de amônio (7,5M) e 1000µl
etanol absoluto gelado;
12- Colocar a solução em freezer a -20°C por 30 minutos (ou overnight) para
precipitação do DNA;
13- Retirar a amostra do freezer e submetê-la a centrifugação (15000 RPM por vinte
minutos) para formação do pellet de DNA;
14- Descartar a porção aquosa, remanescendo somente o pellet no fundo tubo;
15- Lavar o pellet com 500µl de etanol 70% e centrifugar por cinco minutos;
16- Descartar o álcool, com cuidado para não remover o pellet, e deixar amostra
aberta para evaporação total do etanol;
17- Após seco, ressuspender o pellet em 50 µl TE (Tris-EDTA, composição abaixo);
18- Incubar a 37°C por trinta minutos para ação da RNAse presente no TE;
19- Etiquetar a amostra contendo o DNA conservado em TE e manter em freezer a -
20°C para futura utilização;
20- Submeter a amostra a eletroforese em gel de agarose 1% para verificação de
presença e concentração do DNA.
Obs. Todas as extrações devem ser efetuadas utilizando-se material autoclavado e
descartável, e a manipulação realizada com jaleco laboratorial e luvas de látex para
procedimentos. Substâncias tóxicas devem ser manipuladas em capela, utilizando-se
máscara e óculos protetores.
28
VIII) APÊNDICE: MANUSCRITO: formatado para o periódico Molecular Ecology.
Green turtle (Chelonia mydas) mixed stocks in Southern Brazil, as revealed by mtDNA
haplotypes and ocean currents.
Maíra Carneiro Proietti
1,2
; Júlia Wiener Reisser
1,2
; Paula Lara-Ruiz
3
; Rodrigo Kerr
4
;
Danielle Monteiro
5
; Luis Fernando Marins
6
and Eduardo Resende Secchi
2,7
1
Programa de Pós-graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade
Federal do Rio Grande, Avenida Itália km8, CEP 96201-900, Rio Grande, RS, Brazil;
mairapr[email protected], jroceano@hotmail.com
2
Grupo de pesquisa Ecologia e Conservação da Megafauna Marinha EcoMega
3
Grupo de Identificación, Unidad de Especies Silvestres, Instituto de Genética, Universidad Nacional de
Colombia. Ciudad Universitaria, Bogotá, Colombia; paula_lara@yahoo.com
4
Laboratório de Estudos dos Oceanos e Clima, Instituto de Oceanografia, Universidade Federal do Rio
Grande, Avenida Itália km8, CEP 96201-900, Rio Grande, RS, Brazil;rodrigoke[email protected]
5
Núcleo de Educação e Monitoramento Ambiental (NEMA), Rua Maria Araújo 450, CEP 96207-480, Rio
Grande, RS, Brazil; danismonteir[email protected]
6
Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio
Grande, Avenida Itália km8, CEP 96201-900, Rio Grande, RS, Brazil; dqmluf@furg.br
7
Laboratório de Tartarugas e Mamíferos Marinhos, Instituto de Oceanografia, Universidade Federal do
Rio Grande, Avenida Itália km8, CEP 96201-900, Rio Grande, RS, Brazil; edu.secchi@furg.br
Keywords: green turtle, foraging grounds, Southwestern Atlantic, mtDNA, mixed stock analysis,
surface drifters
Short running title: Green turtle mixed stocks in Southern Brazil.
29
Abstract
Genetic analyses have the potential to elucidate many aspects of juvenile green turtle
(Chelonia mydas) biology and ecology, such as foraging ground composition, hatchling dispersal
and migrations. To evaluate genetic structure and assess natal origins of mixed stocks in Southern
Brazil, we analyzed mitochondrial DNA control region sequences from Arvoredo Island (n =
115) and Cassino Beach (n = 101), comparing them to other mixed stocks and examining their
composition in terms of stocks (nesting areas) in the Atlantic Ocean. In order to compare natal
origin estimates (obtained through Bayesian Mixed Stock Analysis) with oceanographic data and
develop novel informative priors for this analysis, surface drifter trajectories in the Atlantic
Ocean were analyzed. Each study area presented twelve haplotypes, of which ten were shared at
extremely similar frequencies. Haplotypes CM-A8 and CM-A5 were most frequent, representing
respectively around 60% and 20% of samples from both areas, and remaining haplotypes
presented frequencies lower than 5%. Genetic structuring was not observed between the study
areas. Arvoredo Island and Cassino Beach also did not present structuring in relation to Ubatuba
and Rocas/Noronha, in the southwestern Atlantic, but were structured when compared to farther
feeding areas in Brazil, the Caribbean, and North America. Analysis of drifter trajectories
revealed that drifters from Ascension and Trindade Islands are dominant at the eastern coast of
Brazil. Informative priors developed for Mixed Stock Analysis did not greatly alter stock
estimates; we do, however, consider them to be ecologically more realistic. Ascension, Aves and
Trindade Islands, as well as Gulf of Guinea, were the main contributors to the Southern Brazil
mixed stocks. However, rookeries require adequate genetic characterization in order to provide
accurate estimated of natal origins, an analysis with important implications for the survival of this
species, since the reduction of impacts on mixed stocks along the coast will ultimately lead to the
conservation of reproductive stocks frequently thousands of kilometers away.
30
Introduction
The globally-distributed and endangered green turtle (Chelonia mydas) occupies various
ecological niches throughout its life cycle (Meylan & Meylan 1999, Bolten 2003, Godley 2003).
A general life pattern encompasses a juvenile oceanic phase, in which it is believed that young
turtles drift with ocean currents, a subsequent neritic phase, when animals reach a certain size and
recruit to coastal foraging grounds, and large-scale migrations between foraging and breeding
areas upon sexual maturity (Bolten 2003). Movements between foraging grounds, often long-
range, are also observed (Godley et al. 2003, Reisser et al. 2008). The complexity of this life
cycle and the large geographical and temporal distances involved make direct studies of these
animals difficult. Indirect approaches through molecular analyses can help elucidate many
aspects of their biology and behavior (Bowen 1995, Bowen & Karl 1997, Bowen & Karl 2007,
Avise 2007), such as paternity, mating systems, population structure, inter-rookery gene flow,
phylogeography, systematic, natal origins and homing Avise (2007).
Natal homing, in which female green turtles return to their birth site to reproduce, was
first hypothesized by Carr (1967), based on the observation that female green turtles are
phylopatric, that is, they return to nesting sites (rookeries) at varying degrees of precision
throughout subsequent nesting cycles (Carr 1967, Miller 1997, Formia et al. 2007, Lee et al.
2007). Despite difficult to test, this hypothesis has been revealed plausible through genetic
studies, which have demonstrated that mtDNA structuring occurs between rookeries, but overlap
in foraging areas (Allard et al. 2004, Bass et al. 2006, Bowen & Karl 2007). Based on the
assumption that such structuring exists, a Bayesian approach known as Mixed Stock Analysis
(MSA) has been increasingly applied for determining contributions of genetically structured
rookeries (stocks) to mixed sea turtle foraging aggregations (mixed stocks), employing
differences in relative frequency of genetic characters (especially mtDNA) between rookeries to
31
link feeding populations to their sources (Pella & Masuda 2001). This analysis frequently
presents high standard deviations and is based on the assumption that all sources have been
adequately sampled. This is often not the case, and many areas still present insufficient or even
lack genetic characterization (Avise 2007). Despite these potential biases, MSA can be useful for
quantitative estimates and qualitative descriptions of green turtle origins in foraging habitats, as
long as it is not over interpreted (Bowen & Karl 2007).
The relevance of identifying natal origins of mixed stocks for conservation lies in the fact
that rookeries, despite being generally independent reproductively, are linked at the non-nesting
phases of the female green turtle life cycle (Avise 2007). Therefore, impacts at foraging grounds
and migratory routes may affect many breeding stocks at different levels. Understanding these
origins, as well as determining possible migratory routes, is crucial for the elaboration of
management and conservation plans (Moritz 1994, Avise 2007, Bowen & Karl 2007).
Nevertheless, caution is needed when using MSA estimates to understand stock contribution in
feeding grounds, and when possible, compared and associated with other data. The Bayesian
approach to MSA allows the incorporation of informative priors for improving estimates, and
ecological data such as rookery population size and distance from source to mixture are
commonly employed based on the assumption that foraging ground composition may be related
to these factors. Hatchlings are considered by most authors as “pelagic”, dispersing almost
passively with ocean currents until reaching a certain size (Bolten 2003). Therefore,
oceanographic data such as surface drifter trajectories can be viewed as an indicative of early life
stage dispersal routes, and have potential to be incorporated as ecologically-informative priors in
MSA.
Examples of green turtle MSAs employing mtDNA data from foraging areas in the
Atlantic and Pacific Oceans can be seen in Bass et al. (2006), Bolker et al. (2007), Bjorndal &
32
Bolten (2008), and Dutton et al. (2008). There are four green turtle rookeries in the central and
western South Atlantic, listed in decreasing number of nesting females: Ascension Island,
Trindade Island, Rocas Atoll and Fernando de Noronha. Origins of Brazilian juvenile green
turtles have been described though mtDNA data using MSA for Rocas Atoll, Fernando de
Noronha, Ubatuba and Almofala (Bjorndal et al. 2006, Naro-Maciel et al. 2007), with the
consistent observation of prevailing contributions from Ascension Island, followed by smaller
(yet significant) contributions from Trindade and almost null contribution from Rocas Atoll and
Fernando de Noronha. Naro-Maciel et al. (2007) conclude that this pattern of contributions is
shaped by the prevailing ocean currents flowing near rookeries.
The role of ocean currents in sea turtle dispersal and migration has been thoroughly
discussed (see Luschi et al. 2003a). As cited previously, hatchlings are thought to rely on oceanic
currents for dispersal until recruiting to their coastal foraging zone, and data obtained through
satellite telemetry indicate that sea turtle movements and migrations are frequently shaped by
ocean currents (Luschi et al. 1998, 2003a, 2003b; Craig et al. 2004). Parallels between MSA and
ocean currents have been made for North Atlantic mixed stocks by Luke et al. (2004) and Bass et
al. (2006), in which it is assumed that the compositions of these foraging aggregations depend on
local major and minor current systems. For Brazil, it has been suggested that Ascension Island
hatchlings drift with major Equatorial currents towards South America, while hatchlings from
other rookeries may drift away with prevailing currents (Naro-Maciel et al. 2007). The large-
scale upper-layer (< 100 m) general circulation pattern which could influence sea turtle dispersal
in the South Atlantic, affecting the composition of Brazilian foraging areas, is characterized by a
dominating anticyclonic subtropical gyre. The westerly-bound Southern Equatorial Current
bifurcates at the South American continental shelf at approximately 10° S originating the
northern-bound North Brazil Current and the southern-bound Brazil Current (BC). The BC
33
travels southward alongside the coast until reaching the Subtropical Convergence Zone
(approximately 33-38º S), where it encounters the Falkland Current and separates from the coast
forming the eastern-bound South Atlantic Current (SAC). When it approaches the African
continent, part of the SAC flows to the Indian Ocean and part forms the northern-bound Benguela
Current, which in turn will form the CSE and complete the (Stramma & England 1999).
Considering that genetic studies potentially elucidate many aspects of green sea turtle
biology and ecology, including foraging ground composition, hatchling dispersal and migrations,
this study aimed at: a) determining genetic differences amongst southern Brazil foraging areas of
Arvoredo Island (AI) and Cassino Beach (CB) and other mixed aggregations in the Atlantic; b)
estimating contributions of different rookeries to the AI and CB mixed stocks; c) developing
novel informative priors for Bayesian Mixed Stock Analysis; d) assessing the effect of
incorporating different ecological priors in Bayesian Mixed Stock Analysis; and e) determining
possible dispersal patterns from rookeries to the studied foraging areas.
Materials and Methods
Tissue sampling
Samples were collected at Arvoredo Island (27º51‟S 48º26‟W), in Santa Catarina state (n
= 66), and Cassino Beach (from 31°21‟S 51°02‟W to 33°44‟S 53°22‟W), Rio Grande do Sul state
(n = 101). Arvoredo Island lies within the Arvoredo Marine Biological Reserve and presents
rocky shores with high diversity of benthic organisms, and frequent occurrences of green turtles
(Reisser et al. 2008). Cassino Beach is an extensive and continuous sandy beach composed of
predominantly unconsolidated substrate and few substantial hard substrates. Green turtles are
frequently observed stranded at this beach (Bugoni et al. 2001), but its exact role in the life cycles
of these animals is unknown. At Arvoredo Island, skin samples were collected using 5 mm
34
disposable biopsy punches from the flippers of individuals hand-captured through free and
SCUBA dives in expeditions carried out from July 2005 to April 2008. At Cassino Beach,
samples were collected using disposable scalpels from stranded live animals or carcasses found
washed ashore during beach surveys conducted from January 2005 to May 2007. All samples
were conserved in absolute ethanol and maintained at -20 ºC until DNA extraction. Sea turtle
sizes ranged from 33.5-83 cm (mean 49.2 cm) and 29-71.5 cm (mean 40.1 cm) curved carapace
length (CCC), respectively for Arvoredo Island and Cassino Beach.
Laboratorial procedures
Tissue samples were macerated employing conical-shaped plastic grinders in a Tris-HCl
lysis buffer containing Proteinase K, and submitted to digestion in an oven at 37 °C until
complete digestion (from five to 24 hours). DNA was extracted through DNAExtraction Kits
(Tissue Bioamerica Inc.), or standard phenol:chlorophorm method with precipitation in
absolute ethanol (adapted from Hillis et al. 1996). Approximately 500 bp-fragments of the
mitochondrial DNA control region were amplified via polymerase chain reaction (PCR), using
primers LTCM1 and HDCM1 (Allard et al. 1994) or LTCM2 and HDCM2 (longer versions of
the prior primers, designed by Lahanas et al. 1994). PCR conditions for the first primers were as
follows: initial denaturation of 1‟ at 94 °C; 35 cycles of 30‟‟ at 94 °C, 1‟ at 50 °C and 1‟ at 72 °C;
and a final 5 extension at 72°C. For the latter primers, applied conditions were: initial
denaturation of 1‟ at 94 °C; 35 cycles of 45‟‟ at 94 °C, 30‟‟ at 55 °C and 45‟‟ at 72 °C; and a final
3‟ extension at 72°C. Illustra GFX purification kits (GE Healthcare, U.S.A.) were employed for
purification, and samples were sequenced in both directions using DYEnamic ET dye terminator
kit in a MegaBACE 500 DNA sequencer (GE Healthcare, U.S.A.).
Data analysis
mtDNA sequences
35
Sequences were aligned using software Clustal X 1.83 (Thompson et al. 1997), and
haplotypes (491 bp, according to previously-described haplotypes for Chelonia mydas) classified
according to the Archie Carr Center for Sea Turtle Research online genetic bank (Florida
University). Additional sequences for Arvoredo Island (n = 49, Proietti et al. in press) were
included in the analyses, totalizing 115 samples. Relationships among haplotypes were
demonstrated through a statistical parsimony network, constructed using TCS 1.3 software
(Clement et al. 2000). Exact tests of differentiation were conducted with Arlequin 3.11 (Excoffier
et al. 2005) in order to verify differences between the study areas and other previously-described
Atlantic foraging grounds, employing a Markov Chain Monte Carlo (MCMC) of 10000 steps
with 1000 dememorizations (“burn-in”). This software was also used to calculate pairwise Φ-
statistics for an Analysis of Molecular Variance (AMOVA), with 10000 permutations and using
the Tamura-Nei model of nucleotide substitution. The Brazilian foraging grounds included in
these analyses for comparative purposes were Ubatuba (SP), Almofala (CE) (Naro-Maciel et al.
2007), and Rocas Atoll (RN) and Fernando de Noronha (PE) (Bjorndal et al. 2006). The last two
were grouped into one unit for all analyses due to geographic proximity (c.a. 150 km) and small
sample sizes, as performed in Bjorndal et al. (2006), and will hereafter be referred to as
Rocas/Noronha. Nicaragua (Bass et al. 1998), Barbados (Luke et al. 2004), Bahamas (Lahanas et
al. 1998), Florida (Bass and Witzell 2000) and North Carolina (Bass et al. 2006), in the
Caribbean and North Atlantic, were also considered for comparison. Genetic structure results
were taken into consideration when defining certain aspects of analyses of surface drifter data
and Mixed Stock Analyses (see details below).
Surface drifter trajectories and natal origins
In order to compare MSA results with oceanographic data and develop two novel
informative priors for MSA analysis, surface drifter data available for the Atlantic and
36
Mediterranean (5842 drifters, from February 1979 to January 2009), was downloaded from
NOAA‟s Global Drifter Program (http://www.aoml.noaa.gov/envids/gld). In order to develop
these new priors, the information provided by drifters was summarized as the number of drifters
which pass through the nesting areas considered in the natal origin analyses (n
j
, j = 1, …, 11) and
reach a target area (y
j
) consisting in the eastern Brazilian coast, from the southernmost limit to the
northeastern corner. The northern portion of the country was not included due to evidence of
genetic structuring between this area and the coast of East Brazil.
The nesting areas considered as possible sources (AF
j
) correspond to all rookeries in the
Atlantic and Mediterranean with mtDNA description, as reported by Encalada et al. (1996),
Kaska (2000), Bjorndal et al. (2005, 2006), Formia et al. (2006, 2007): (1) Trindade Island, (2)
Rocas/Noronha (Brazil), (3) Ascension Island (United Kingdom), (4) Poilão (Guiné Bissau), (5)
Bioko Island (Equatorial Guinea), São Tomé and Príncipe (Democratic Republic of São Tomé
and Príncipe), (6) Aves Island (Venezuela), (7) Matapica (Surinam), (8) Quintana Roo (Mexico),
(9) Tortuguero (Costa Rica), (10) Florida (United States) and (11) Lara Bay (Cyprus). Bioko, São
Tomé and Principe were grouped into one area due to proximity and lack of genetic
differentiation, and hereafter will be referred to as Gulf of Guinea, following Bolker et al. (2007).
4°x4° areas were delineated around all these considered rookeries, and in the case of non-insular
rookeries, the area was designed in order to incorporate the largest possible oceanic area.
In order to estimate the probability (
) that a drifter passing through an AF
j
will reach
the target area, a uniform prior between zero and one was used for
(uninformative prior) in a
binomial sampling model:
jj
j
j
j
j
j
jjjjj
yn
yn
y
nyBinyp
1,
(1)
37
Applying Bayes Theorem:
jjjjj yppy
to equation 1, we obtain a
posterior density following a Beta distribution:
1,1~ jjjjj ynyBetay
(2)
By estimating posterior values of the Beta probability distribution parameters for each
source area, random values following posterior distributions of
can be generated. Here, 2500
values were generated following the distribution shown in Equation 2. Since we are interested in
the probability
ja
that a new success (that is, a drifter reaching the Brazilian coast) is from
jAF
,
the posterior distribution of the variable must be considered, corresponding to:
11
1
l
j
j
j
ja
(3)
Bayes estimates under quadratic loss (average of the 2500 values generated for each
posterior distribution) were chosen for point estimates of
ja
. When considering that
2
1
ˆ
j
j
j
n
y
,
equation 3 is modified to:
i
j
ja
ˆ
ˆ
(4)
These average values were directly used as an informative prior in the MSA. Additionally,
another prior was developed and used in the MSA, by using the average values cited above and
the number of females of each rookery (
), through the equation:
ii
jj
j
N
N
a
ˆ
(5)
Probable natal origins were determined employing mtDNA data from the study areas and
all rookeries with mtDNA description (see above), through Bayesian Mixed Stock Analysis
38
(MSA) implemented with software Bayes (Pella & Masuda 2001). Arvoredo Island and Cassino
Beach were grouped into one area due to geographic proximity and genetic similarity, and four
MSAs were performed considering uninformative priors (MSA
1
) and priors weighed according
to: posterior probabilities calculated from surface drifter data (MSA
2
equation 3); number of
females/year of each source (MSA
3
); and a combination of the two previous informative priors
(MSA
4
equation 5). Source populations considered as possible contributors to the study areas
correspond to the same area used in surface drifter analysis. One MCMC was implemented for
each rookery (totalizing 11 chains) in each analysis, with chain lengths varying from 10000
25000, according to the Gelman-Rubin convergence factor (which was maintained under 1.2, and
in most cases presented values of approximately 1.0, indicating convergence) and one-half chain
length discarded as “burn-in” steps (as described by Pella & Masuda 2001).
Results
Haplotype frequencies and genetic diversity
Each study area presented 12 previously-described haplotypes, of which ten were shared
(CM-A5, CM-A6, CM-A8, CM-A9, CM-A10, CM-A23, CM-A24, CM-A32, CM-A42 and CM-
A45) and four were not shared (CM-A3 and CM-A39, present only at AI, and CM-A25 and CM-
A36, present only at CB) (Table 1). Both areas were characterized by a high predominance of
haplotypes CM-A8 (61% for both areas) and CM-A5 (22% and 20% for AI and CB,
respectively). All remaining haplotypes were present in frequencies lower than 5%. Rare
haplotypes were observed, such as CM-A10, CM-A23 and CM-A24, encountered only at
Ascension and Trindade islands; CM-A25 and CM-A32 only at Rocas Atoll and Ascension
Island; CM-A39 and CM-A45 at Ascension Island; and CM-A42 in only two individuals at the
Almofala foraging ground in northeast Brazil, with no observations in rookeries. The number of
39
polymorphic sites defining these haplotypes was 19 for AI and CB, with a maximum of 12
variations distinguishing them (Figure 1).
Haplotype (h) and nucleotide (π) diversities of AI (h = 0.5831 ± 0.0451; π = 0.00246 ±
0.00176) and CB (h = 0.5857 ± 0.0501 and π = 0.00251 ± 0.00178), and the averaged diversities
of all compared foraging aggregations (h = 0.5410; π = 0.0045), were similar, as shown in Table
2.
Genetic differentiation
Exact test of differentiation and AMOVA revealed an overall structuring among foraging
areas (p < 0.001 for both analyses); however, genetic structuring was non-significant between AI
and CB, with a slightly negative Φ
ST
value (Φ
ST
= -0.0066, p > 0.05), indicating that the actual
value is very small (Weir 1996). Both analyses revealed that AI and CB are genetically different
from most areas (Almofala, Nicaragua, Barbados, North Carolina, Florida and Bahamas, p <
0.05), but showed no difference in relation to Ubatuba and Rocas/Noronha (p > 0.05), both
located in the Southwestern Atlantic.
Surface drifter trajectories and natal origins
Drifters coming from Ascension and Trindade Islands are dominant at the target area, as
clearly shown in Figure 2, which illustrates the trajectories of all surface drifters which passed
through the eleven 4°x4° areas (all rookeries considered in the MSAs). Table 3, which lists the
total number of drifters which passed through each area, the number of these that reached the
target area, and the point estimates of for each rookery, shows that only Ascension, Trindade,
Rocas/Noronha and Gulf of Guinea supplied drifters to the target area. The first two areas
presented
ja
of around 40%, while Rocas/Noronha and Gulf of Guinea presented
ja
of near 2%
and slightly over 5%, respectively. Although Costa Rica and Guinea Bissau exhibited posterior
probabilities of over 2%, they are not considered relevant due to the fact that this estimate is
40
simply a result of the small number of drifters passing through the areas. The remaining rookeries
presented probabilities lower than 1%.
All MSAs for Arvoredo Island and Cassino Beach indicate that the main contributors to
the southern Brazil foraging areas were Ascension, Aves and Trindade Islands (Figure 3).
Ascension Island consistently presented the largest contributions, ranging from 53.3 to 66.5% in
the four performed MSAs, while Aves and Trindade Islands exhibited contributions that ranged
from 21.6 to 22% and 7.6 to 17.7%, respectively. Remaining stocks presented low contributions
in all MSAs (less than 1% in a general manner), with the exception of the Gulf of Guinea, with
estimated contributions from 2.1 to 7.3%.
MSA
2
(which used surface drifter data as ecological information) slightly increased
Ascension Island contribution estimates when compared to the uninformative MSA
1
, while
MSA
3
(prior weighing rookery population size) and MSA
4
(combination of both ecological
priors) increased estimates in slightly over 12% for the former and 6% for the latter analysis.
Contributions from Trindade Island increased to 17.7% in MSA
2
, while MSA
3
decreased this
contribution to slightly less than 8%. Gulf of Guinea‟s contributions in MSA
1
was relatively high
(around 7%), but decreased to 5.2% in MSA
2
, and when inserting the ecological variable rookery
size (MSA
3
) and the combination surface drifters/rookery size (MSA
4
), contribution from this
stock dropped to 2.1%. Of the largest contributors, Aves Island was the least variable throughout
MSAs, varying less than 1%.
Discussion
Haplotype frequencies of Arvoredo Island and Cassino Beach were similar to other
Atlantic rookeries and foraging aggregations: high CM-A8 frequency, consistent with the
suggestion that this haplotype is the closest relative to an ancestral haplotype in the Atlantic
basin, followed by a high occurrence of CM-A5, an extremely common haplotype encountered in
41
Caribbean rookeries (Bjorndal et al. 2005, 2006; Formia et al. 2006, 2007; Naro-Maciel et al.
2007), and low frequencies of rarer haplotypes. Increasing sample size did not significantly
change the proportion of haplotypes CM-A8 and CM-A5 or the diversity indexes found by
Proietti et al. (in press) at Arvoredo Island. The detection of rarer haplotypes, however, increased.
High haplotype and low nucleotide diversity indexes for both study areas followed the general
pattern found at other green turtle foraging grounds due to the mixed characteristic of these areas
and small variations between haplotypes, respectively (Bass et al. 2006; Bjorndal et al. 2006;
Naro-Maciel et al. 2007).
Arvoredo Island and Cassino Beach were extremely similar in terms of haplotype
diversity and frequency, and were not significantly different from other foraging grounds in the
southwestern Atlantic (Ubatuba and Rocas/Noronha). A significant structuring, however, seems
to occur in relation to Almofala, a more distant feeding area located in northeast Brazil. This area
presents larger frequencies of Caribbean haplotypes, explaining such differentiation, as the
Caribbean region presents elevated mtDNA structuring within the Atlantic basin (Bass et al.
2006). Juvenile sea turtles may perform coastal migrations, sometimes seasonal, transiting
between foraging areas according to different factors (such as variations in current intensity,
water temperature, and food availability (Musick & Limpus 1996, Bass et al. 2006). Avens &
Lohmann (2004) studied seasonal movements of green turtles in North Carolina, and reported
that animals swam in opposite directions according to the season: northwards in the summer and
southwards in the autumn. Green turtles tagged in Uruguay have been recaptured in Brazil and
vice-versa, suggesting that some juveniles perform seasonal movements, going to lower latitudes
during colder periods and to higher latitudes during warmer seasons (Lopéz-Mendilaharsu et al.
2006). The possibility of inter-annual movements, or of even longer intervals, cannot however be
discarded. Souza & Robinson (2004) demonstrated through Langrangian measurements and
42
analysis of Sea Surface Temperature images that the intrusion of cold waters transported by a
coastal current is apparently a regular winter phenomenon occurring on the Brazilian shelf, at
latitudes up to around 25° S. This intrusion was so consistent that these authors named it the
“Brazilian Coastal Current”, and could favor coastal movements from Uruguay to Brazil during
cold periods. The Brazil Current, on the other hand, could facilitate opposite displacement
patterns. Musick & Limpus (1996) speculated that juveniles at temperate zones perform these
seasonal movements in order to seek warmer waters and avoid cold stunning. A four-year study
performed at Arvoredo Island revealed moderate site fidelity of immature green turtle site
fidelity; however, one turtle tagged at the island was found six months later stranded on a beach
in the state of São Paulo, over 600 km away (Reisser et al. 2008). For Cassino Beach, evidence of
residency is not available, and it is possible that some animals are in fact from distant areas and
simply pass through or perish, drift and strand on the over 350 km stretch of sandy beach. This
indicates that the area may be not only a foraging ground, but also a migratory corridor for this
species. Observations of juvenile sea turtle coastal movements have demonstrated that the genetic
similarity between proximal coastal feeding areas is in accordance with the movements
performed by these animals (Marcovaldi et al. 2000).
Surface drifter trajectories presented in Figure 2 clearly reveal that Ascension and
Trindade Islands, and at a lesser extent Gulf of Guinea and Rocas/Noronha, present favorable
conditions for conducting drifters to the eastern Brazilian coast. As highlighted before, ocean
currents are considered by most authors to influence sea turtle dispersal and migration, but direct
evaluations have been performed only for post-pelagic animals. Craig et al. (2004) compared the
post-nesting migration routes of female green turtles satellite-tagged while nesting at Rose Atoll
(Pacific Ocean) with surface drifter data. These authors found that, even though their means of
navigation were not investigated, the migration routes undergone by the females closely
43
paralleled surface ocean currents. Luschi et al. (1998) verified relationship between post-nesting
movements of female green turtles satellite-tagged at Ascension Island and prevailing ocean
currents, by employing a general circulation model (global isopycnic model). They noted that the
turtles initially followed directions highly coincident with the prevailing current at the given
period. For satellite-tagged female leatherback turtles, post-nesting movements were monitored
and paralleled to surface drifter data (surface current patterns) (Luschi et al. 2003b). Large
portions of the females‟ routes were strikingly similar to those of surface drifters tracked in the
same region, and the authors concluded that long-lasting oceanic movements of marine turtles
may be shaped by oceanic circulation patterns. Although such studies cannot be performed with
hatchling sea turtles due to their small size and evidence of a passive pelagic stage is mostly
indirect, it is reasonable to suspect that sea currents play an important role in the movements of
hatchlings and early juveniles of all sea turtle species (Luschi et al. 2003b).
As observed in the Brazilian sea turtle foraging grounds described by Naro-Maciel et al.
(2007) the main stock contributing to the studied areas was Ascension Island (Figure 3). Large
contributions from Ascension Island were also estimated by Bjorndal et al. (2006) when studying
the mtDNA of a small sample (n = 31) from the Rocas/Noronha mixed stock. For the Gulf of
Guinea foraging aggregation, Formia (2002) also found that the highest contributions were from
Ascension Island, but followed by almost equal contributions from rookeries located at the
Guinea area. Differently, MSA estimates of a foraging aggregation in North Carolina (Bass et al.
2006) did not reveal contribution from Ascension, being composed mainly of rookeries located in
the United States, Mexico and Costa Rica, which is in accordance with the marked mtDNA
structuring of the Caribbean region within the Atlantic Ocean. Aves Island was the second most
important contributor in MSAs for AI and CB, followed by Trindade Island. Such high
contribution from Aves Island (approximately 20% in most MSAs) was not observed for other
44
feeding areas in Brazil, which presented a maximum contribution of 18% for Almofala,
reasonable when considering that this area is located closer to the Aves rookery than to other
nesting sites. The low contributions from African and North-American rookeries are in
accordance with Naro-Maciel et al.‟s (2007) findings for Ubatuba and Almofala. These authors
detected a relatively high contribution (around 10%) only from Guinea Bissau to Ubatuba, but
this contribution was considered possibly flawed due to the fixed characteristic of this rookery for
haplotype CM-A8. Gulf of Guinea‟s contribution to the study areas, however, was noticeable in
MSA
1
and MSA
2
(7.2 and 5.3%, respectively), and relatively high in the remaining MSAs
(approximately 2%) when compared to other rookeries. Contributions from Cyprus were null or
almost so in all MSAs, in accordance with all other studies quoted above and with the hypothesis
that Mediterranean green turtles were recently separated from their relatives in the Atlantic Ocean
(Kaska 2000).
The link between Brazil and Ascension Island has long been disclosed by tagging and
telemetry studies of female green turtles (Meylan 1995; Luschi et al. 1998; Hays et al. 2002).
There is no evidence of movements between Aves Island (second largest contribution to southern
Brazil as estimated by MSA) and Brazilian foraging grounds, but other Caribbean rookeries have
been shown to be linked to North Brazil (Lima et al. 2008). Marcovaldi et al. (2000) reported
frequent recaptures along the Brazilian coast (from latitudes 03°45‟S to 20°08‟S) of female green
turtles tagged at Trindade Island, demonstrating that movements between this island and coastal
foraging grounds are common. Although green turtles tagged at Trindade have also been
recaptured in Western Africa (Marcovaldi et al. 2000), transatlantic movements between Brazil
and the west coast of Africa have not yet been confirmed by tagging programs or telemetry.
Tagging efforts however have demonstrated such movements for hawksbills (Bellini et al. 2000,
Grossman et al. 2007) and leatherbacks (Billes et al. 2006). Despite the scarcity of drifter data for
45
the Gulf of Guinea area, a certain tendency of buoy to drift towards the Western Atlantic can be
noted (Figure 2). Two possible explanations for the lack of evidence of a green turtle Brazil-
Africa link can be suggested: 1) green turtles born in the Atlantic coast of Africa rarely migrate to
Brazil for foraging, and vice-versa; and 2) the limited amount of studies at the African continent
has not yet revealed such migrations. In any one of these scenarios, further genetic and
demographic studies at the western coast of Africa are necessary for enlightenment of green turtle
dispersal in the Atlantic.
Despite the fact that the Ascension contribution is apparently disproportionately large
when compared to other rookeries, it could in fact be reasonable. As demonstrated by drifter
trajectories, surface currents favor dispersal from Ascension towards the Brazilian coast, which is
also observed for Trindade Island and Rocas/Noronha. Considering that contribution is
theoretically proportional to the population size of nesting females, it would be natural to expect
a larger contribution from Ascension Island, as this is the most populated of the South Atlantic
rookeries and the second largest in the Atlantic Ocean (approximately 3800 females nesting
annually, Broderick et al. 2006). Various authors have demonstrated that a West-Southwest flow
of the South Atlantic Equatorial Current is a common feature at the Ascension area (Luschi et al.
1998, Hays et al. 2002). Thus, it is reasonable to suggest that hatchlings arrive at the South
American coast by means of this favorable current.
Few drifters left the Rocas/Noronha area and moved southwards along the Brazilian coast
(Table 3); conditions are apparently favorable for drifting northward along the Brazilian coast, as
shown in Figure 2, probably due to the strong North Brazil Current. These rookeries together
present a small population of nesting females of approximately 100-150/year (Seminoff 2002),
which could also be a possible explanation for its low estimated contribution. Aves Island was
not shown by drifter data to be linked to Brazilian waters, but presented large contribution as
46
estimated by MSA. The high frequency (90%) of CM-A5 at this rookery and frequent occurrence
of this haplotype at AI and CB is a probable cause for such estimation, which should be
interpreted with caution. Despite presenting a relatively large nesting population (300-500
females nesting annually; Seminoff 2002), the number of analyzed samples is fairly low (n = 30),
and contribution could be overestimated. Haplotype CM-A5 is present at some other rookeries in
low frequencies (Mexico, Costa Rica and Gulf of Guinea), and composed 86% of the observed
haplotypes in a small sample (n = 15) from Surinam. Contributions from these areas however
were almost zero, and the reason why Aves presented such high contribution needs further
investigation. Trindade Island is the second largest rookery in the South Atlantic, with between
600-800 females/year over the last nesting seasons (Soares L, pers comm). It is also close to the
Brazilian coast, and clearly presents favorable ocean currents for arrival at the target area (see
Figure 2). Some factors may lead to a negative influence on the number of green turtles reaching
the coast. It is possible that at Trindade female fecundity and egg eclosion success is lower and
hatchling and small juvenile mortality due to predation and current transportation to low
temperature areas is higher than in other areas, lowering the likelihood of arrival. When
compared to other South Atlantic rookeries for example, Trindade is located at a relatively high
latitude, and in Figure 2 it can be noted that some buoys passing through Trindade drift to higher
latitudes, and consequently lower temperature, areas. Another possibility raised by Figure 2 is
that green turtles born at Trindade may arrive at the Brazilian coast at a size too small for
recruitment and drift with the South Atlantic Current to the African coast, or even be carried
directly from Trindade to West Africa, where they may recruit. Such factors require further
investigation in order to verify their relevance. In any case, we believe that Trindade‟s
contribution could be underestimated, and suggest additional genetic analysis of this rookery and
verification of mixed stock composition in southwest Africa, as well as the elaboration of
47
different statistical approaches to MSA. An example of a novel approach to the analysis of mixed
stock compositions is the „many-to-many MSA (Bolker et al. 2007), which has demonstrated
that incorporating multiple mixed stocks in the analysis might modify contribution estimates. For
northeastern Brazil, these authors reported that this analysis greatly altered results, increasing
estimates from Trindade Island and decreasing contributions from Ascension and Aves Islands.
As stated above, MSA may present wide confidence limits and some limitations. The available
mtDNA markers cannot precisely distinguish all rookeries, and interpretation of results must take
this into account by assuming regional origins as opposed to exact nesting beaches (Avise et al.
2007). Also, MSA assumes that all nesting areas have been sampled, when in fact many lack
genetic studies and many others present small sample sizes (see Table 1). The presence of
orphan” haplotypes, that is, haplotypes which have been encountered in foraging grounds but
not in nesting ground samples (Bolker et al. 2007), confirms this statement. The most commonly
employed software for MSA estimates, BAYES, requires removal of such “orphans”, which leads
to the exclusion of rare haplotypes, such as haplotype CM-42, encountered until today only at
Almofala and at Arvoredo Island and Cassino Beach.
One of the advantages of analyzing data in a Bayesian framework is the possibility of
incorporating previous knowledge as informative priors. Reproductive data can be extremely
useful ecological priors in MSA, altering estimates by providing the proportion of hatchlings that
each area contributes to sea (i.e., the larger the nesting population size, the higher the potential
contribution). Employing data such as number of hatchlings that effectively reach the ocean
(hatchling survival) could be useful, but unfortunately reproductive data collected at nesting areas
are not standardized. Due to the fact that the most commonly available data is the number of
nesting females per year, we acquiesced to adopt this information for representing the
reproductive population size. This information, however, is often biased. For example, Bjorndal
48
et al. (2006), Bolker et al. (2007) and Naro-Maciel et al. (2007) considered as 3000 the number of
females nesting annually at Trindade Island (according to Seminoff 2002), which is a highly
overestimated value. Therefore, it is important to standardize the collection of such data and
provide updated, reliable estimates of rookery size, in order to develop more realistic ecological
priors. Another frequently used ecological prior is distance from source to mixture, in the form of
great circle distances. These distances are simply a measure of the shortest geodesic route from
one point to the next, and do not represent actual travelled distances, especially when considering
ocean currents, with their meanders, eddies and circulation patterns. Naro-Maciel et al. (2007)
noted that this type of distance was not significantly related to contribution, and we suggest that
the surface drifter trajectories used in this work is probably more informative for MSA when
considering the life history traits of sea turtles.
Some caveats exist in considering surface drifter data as ecological information for green
turtles: surface buoys present 15 m drogues to measure mixed layer currents (Lumpkin & Pazos
2007) and therefore do not consider surface wind drag which could influence hatchling
movement; data were not limited to the hatching seasons of turtles, due to the large reduction in
number of available drifter data; and the life-span of a drifter (approximately 400 days, see
Lumpkin & Pazos 2007) is generally shorter than the pelagic phase of hatchlings. However, the
use of such data has the potential to provide a more thorough understanding of sea turtle dispersal
and the role of ocean currents in that dispersal, and greatly improve traditional distances inserted
as priors in MSA. We suggest that future MSA analyses further advance prior development,
modeling the afterlife of drifters and considering the effect of wind drag on surface currents, and
consequently, hatchling dispersal.
The insertion of ecological priors did not greatly alter MSA estimates (Figure 3). When
using rookery size (number of females/year) as an ecological prior for MSA of Rocas/Noronha,
49
Bjorndal et al. (2006) found a decrease in contributions from Ascension and Aves Islands and an
increase in contribution from Trindade. For Ubatuba and Almofala insertion of the same prior
increased contribution estimates from Ascension and Trindade Islands, while the Aves Island
contribution decreased (Naro Maciel et al. 2007). However, as mentioned above, these authors
overestimated the number of females nesting annually at Trindade, and therefore such alterations
in stock estimates are unreliable. Bass et al. (2006) reported noticeable alterations when
incorporating population size estimated in MSA of the North Carolina foraging area, and
concluded that such estimates are biologically more truthful than estimates obtained with
uninformative priors. In the present work, we believe that MSA
4
, which incorporated the
combination of different types of ecological information, is the ideal scenario for obtaining
realistic stock contribution estimates. Nonetheless, the combination of all priors performed in
MSA
4
resulted in estimates quite similar to the uninformative MSA.
Arvoredo Island and Cassino Beach were very similar in terms of green turtle mtDNA,
and were grouped for Mixed Stock Analysis. Despite being genetically indistinct units, we
suggest that different management strategies be adopted due to some differences in the
characteristics of green turtles occurring at the areas, as well as their use of the habitats. Mean
curved carapace size of sampled animals revealed that green turtles at AI and CB are at different
stages of their life cycles, with CB hosting smaller animals than AI. This is in accordance with
sizes registered by Bugoni et al. (2003) and Reisser et al. (2008), of respectively 37.7 cm and
50.1 cm for CB and AI. These different stages present different vulnerabilities and their survival
influences population growth rates in different manners, with larger juveniles, due to their higher
reproductive value, contributing more than small individuals (Crouse et al. 1987; Crouse et al.
1999). Also, these habitats may represent different roles in the life cycles of juvenile green
turtles. While at least short-term fidelity has been observed at Arvoredo Island, the role of
50
Cassino Beach is still unclear due to lack of mark-recapture or telemetry studies, and it is
possibly more important as a migratory corridor than a feeding area when compared to Arvoredo
Island, perhaps due to factors such as lower food availability and temperatures. Marine turtle
bycatch in fisheries is today one of the major obstacles for the recovery of populations reduced
by overexploitation and habitat degradation, and in Southern Brazil, it has been evidenced that
sea turtle mortality due to fishery interaction, as well as ingestion of human debris, is an issue of
concern (Bugoni et al. 2001, Domingo et al. 2006). Such impacts on the developmental stages of
green turtles prevent the fulfillment of their ecological role of reaching maturity and reproducing,
and the conservation of juveniles along the coast leads to the protection of rookeries which are
frequently thousands of kilometers away (Naro-Maciel et al. 2007). The highly migratory
behavior of green turtles, which may occupy the waters of many countries as demonstrated by
demographic and genetic studies, makes international cooperation essential for the conservation
of these animals. The identification of stock contributions to mixed aggregations, through MSA,
has important conservation implications, and if is to be seriously considered as a tool for the
adequate elaboration of conservation and management plans, it is necessary that nesting
populations be adequately described in terms of mtDNA, in order to provide complete and
accurate baseline genetic data for estimates of natal origins.
Acknowledgements
We greatly acknowledge Pata da Cobra Diving and the Brazilian Navy for logistic support
in expeditions, and all personnel involved in field work. We acknowledge Projeto Tamar-
ICMBIO for partnership, and Núcleo de Educação e Monitoramento Ambiental (NEMA) and
Centro de Recuperação de Animais Marinhos (CRAM) for samples from Cassino Beach (with
special thanks to Alice Leite). The authors also thank Liane Artico, Daniela Volcan, Ana
Studzinsky for generous laboratorial aid, and Sarah Vargas and Fabrício Santos, as well as the
51
Laboratório de Biodiversidade e Evolução Molecular (UFMG) staff for help and partnership in
sequencing. The authors have received financial support from the Conselho Nacional de Pesquisa
(CNPq Brazil), Rufford Small Grants (RSG UK) and The People‟s Trust for Endangered
Species (PTES UK).
52
References
Allard MW, Miyamoto MM, Bjorndal KA, Bolten AB, Bowen BW (1994). Support for natal
homing in green turtles from mitochondrial DNA sequences. Copeia, 1994(1), 34-41.
Avens L, Lohmann KJ (2004). Navigation and seasonal migratory orientation in juvenile sea
turtles. The Journal of Experimental Biology, 207, 1771-1778.
Avise JC (2007). Conservation genetics of marine turtles ten years later. In: Frontiers in
Wildlife Science: Linking Ecological Theory and Management Applications (eds. Hewitt D,
Fulbright T), pp. 295-314. CRC Press, Boca Raton, Florida.
Bass AL, Lagueux CJ, Bowen BW (1998). Origin of green turtles, Chelonia mydas, at „„Sleeping
Rocks‟‟ off the northeast coast of Nicaragua. Copeia, 1998(4), 1064-1069.
Bass AL, Witzell WN (2000). Demographic composition of immature green turtles (Chelonia
mydas) from the east central Florida coast: evidence from mtDNA markers. Herpetologica,
56, 357-367.
Bass AL, Epperly SP, Braun-Mcneill J (2006). Green Turtle (Chelonia mydas) foraging and
nesting aggregations in the Caribbean and Atlantic: impact of currents and behavior on
dispersal. Journal of Heredity, 97(4), 346-354.
Bellini C, Sanches TM, Formia A (2000). Hawksbill turtle tagged in Brazil captured in Gabon,
Africa. Marine Turtle Newsletter, 87,11-12.
Billes A, Fretey
J, Verhage B et al. (2006). First evidence of leatherback movement from Africa
to South America. Marine Turtle Newsletter, 111, 13-14.
Bjorndal KA, Bolten AB, Troeng S (2005). Population structure and genetic diversity in green
turtles nesting at Tortuguero, Costa Rica, based on mitochondrial DNA control region
sequences. Marine Biology, 147, 1449-1457.
53
Bjorndal KA, Bolten AB, Moreira L, Bellini C, Marcovaldi MA (2006). Population structure and
diversity of Brazilian green turtle rookeries based on mitochondrial DNA sequences.
Chelonian Conservation and Biology, 5, 262-268.
Bjorndal KA, Bolten AB (2008). Annual variation in source contributions to a mixed stock:
implications for quantifying connectivity. Molecular Ecology, 17, 2185-2193.
Bolker BM, Okuyama T, Bjorndal KA, Bolten AB (2007). Incorporating multiple mixed stocks
in mixed stock analysis: „many-to-many‟ analyses. Molecular Ecology, 16, 685-695.
Bolten A (2003). Variation in sea turtle life history patterns: neritic vs. oceanic developmental
stages. In: The Biology of Sea Turtles Volume II (eds. Lutz PL, Musick JA, Wyneken J),
pp. 243-257. CRC Press, Boca Raton, Florida.
Bowen BW (1995). Tracking marine turtles with genetic markers voyages of the ancient
mariners. BioScience, 45(8), 528-534.
Bowen BW, Karl SA (1997). Population genetics, phylogeography, and molecular evolution. In:
The Biology of Sea Turtles (eds. Lutz PL, Musick JA), pp. 29-50. CRC Press, Boca Raton,
Florida.
Bowen BW, Karl SA (2007). Population genetics and phylogeography of sea turtles. Molecular
Ecology, 16, 4886-4907.
Broderick AC, Frauenstein R, Glen F et al. (2006). Are green turtles globally endangered? Global
Ecology and Biogeography, 35, 21-26.
Bugoni L, Krause L, Petry MV (2001). Marine debris and human impacts on sea turtles in
Southern Brazil. Marine Pollution Bulletin, 42(12), 1330-1334.
Bugoni L, Krause L, Petry MV (2003). Diet of sea turtles in Southern Brazil. Chelonian
Conservation and Biology, 4(3), 15-18.
Carr AF (1967). So excellent a Fishe: a Natural History of Sea Turtles. Scribner, New York.
54
Clement M, Posada D, Crandall K (2000). TCS: a computer program to estimate gene
genealogies. Molecular Ecology, 9(10), 1657-1660.
Craig P, Parker D, Brainard R, Rice M, Balazs G. (2004). Migrations of green turtles in the
central South Pacific. Biological Conservation, 116, 433-438.
Crouse DT, Crowder LB, Caswell H (1987). A stage-based population model for loggerhead sea
turtles and implications for conservation. Ecology, 68(5), 1412-1423.
Crouse DT (1999). Population modeling and implications for Caribbean hawksbill sea turtle
management. Chelonian Conservation and Biology, 3(2), 185-188.
Domingo A, Bugoni L, Prosdocimi L et al. (2006). El impacto generado por las pesquerías en las
tortugas marinas em el Océano Atlántico sud occidental. 72 pp., WWF Programa Marino
para Latinoamérica y el Caribe, San José, Costa Rica.
Dutton PH, Balazs GH, LeRoux RA, Murakawa SKK, Zarate P, Martínez LA (2008).
Composition of Hawaiian green turtle foraging aggregations: mtDNA evidence for a
distinct regional population. Endangered Species Research, 5, 37-44.
Encalada SE, Lahanas PN, Bjorndal KA, Bolten AB, Miyamoto MM, Bowen BW (1996).
Phylogeography and population structure of the Atlantic and Mediterranean green turtle
Chelonia mydas: a mitochondrial DNA control region sequence assessment. Molecular
Ecology, 5, 473-483.
Excoffier L, Laval G, Schneider S (2005). Arlequin ver. 3.0: an integrated software package for
population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
Formia A (2002). Population and genetic structure of the green turtle (Chelonia mydas) in West
and Central Africa: implications for management and conservation. Ph.D. thesis, Cardiff
University (UK).
55
Formia A, Godley BJ, Dontaine J-F, Bruford MW (2006). Mitochondrial DNA diversity and
phylogeography of endangered green turtle (Chelonia mydas) populations in Africa.
Conservation Genetics, 7, 353369.
Formia A, Broderick AC, Glen F, Godley BJ, Hays GC, Bruford MW (2007). Genetic
composition of the Ascension Island green turtle rookery based on mitochondrial DNA:
implications for sampling and diversity. Endangered Species Research, 3, 145-158.
Godley BJ, Lima EHSM, Åkesson S et al. (2003). Movement patterns of green turtles in
Brazilian coastal waters described by satellite tracking and flipper tracking. Marine
Ecology Progress Series, 253, 271-288.
Grossman
A, Bellini C, Fallabrino
A et al. (2007). Second TAMAR-tagged hawksbill recaptured
in Corisco Bay, West Africa Marine Turtle Newsletter, 116, 26.
Hays GC, Broderick AC, Godley BJ et al. (2002). Biphasal long-distance migration in green
turtles. Animal Behavior 64, 895898.
Hillis DM, Mable BK, Larson A, Davis SK, Zimmer EA (1996). Nucleic acids IV: sequencing
and cloning. In: Molecular Systematics, 2
nd
edition (eds. Hillis DM, Moritz C, Mable BK),
pp. 321-381. Sunderland, MA: Sinauer Associates.
Kaska Y (2000). Genetic structure of Mediterranean sea turtle populations. Turk Journal of
Zoology, 24, 191-197.
Lahanas PN, Miyamoto MM, Bjorndal KA, Bolten AB (1994). Molecular evolution and
population genetics of Greater Caribbean green turtles (Chelonia mydas) as inferred from
mitochondrial DNA control region sequences. Genetica, 94, 57-67.
Lahanas PN, Bjorndal KA, Bolten AB et al. (1998). Genetic composition of a green turtle
(Chelonia mydas) feeding ground population: evidence for multiple origins. Marine
Biology, 130, 345-352.
56
Lee PM, Luschi P, Hays GC (2007). Detecting female precise natal philopatry in green turtles
using assignment methods. Molecular Ecology, 16, 61-74.
Lima EHSM, Melo MTD, Severo MM, Barata PCR (2008). Green Turtle tag recovery further
links Northern Brazil to the Caribbean region. Marine Turtle Newsletter 119, 14-15.
López-Mendilaharsu M, Estrades A, Caraccio MN, Calvo V, Hernández M, Quirici V (2006).
Biología, ecología y etología de las tortugas marinas en la zona costera uruguaya. In: Bases
para la conservación y el manejo de la costa uruguaya (eds. Menafra R, Rodríguez-
Gallego L, Scarabino F, D Conde), pp. 247-257. Vida Silvestre Uruguay, Montevideo.
Luke K, Horrocks JA, LeRoux RA, Dutton PH (2004). Origins of green turtle (Chelonia mydas)
feeding aggregations around Barbados, West Indies. Marine Biology, 144, 799-805.
Lumpkin R, Pazos M (2007): Measuring surface currents with Surface Velocity Program drifters:
the instrument, its data, and some recent results. In: Lagrangian Analysis and Prediction of
Coastal and Ocean Dynamics (eds. Griffa A, Kirwan AD, Mariano AJ, Özgökmen T,
Rossby T), pp. 39-67. Cambridge University Press.
Luschi P, Hays GC, Del Seppia C, Marsh R, Papi F (1998). The navigational feats of green sea
turtles migrating from Ascension Island investigated by satellite telemetry. Proceedings of
the Royal Society of London B, 265, 2279-2284.
Luschi P, Hays GC, Papi F (2003a). A review of long-distance movements by marine turtles, and
the possible role of ocean currents. Oikos, 103, 293-302.
Luschi P, Sale A, Mencacci R, Hughes GR, Lutjeharms JRE, Papi F (2003b). Current transport of
leatherback sea turtles (Dermochelys coriacea) in the ocean. Proceedings of the Royal
Society of London B, 270, S129-S132.
Marcovaldi MA, da Silva ACCD, Gallo BMG et al. (2000). Recaptures of tagged turtles from
nesting and feeding grounds protected by Projeto TAMAR-IBAMA, Brazil. In:
57
Proceedings of the 19th Annual Symposium on Sea Turtle Biology and Conservation (eds.
Kalb HJ, Wibbels T), pp. 164-166. NOAA Technical Memorandum.
Meylan PA (1995). Sea turtle migration evidence from tag returns. In: Biology and
Conservation of Sea Turtles, revised edition (ed. Bjorndal KA) pp. 91-100. Smithsonian
Institution Press, Washington D.C.
Meylan AB, Meylan PA (1999). Introduction to the evolution, life history, and biology of sea
turtles. In: Research and Management Techniques for the Conservation of Sea Turtles (eds.
Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M), pp. 3-5. IUCN/SSC Marine
Turtle Specialist Group Publication No. 4.
Miller JD (1997). Reproduction in sea turtles. In: The Biology of Sea Turtles (eds. Lutz PL,
Musick JA), pp. 51-81. CRC Press, Boca Raton, Florida.
Moritz C (1994). Applications of mitochondrial DNA analysis on conservation: a critical review.
Molecular Ecology, 3, 401-411.
Musick JA, Limpus CJ (1997). Habitat utilization and migration in juvenile sea turtles. In: The
Biology of Sea Turtles (eds. Lutz PL, Musick JA), pp. 137-163. CRC Press, Boca Raton,
Florida.
Naro-Maciel E, Becker JH, Lima EHSM, Marcovaldi MA, Desalle R (2007). Testing dispersal
hypotheses in foraging green sea turtles (Chelonia mydas) of Brazil. Journal of Heredity,
98, 29-39.
Pella J, Masuda M (2001). Bayesian methods for analysis of stock mixtures from genetic
characters. Fishery Bulletin, 9, 151-167.
Proietti MC, Lara-Ruiz P, Reisser JR, Pinto LS, Dellagostin OA, Marins LF (2009). Green turtles
(Chelonia mydas) foraging at Arvoredo Island in Southern Brazil: genetic characterization
58
and mixed stock analysis through mtDNA control region haplotypes. Genetics and
Molecular Biology 2009, in press.
Reisser JR, Proietti MC, Kinas PG, Sazima I (2008). Photographic identification of sea turtles:
method description and validation, with an estimation of tag loss. Endangered Species
Research, 5, 73-82.
Seminoff JA (2002). 2002 IUCN red list global status assessment: green turtle (Chelonia mydas).
IUCN/SSC Marine Turtle Specialist Group, Gland, Switzerland.
Souza RB, Robinson IS (2004). Lagrangian and satellite observations of the Brazilian Coastal
Current. Continental Shelf Research, 24, 241-262.
Stramma L, England M (1999). On the water masses and mean circulation of the South Atlantic
Ocean. Journal of Geophysical Research, 104(C9), 20,863-20,883.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The ClustalX
windows interface: flexible strategies for multiple sequence alignment aided by quality
analysis tools. Nucleic Acids Research, 25, 4876-4882.
Weir BS (1996). Intraspecific differentiation. In: Molecular Systematics, 2
nd
ed. (eds. Hillis DM,
Moritz C, Mable BK), pp. 385405. Sinauer, Sunderland, MA.
59
Figures
Figure 1. Minimum Spanning Network of haplotypes encountered at Arvoredo Island and
Cassino Beach. Black bars represent 1 basepair substitutions between haplotypes.
Figure 2. Surface drifter trajectories in the Atlantic Ocean, with study areas (black circles),
rookeries (4°x4° squares), and target area. Letters stand for Rocas/Noronha (R/N), Ascension
Island (AS), Trindade Island (TR), Guinea Bissau (GB), Gulf of Guinea (GG), Aves Island (AV),
Mexico (MX), Costa Rica (CR), Suriname (SU), Florida (FL), Cyprus (CY).
Figure 3. Mixed Stock Analyses estimates for the southern Brazil foraging aggregations, with
C.I.s and weights of employed priors. MSA
1
uninformative prior; MSA
2
prior reflecting
surface drifter data; MSA
3
prior reflecting number of females nesting per year at each rookery;
MSA
4
prior constructed to weigh both previous priors. Prior weights are represented in black,
and MSA estimates in gray.
60
Figure 1
61
Figure 2
62
Figure 3
63
Tables
Table 1. Haplotype frequencies for all cited foraging and nesting areas in the Atlantic, with total number
of haplotypes and samples per area. Letters stand for: Arvoredo Island (AI), Cassino Beach (CB), Ubatuba
(UB), Almofala (AF), Rocas/Noronha (R/N), North Carolina (NC), Nicaragua (NI), Bahamas (BH),
Florida (FL), Barbados (BB), Ascension Island (AS), Trindade Island (TR), Guinea Bissau (GB), Gulf of
Guinea (GG), Aves Island (AV), Mexico (MX), Costa Rica (CR), Suriname (SU), Cyprus (CY).
Foraging grounds Rookeries
Haplotype
AI
CB
UB
a
AF
a
R/N
b
NC
c
NI
d
BH
e
FL
f
BB
g
AS
h,i,j
R/N
b
TR
b
FL
h
GB
i
GG
i
AV
h
MX
h
CR
k
SU
h
CY
h,l
CM-A1
-
-
-
-
-
34
-
2
12
7
-
-
-
11
-
-
-
7
-
-
-
CM-A2
-
-
-
-
-
2
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
CM-A3
1
-
2
18
-
43
54
62
43
21
-
-
-
12
-
-
3
5
395
-
-
CM-A4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
CM-A5
25
20
14
28
5
5
6
10
3
13
-
-
-
-
-
1
27
1
32
13
-
CM-A6
2
2
-
3
2
-
-
-
-
-
11
-
-
-
-
6
-
-
-
1
-
CM-A7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
CM-A8
70
62
83
53
20
7
-
1
-
14
204
50
67
-
70
62
-
-
-
-
-
CM-A9
5
3
4
3
3
-
-
-
-
1
9
7
19
-
-
-
-
-
-
-
-
CM-A10
2
1
3
4
1
-
-
-
-
2
5
2
-
-
-
-
-
-
-
-
-
CM-A11
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
CM-A12
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
CM-A13
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25
CM-A14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
CM-A15
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
CM-A16
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
CM-A17
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
-
-
-
CM-A18
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
CM-A20
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
CM-A21
-
-
-
1
-
-
-
3
-
-
-
-
-
-
-
-
-
-
3
-
-
CM-A22
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
CM-A23
3
2
-
-
-
-
-
-
-
-
1
-
6
-
-
-
-
-
-
-
-
CM-A24
3
2
2
1
-
-
-
-
-
-
7
-
1
-
-
-
-
-
-
-
-
CM-A25
-
1
-
-
-
-
-
-
-
-
1
3
-
-
-
-
-
-
-
-
-
CM-A32
1
3
2
1
-
-
-
-
-
-
1
1
4
-
-
-
-
-
-
-
-
CM-A33
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
CM-A35
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
CM-A36
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
CM-A37
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
CM-A38
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
CM-A39
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
CM-A42
1
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM-A44
-
-
1
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
CM-A45
1
2
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
CM-A46
-
-
1
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
CM-A50
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
CM-A55
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N. hap.
12
12
10
13
5
8
2
6
6
8
13
7
7
3
1
7
2
7
5
3
2
N. samples
115
101
113
117
31
97
60
79
62
60
245
69
99
24
70
76
30
20
433
15
26
64
a
Naro-Maciel et al. 2007,
b
Bjorndal et al. 2006,
c
Bass et al. 2006,
d
Bass et al. 1998,
e
Lahanas et al. 1998,
f
Bass &
Witzell 2000,
g
Luke et al. 1994,
h
Encalada et al. 1996,
i
Formia et al. 2006,
j
Formia et al. 2007,
k
Bjorndal et al. 2005,
l
Kaska 2000.
Table 2. Haplotype (h) and nucleotide (π) diversity estimates ± standard deviations for all
compared foraging aggregations. For references see Table 1.
Foraging ground
h
π
Arvoredo Island
0.5831 ± 0.0451
0.0024 ± 0.0017
Cassino Beach
0.5857 ± 0.0501
0.0020 ± 0.0015
Ubatuba
0.4460 ± 0.0556
0.0021 ± 0.0016
Rocas/Noronha
0.5887 ± 0.0911
0.0019 ± 0.0015
Almofala
0.7168 ± 0.0306
0.0067 ± 0.0039
Barbados
0.7734 ± 0.0276
0.0105 ± 0.0057
Bahamas
0.3703 ± 0.0650
0.0066 ± 0.0038
Nicaragua
0.1831 ± 0.0621
0.0039 ± 0.0025
Florida
0.4855 ± 0.0668
0.0032 ± 0.0021
North Carolina
0.6778 ± 0.0310
0.0052 ± 0.0031
Average
0.5410
0.0045
65
Table 3. Global drifter data from the Atlantic Ocean and ecological priors for MSA. N = total
number of drifters per 4°x4° area; Y = number of drifters reaching the target area of the Brazilian
coast; P
= posterior probability that a drifter that arrived at the target area is from a given rookery.
Stock
N
Y
P
Ascension Island
56
30
0.410
Trindade Island
58
30
0.424
Rocas/Noronha
140
2
0.017
Gulf of Guinea
45
2
0.053
Guinea Bissau
23
0
0.033
Cyprus
29
0
0.003
Costa Rica
36
0
0.021
Surinam
84
0
0.009
Mexico
93
0
0.009
Aves Island
106
0
0.008
Florida
195
0
0.004
Livros Grátis
( http://www.livrosgratis.com.br )
Milhares de Livros para Download:
Baixar livros de Administração
Baixar livros de Agronomia
Baixar livros de Arquitetura
Baixar livros de Artes
Baixar livros de Astronomia
Baixar livros de Biologia Geral
Baixar livros de Ciência da Computação
Baixar livros de Ciência da Informação
Baixar livros de Ciência Política
Baixar livros de Ciências da Saúde
Baixar livros de Comunicação
Baixar livros do Conselho Nacional de Educação - CNE
Baixar livros de Defesa civil
Baixar livros de Direito
Baixar livros de Direitos humanos
Baixar livros de Economia
Baixar livros de Economia Doméstica
Baixar livros de Educação
Baixar livros de Educação - Trânsito
Baixar livros de Educação Física
Baixar livros de Engenharia Aeroespacial
Baixar livros de Farmácia
Baixar livros de Filosofia
Baixar livros de Física
Baixar livros de Geociências
Baixar livros de Geografia
Baixar livros de História
Baixar livros de Línguas
Baixar livros de Literatura
Baixar livros de Literatura de Cordel
Baixar livros de Literatura Infantil
Baixar livros de Matemática
Baixar livros de Medicina
Baixar livros de Medicina Veterinária
Baixar livros de Meio Ambiente
Baixar livros de Meteorologia
Baixar Monografias e TCC
Baixar livros Multidisciplinar
Baixar livros de Música
Baixar livros de Psicologia
Baixar livros de Química
Baixar livros de Saúde Coletiva
Baixar livros de Serviço Social
Baixar livros de Sociologia
Baixar livros de Teologia
Baixar livros de Trabalho
Baixar livros de Turismo